Lecture 11

February 24, 2021

We can also use separation of variables to solve the diffusion equation.

$$u_t = k u_{xx} \quad 0 < x < l \quad 0 < t < \infty \tag{1}$$

$$u(0,t) = u(l,t) = 0$$
 (2)

$$u(x,0) = \phi(x). \tag{3}$$

First, we solve equation (1) and separate the variables u(x,t) = T(t)X(x)as before. This time we get

$$\frac{T'}{kT} = \frac{X''}{X} = -\lambda = constant.$$

We solve the equation for T(t) to get

$$T(t) = Ae^{-\lambda kt},$$

where A is a constant. Then we solve the equation for X(x).

$$-X'' = \lambda X \quad in \quad 0 < x < l$$

with X(0) = X(l) = 0. As before, the solution is

$$X(x) = \sin \sqrt{\lambda_n} x$$

where $\lambda_n = \frac{n^2 \pi^2}{l^2}$. So the solution to (1) and (2) is

$$u_n(x,t) = A_n e^{-\frac{n^2 \pi^2 kt}{l^2}} \sin \frac{n\pi x}{l}.$$

The sum of u_n is also a solution to (1) and (2) due to linearity

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-(n\pi/l)^2 kt} \sin \frac{n\pi}{l} x.$$

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l},$$

u(x,t) is a solution to (1), (2) and (3). The numbers $\lambda_n = (\frac{n\pi}{l})^2$ are called *eigenvalues* and the functions $X_n(x) =$ $\sin(\frac{n\pi x}{l})$ are called *eigenfunctions* to the ODE

$$-X'' = \lambda_n X \quad in \quad 0 < x < l$$

with X(0) = X(l) = 0.

1 The Neumann condition

The same method works for both the Neumann and Robin boundary conditions. In the former case, (2) is replaced by $u_x(0,t) = u_x(l,t) = 0$. Then the eigenfunctions are the solutions X(x) of

$$-X'' = \lambda X, \qquad X'(0) = X'(l) = 0,$$

other than the trivial solution $X(x) \equiv 0$. When $\lambda = \beta^2 > 0$, as before $X(x) = c_1 \cos \beta x + c_2 \sin \beta x$. So that

$$X'(x) = -c_1\beta\sin\beta x + c_2\beta\cos\beta x.$$

We get $c_2 = 0$ from X'(0) = 0. From X'(l) = 0, we have

$$c_1\beta\cos\beta l = 0.$$

If $c_1 \neq 0$, we need to let $\beta = \frac{n\pi}{l}$. When $\lambda = 0$, we have $X(x) = c_1 + c_2 x$. So

$$X'(x) = c_2.$$

From X'(0) = X'(l) = 0 we have $c_2 = 0$. In this case, $\lambda = 0$ is an eigenvalue

$$-X'' = \lambda_n X \quad in \quad 0 < x < l$$

with X'(0) = X'(l) = 0.

of

For $\lambda < 0$, there is only a trival solution.

Therefore we will learn from Sec. 5.3 the list of all the eigenvalues is

$$\lambda_n = (\frac{n\pi}{l})^2 \quad for \quad n = 0, 1, 2, 3, \cdots$$

So the diffusion equation with the Neumann boundary condition

$$u_t = k u_{xx} \quad 0 < x < l \quad 0 < t < \infty$$
$$u_x(0,t) = u_x(l,t) = 0$$
$$u(x,0) = \phi(x).$$

If

The solution is

$$u(x,t) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n e^{-(n\pi/l)^2 kt} \cos \frac{n\pi x}{l},$$

provided that

$$\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l}.$$

All the coefficients A_0, A_1, A_2, \cdots are just constants.

Consider now the wave equation with the Neumann BCs. The eigenvalue $\lambda = 0$ then leads to X(x) = costant and to the differential equation $T''(t) = \lambda c^2 T(t) = 0$, which has the solution T(t) = A + Bt. Therefore, the wave equation with the Neumann BCs is

$$u(x,t) = \frac{1}{2}A_0 + \frac{1}{2}B_0t + \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l}) \cos \frac{n\pi x}{l}.$$
 (4)

Then the initial data must satisfy

$$\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l}$$

 and

$$\psi(x) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\frac{n\pi x}{l}.$$
 (5)

Equation (5) comes from first differentiating (4) with respect to t and then setting t = 0.

Exercise 1. Find all the eigenvalues and eigenfunctions for the eigenvalue problem

$$\begin{cases} -X''(x) = \lambda X(x) & 0 \le x \le l, \\ X(0) = X'(l) = 0. \end{cases}$$

Exercise 2. Use separation of variables to solve the Schrödinger equation

$$\begin{cases} u_t = iu_{xx} & 0 \le x \le l, \\ u_x(0,t) = u_x(l,t) = 0 \\ u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l}. \end{cases}$$