Lecture 11

February 24, 2021

We can also use separation of variables to solve the diffusion equation.

$$
u_t = k u_{xx} \quad 0 < x < l \quad 0 < t < \infty \tag{1}
$$

$$
u(0,t) = u(l,t) = 0
$$
\n(2)

$$
u(x,0) = \phi(x). \tag{3}
$$

First, we solve equation (1) and separate the variables $u(x,t) = T(t)X(x)$ as before. This time we get

$$
\frac{T'}{kT} = \frac{X''}{X} = -\lambda = constant.
$$

We solve the equation for $T(t)$ to get

$$
T(t) = Ae^{-\lambda kt},
$$

where A is a constant. Then we solve the equation for $X(x)$.

$$
-X''=\lambda X\quad in\quad 0
$$

with $X(0) = X(l) = 0$. As before, the solution is

$$
X(x) = \sin \sqrt{\lambda_n} x
$$

where $\lambda_n = \frac{n^2 \pi^2}{l^2}$ $\frac{2\pi^2}{l^2}$. So the solution to (1) and (2) is

$$
u_n(x,t) = A_n e^{-\frac{n^2 \pi^2 kt}{l^2}} \sin \frac{n \pi x}{l}.
$$

The sum of u_n is also a solution to (1) and (2) due to linearity

$$
u(x,t) = \sum_{n=1}^{\infty} A_n e^{-(n\pi/l)^2 kt} \sin \frac{n\pi}{l} x.
$$

$$
\phi(x) = \sum_{n=1}^{\infty} A_n \sin \frac{n \pi x}{l},
$$

 $u(x, t)$ is a solution to (1) , (2) and (3) .

The numbers $\lambda_n = \left(\frac{n\pi}{l}\right)^2$ are called *eigenvalues* and the functions $X_n(x) =$ $\sin(\frac{n\pi x}{l})$ are called *eigenfunctions* to the ODE

$$
-X'' = \lambda_n X \quad in \quad 0 < x < l
$$

with $X(0) = X(l) = 0$.

1 The Neumann condition

The same method works for both the Neumann and Robin boundary conditions. In the former case, (2) is replaced by $u_x(0,t) = u_x(l,t) = 0$. Then the eigenfunctions are the solutions $X(x)$ of

$$
-X'' = \lambda X, \qquad X'(0) = X'(l) = 0,
$$

other than the trivial solution $X(x) \equiv 0$. When $\lambda = \beta^2 > 0$, as before $X(x) = c_1 \cos \beta x + c_2 \sin \beta x$. So that

$$
X'(x) = -c_1\beta \sin \beta x + c_2\beta \cos \beta x.
$$

We get $c_2 = 0$ from $X'(0) = 0$. From $X'(l) = 0$, we have

$$
c_1\beta\cos\beta l = 0.
$$

If $c_1 \neq 0$, we need to let $\beta = \frac{n\pi}{l}$. When $\lambda = 0$, we have $X(x) = c_1 + c_2 x$. So

$$
X'(x) = c_2.
$$

From $X'(0) = X'(l) = 0$ we have $c_2 = 0$. In this case, $\lambda = 0$ is an eigenvalue of

$$
-X'' = \lambda_n X \quad in \quad 0 < x < l
$$

with $X'(0) = X'(l) = 0$.

For $\lambda < 0$, there is only a trival solution.

Therefore we will learn from Sec. 5.3 the list of all the eigenvalues is

$$
\lambda_n = \left(\frac{n\pi}{l}\right)^2 \quad for \quad n = 0, 1, 2, 3, \cdots
$$

So the diffusion equation with the Neumann boundary condition

$$
u_t = ku_{xx} \quad 0 < x < l \quad 0 < t < \infty
$$
\n
$$
u_x(0, t) = u_x(l, t) = 0
$$
\n
$$
u(x, 0) = \phi(x).
$$

If

The solution is

$$
u(x,t) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n e^{-(n\pi/l)^2 kt} \cos \frac{n\pi x}{l},
$$

provided that

$$
\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l}.
$$

All the coefficients A_0, A_1, A_2, \cdots are just constants.

Consider now the wave equation with the Neumann BCs. The eigenvalue $\lambda = 0$ then leads to $X(x) = \text{costant}$ and to the differential equation $T''(t) =$ $\lambda c^2T(t) = 0$, which has the solution $T(t) = A+Bt$. Therefore, the wave equation with the Neumann BCs is

$$
u(x,t) = \frac{1}{2}A_0 + \frac{1}{2}B_0t + \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l}) \cos \frac{n\pi x}{l}.
$$
 (4)

Then the initial data must satisfy

$$
\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l}
$$

and

$$
\psi(x) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos \frac{n\pi x}{l}.
$$
\n(5)

Equation (5) comes from first differentiating (4) with respect to t and then setting $t = 0$.

Exercise 1. Find all the eigenvalues and eigenfunctions for the eigenvalue problem

$$
\begin{cases}\n-X''(x) = \lambda X(x) & 0 \le x \le l, \\
X(0) = X'(l) = 0.\n\end{cases}
$$

Exercise 2. Use separation of variables to solve the Schrödinger equation

$$
\begin{cases} u_t = i u_{xx} & 0 \le x \le l, \\ u_x(0, t) = u_x(l, t) = 0 & \\ u(x, 0) = \frac{1}{2} A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n \pi x}{l} . \end{cases}
$$