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1 What is a Partial di�erential equation (PDE)?

De�nition 1. A PDE is an identity that relates more than one the indepen-
dent variables (say x, y, z, t · · · ), dependent variable u(x, y, z, · · · ), and partial
derivatives of u.

• More than one independent variable x, y, t · · · , Ordinary di�erential equa-
tion has only one independent variable x.

• The dependent variable u is an unknown function of these variables x, y, · · · .

• The partial derivatives of u is often denoted by ux := ∂u
∂x , uy := ∂u

∂y ,

uxx := ∂2u
∂x2 , uxy := ∂2u

∂x∂y and so on.

For example: ux + uy = 0 (transport), utt − uxx = 0 (wave equation), ut = uxx
(di�usion equation) and uxx + uyy + uzz = 0 (Laplace's equation).

Let us see the physical interpretation of the above equations.

Example 2. Simple Transport.

Proof. Consider a water �owing at a constant speed c cm/s along a horizontal
pipe of �xed cross section in the positive x direction. A pollutant with density
u(x, t) g/cm is suspended in the water. The amount of pollutant in the interval
[0, x] at time t is M =

∫ x
0
u(x′, t)dx′. At the later time t+ h, the same amount

of pollutant have moved to the right by c · h cm. Hence

M =

∫ x

0

u(x′, t)dx′ =

∫ x+ch

ch

u(x′, t+ h)dx′.

Di�erentiating with respect to x, we get

u(x, t) = u(x+ ch, t+ h).

Di�erentiating with respect to h and putting h = 0, we get

0 = cux(x, t) + ut(x, t).
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Example 3. Vibrating string.

Proof. A elastic homogeneous string with length l undergoes relatively small
transverse vibrations in a plane. Denote u(x, t) to be the hight of the string
at time t and position x. Let T (constant) be the magnitude of tension and ρ
(constant) be the density (mass per unit length) of string. At very small section
of string

−T sin θ(x, t) + T sin θ(x+4x, t) = F.

On the other hand, by Newton's law we have

F = ma = ρ(4x)utt.

So we have

ρ(4x)utt = −T sin θ(x, t) + T sin θ(x+4x, t).

Dividing both side by ρ(4x),

utt =
T

ρ
lim

4x→0

− sin θ(x, t) + sin θ(x+4x, t)
4x

=
T

ρ

∂

∂x
sin θ(x, t).

Observing that ux = tan θ(x, t) ≈ sin θ(x, t), we get

utt = c2uxx,

where c =
√
T

ρ .

This is the wave equation.

Example 4. Di�usion.

Proof. Let us imagine a motionless liquid �lling a straight pipe and a chemical
substance which is di�using through the liquid. Let u(x, t) g/cm be the density
of the substance. The mass of it from [0, x] is

M =

∫ x

0

u(x′, t)dx′. (1)

The chemical substance moves from regions of higher concentration to re-
gions of lower concentration. By Fick's law of di�usion, the rate of motion is
proportional to the concentration gradient.

dM

dt
= flowin− flowout = k(ux(x, t)− ux(0, t)), (2)

where k is a proportionally constant. So (1) and (2) give the identity∫ x

0

ut(x
′, t)dx′ = k(ux(x, t)− ux(0, t)).
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Di�erentiating with respect to x, we get

ut = kuxx.

This is the di�usion equation.

Example 5. Heat Flow and the Laplace equation.

Proof. Let u(x, y, z, t) be the temperature and H(t) be the amount of heat
contained in the region D. Then

H(t) =

∫∫∫
D

cρudxdy,

where c is the �speci�c heat� of the material and ρ is its density (mass per
unit volume). The change of the heat energy in D is

dH

dt
=

∫∫∫
D

cρutdxdydz (3)

On the other hand, Fourier's law says the heat �ows from hot to cold regions
proportionately to the temperature gradient. But the heat cannot be lost from
D except by leaving it through the boundary. This is the law of conservation
of energy. Therefore, the change of heat energy in D also equals the heat �ux
across the boundary,

dH

dt
=

∫∫
∂D

k(∇u · ν)dS,

where k is a heat conductivity and ν is the out normal vector of ∂D.
Denote 4u := uxx + uyy + uzz.
By divergence theorem,∫∫

∂D

k(∇u · ν)dS =

∫∫∫
D

k4udxdydz. (4)

Thus (3) and (4) give us the heat equation

ut =
k

cρ
4u.

This is the same as the di�usion equation!
In a situation where the physical state does not change with time. Then

ut = 0, the heat equation reduce to the Laplace equation

4u = 0.

For example, the temperature of this room eventually reaches a steady state
which satis�es the laplace equation.
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De�nition 6. The order of an equation is the highest derivative that appears.

For example: ux + ut = 0 is a �rst order PDE. utt − uxx = 0 is a second
order PDE. uxxx + ut + uux = 0 is a third order PDE.

The most general PDE in two independent variables of �rst order can be
written as

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = 0.

A solution of a PDE is a function u(x, y, · · · ) that satis�es the equation

identically, at least in some region of the x, y, · · · variables.
A operator L means: if v is a function L v is a new function. For instance

L = ∂
∂x + ∂

∂y is the operator that takes v into vx + vy.

De�nition 7. Linearity: for any functions u and v and any constant c if L
satisfy

L (u+ v) = L u+ L v,

and

L (cu) = cL (u).

We call L is a linear operator.

The equation

L u = 0 (5)

is a linear PDE if L is a linear operator.

Example 8. uxxx + ut + uux = 0 is not linear equation. Because the operator

L u = ∂3u
∂x3 + ∂

∂tu+ u ∂
∂xu is not a linear operator.

L (u+ v) =
∂3(u+ v)

∂x3
+
∂

∂t
(u+ v) + (u+ v)

∂

∂x
(u+ v),

L u+ L v =
∂3u

∂x3
+
∂u

∂t
+ u

∂u

∂x
+
∂3v

∂x3
+
∂v

∂t
+ v

∂v

∂x
,

L (u+ v) 6= L u+ L v.

The equation (5) is called homogeneous linear equation. The equation

L u = g,

where g 6= 0 is a given function of the independent variables, is called an
inhomogeneous linear equation.

The advantage of linearity for the equation L u = 0 is that

• if u, v are both solutions, so is au+ bv for any a and b constants. This is
sometimes called the Superposition principle.

• If you add a homogeneous solution to an inhomogeneous solution you get
an inhomogeneous solution.
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