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1 What is a Partial differential equation (PDE)?

Definition 1. A PDE is an identity that relates more than one the indepen-
dent variables (say z,y,z,t---), dependent variable u(z,y,z,--), and partial
derivatives of w.

e More than one independent variable x,y,t- - -, Ordinary differential equa-
tion has only one independent variable x.

e The dependent variable u is an unknown function of these variables x,y, - - - .

e The partial derivatives of u is often denoted by w, := g—g, Uy = %Z’
9 9
Uzg 1= G273 Uzy 1= Wgy and so on.

For example: u, + u, = 0 (transport), uy — ugy, = 0 (wave equation), u; = Uy,
(diffusion equation) and wugs + uyy + u., = 0 (Laplace’s equation).
Let us see the physical interpretation of the above equations.

Example 2. Simple Transport.

Proof. Consider a water flowing at a constant speed ¢ cm/s along a horizontal
pipe of fixed cross section in the positive x direction. A pollutant with density
u(z,t) g/cm is suspended in the water. The amount of pollutant in the interval
[0,2] at time ¢ is M = [ u(a’,t)da’. At the later time ¢ + h, the same amount
of pollutant have moved to the right by ¢- h cm. Hence

x x+ch
M = / u(@' t)dx' = / w(x',t + h)dx'.
0 ch

Differentiating with respect to x, we get
u(z,t) = wu(x+ch,t+h).
Differentiating with respect to h and putting h = 0, we get

0 = cug(z,t)+ ua,t).



Example 3. Vibrating string.

Proof. A elastic homogeneous string with length [ undergoes relatively small
transverse vibrations in a plane. Denote u(x,t) to be the hight of the string
at time ¢ and position x. Let T (constant) be the magnitude of tension and p
(constant) be the density (mass per unit length) of string. At very small section
of string

—Tsinf(x,t) + Tsinf(zx + Az,t) = F.
On the other hand, by Newton’s law we have
F =ma= p(Azx)uy.
So we have
p(Ax)uyy = —Tsinf(z,t)+ Tsinf(x + Az, t).
Dividing both side by p(Az),

—sinf(z,t) +sinf(x + Az, t)
Uy = — lim
p Az—0 Az

T 0 |
= E%sme(l’,t).

Observing that u, = tanf(x,t) ~ sinf(z,t), we get

2
Ut = C Ugg,
where ¢ = ,/%.
This is the wave equation. O

Example 4. Diffusion.

Proof. Let us imagine a motionless liquid filling a straight pipe and a chemical
substance which is diffusing through the liquid. Let u(z,t) g/cm be the density
of the substance. The mass of it from [0, z] is

M = /Ou(ac’,t)dx’. (1)

The chemical substance moves from regions of higher concentration to re-
gions of lower concentration. By Fick’s law of diffusion, the rate of motion is
proportional to the concentration gradient.

dM
- = flowin — flowout = k(uy(z,t) — ug(0,1)), (2)

where k is a proportionally constant. So (1) and (2) give the identity

/Omut(z’,t)d:c’ = (s t) — s (0,4).



Differentiating with respect to x, we get
Uy = Kugg.
This is the diffusion equation. U
Example 5. Heat Flow and the Laplace equation.

Proof. Let u(x,y,z,t) be the temperature and H(t) be the amount of heat
contained in the region D. Then

H(t) = /// cpudxdy,

where ¢ is the “specific heat” of the material and p is its density (mass per
unit volume). The change of the heat energy in D is

H
- /// cpurdrdydz (3)
dt

D

On the other hand, Fourier’s law says the heat flows from hot to cold regions
proportionately to the temperature gradient. But the heat cannot be lost from
D except by leaving it through the boundary. This is the law of conservation
of energy. Therefore, the change of heat energy in D also equals the heat flux

across the boundary,
H
Cfi—t = //k;(Vu~V)dS,
oD

where k is a heat conductivity and v is the out normal vector of dD.
Denote Au := Ugy + Uyy + Uzz.
By divergence theorem,

// E(Vu-v)dS = /// kAudzrdydz. (4)
oD D

Thus (3) and (4) give us the heat equation
k

U = — Au.
cp
This is the same as the diffusion equation!
In a situation where the physical state does not change with time. Then
u; = 0, the heat equation reduce to the Laplace equation

Au = 0.

For example, the temperature of this room eventually reaches a steady state
which satisfies the laplace equation. O



Definition 6. The order of an equation is the highest derivative that appears.

For example: u, + u; = 0 is a first order PDE. u;; — uy, = 0 is a second
order PDE. ug., + us + uu, = 0 is a third order PDE.

The most general PDE in two independent variables of first order can be
written as

F(x,y,u(x,y),ug;(m,y),uy(x,y)) = F(x7y7uvuﬂ?7uy) =0.

A solution of a PDE is a function u(x,y,---) that satisfies the equation
identically, at least in some region of the x,y,--- variables.

A operator .Z means: if v is a function Zv is a new function. For instance
& = 6% + 6% is the operator that takes v into v, + vy.

Definition 7. Linearity: for any functions v and v and any constant ¢ if .Z
satisfy

ZLu+v) = Lu+ Lo,
and
L(ew) = cZL(u).
We call .Z is a linear operator.
The equation
Lu = 0 (5)
is a linear PDE if .Z is a linear operator.

Example 8. u;., + u; + uu, = 0 is not linear equation. Because the operator
_ d%u [é) Q ,, 3 :
Lu = 525 T 5u +uz;uis not a linear operator.

Pu+v) 0 0
.i”(u—&—v)—T—l—g(u—i—v)—i—(u—i—v)az(u—i—v)7
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ZLu+v) #Lu+ L.

The equation (5) is called homogeneous linear equation. The equation
Lu = g,

where g # 0 is a given function of the independent variables, is called an
inhomogeneous linear equation.
The advantage of linearity for the equation .Zu = 0 is that

e if u,v are both solutions, so is au + bv for any a and b constants. This is
sometimes called the Superposition principle.

e If you add a homogeneous solution to an inhomogeneous solution you get
an inhomogeneous solution.



