Lecture 8

February 3, 2021

Let us review the formula for the initial value problem for wave equation
and heat equation on the whole line.
For the wave equation:

Ut (T, 1) — Cgy(2,t) =0 —oc0 < x < 00,
u(z,0) = ¢(z)
ui(x,0) = ().

By d’Alembert formula,

u(e,t) = S[6e + ct) + ole — ct)] + o
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For the diffusion equation:

{ut(x,t) Upr (2, 1) =0 —00 <z <00
u(z,0) = ().

We have the formula

u(,t) -<f—y>2/4t¢(y>dy. (2)
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Exercise. If ¢(z) is a bounded piecewise-continuous function for —oo < z < oo,
then prove that

1
i — o0 —(z—y)?/4t - = _
Jim u(et) = tim s [T e Sy = 5l¢(a+) + d(a-)]

for all € R, where ¢(z+) and ¢(x—) stand for the right hand side and left
hand side limits of ¢ at x.

We are going to compare the properties of these two equations.

i) The PDE exhibits finite propagation speed if the following holds:

If the initial data consists of functions with compact support, then for every
t > 0 the solution u(-,t) has compact support.

Otherwise, we say that it has infinite speed.



One can make this quantitative: the speed of propagation is < ¢ provided
that the following holds:

If the initial data consists of functions with support contained in a ball
B(a, R), then for every ¢ > 0 the solution u(-,t) has support contained in
B(a, R + ct).

The waves have finite speed. This can be easily seen from the d’Alembert
formula (1).

But the diffusions have infinite speed of propagation. It was seen in the
example of the heat kernel, which is strictly positive for all x € R for ¢t > 0. The
initial data is compact support in 0.

ii) Wave equation transported singularities along characteristics for ¢ > 0.
We saw from the “hammer blow” and “box wave” that singularities are preserved
and are transported along the characteristics.

Sigularities for ¢ > 0 lost immediately to the diffusions. For piecewise-
continuous initial data ¢ or some weaker conditions on ¢, the solution to the
diffusions equation will immediately (for any ¢ > 0) become infinitely differen-
tiable immediately.

iil) Well-posed for wave equation for any t¢. It can be seen from d’Alembert
formula (1) and the law of conservation of energy

B(t)= L [™wde+ 1 [TXu2de = E(0).

Diffusion equations are well-posed for ¢ > 0 (at least for bounded solutions)
but ill-posed for ¢ < 0. The first part can be proved by Formula (2) and the
maximum principle in the previous lecture. The second part can be seen as
following:

1
Up(z,t) = Ee_”zt sinnx

satisfies the diffusion equation for all z,¢. And w,(x,0) = %sin nx — 0 uni-
formly as n — oo. But consider ¢ < 0, say ¢ = —1. Then w,(x,—1) =
%e”z sinnx — Zoo uniformly as n — oo except at a few x. This violates
the stability in the uniform sense at least.

iv) Maximum principle holds for diffusions but does not hold for waves. This
can be seen from the “hammer blow”.

v) Energy is constant for waves but decays to zero (if ¢ is integrable) for

diffusions. Notice ¢(x) = e, the solution to the diffusion equation is

1 Feo 2
u(x,t) = 47rt/ e~ (@=v) /4te_ydy
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It did not decay, but rather “traveled” from right to left. This was due to ¢
being non-integrable.

vi) The fact that information is transported by the solutions of the wave
equation is seen from the fact that the initial data is propagated along the
characteristics. So the information will travel along the characteristics as well.

In the case of the heat equation, the information is gradually lost, which can
be seen from the graph of a typical solution (think of the heat kernel). The heat
from the higher temperatures gets dissipated and after a while it is not clear
what the original temperatures were.
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