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Underlined contents were not included in the tutorial because of time constraint, but
included here for completeness.

Below is a brief introduction to properties of harmonic functions. Removable singularity
theorem and Liouville’s theorem for harmonic functions are proven by maximum prin-
ciple and Poisson integral formula. The main reference is Chapter 2 of Gilbarg and
Trudinger’s Elliptic Partial Differential Equations of Second Order. Below, ) always
denotes a nonempty connected open set in R? = C.

1 Properties of Harmonic Functions

A C? function u : @ — R is harmonic iff Au = u,, + u,, = 0.

Harmonic functions and holomorphic functions are intimately related.

1. f is holomorphic iff 0; f = 0, whereas u is harmonic iff 9,0;u = 0.

2. If f is holomorphic, then Rf, S f and log | f| are harmonic whenever finitely defined.
If 2 is simply connected and w is harmonic, then f = u + iv, where v = [(u,dy —
u,dz), is holomorphic, and log |e/| = w.

3. (Cauchy integral formul and mean-value property) If f is holmorphic, then

1 f(w)
flz) = - /e)B(z,r) P Zdw.

If w is harmonic, then

1 1 u(w)
= — d = —
u(Z) 27r 0B(z,r) U(w) v 2m 0B(z,r) |U} - Z|

dw. (1)

4. (strong maximum (modulus) principle) If a holomorphic f attains the maximum
modulus in the interior, then it is constant. If a harmonic u attains the maximum
in the interior, then it is constant.

5. (weak maximum (modulus) principle) The maximum modulus of a holomorphic
function or a harmonic function on a bounded domain is attained on the boundary.

Mean-value property for harmonic function is more rigid than that for holomorphic func-
tion because the domain of integration in (1) cannot be any 0 B(w, r) containing z. Indeed,
the offset mean-value property is given by the more involved Poisson integral formula.



Proposition 1 (Poisson integral formula). Suppose u is harmonic on a neighbourhood

of B(0, R). Let ¢ = u|0B(0, R). Then for z € B(0, R)

uw)= [ )Py (2)
dB(0,R)
where P, (z,vy) = msp mjaf (R )"
"\ Y) = eBoR)] - ®R2 \Je—yl) -

Conversely, if ¢ is a continuous function on dB(0, R), then (2) defines a harmonic function
on B(0, R) whose continuous extension to dB(0, R) exists and agrees with (.

Corollary 2. Harmonic functions are smooth.

Below, we prove removable singularity theorem and Liouville’s theorem for harmonic
functions.

Proposition 3 (Removable singularity theorem). Suppose u is harmonic on B(0,7)\{0}.
If u(z) = o(log |2]) as z — 0, then u extends to a harmonic function on B(0, ).

Proof. 1t suffices to show u agrees to u defined by Poisson integral formula, which is a
harmonic function on B(0,7). Let w = @ — u. Then w(z) = o(log |z]) = o(log |z| — logr).
Note that both w and log |z| —log r vanish on dB(0, 7). By maximum principle, for ¢ > 0,
since Tw(z) +elog |z| = —o0, supg g\ oy Tw + (log|z| —logr) < 0. The result follows
by letting ¢ — 0. O]

To prove Liouville’s property, it is handy to have an estimate on the gradient.

Proposition 4 (gradient estimate). Suppose u is harmonic on a neighbourhood of B(0, R).

Then

n
0u(0)] < Tl 01

Remark. Repeated application of the gradient estimate shows harmonic functions are in
fact analytic.

Proof. Apply differentiation under the integral sign on Poisson integral formula. m

Proposition 5 (Liouville’s theorem). If a harmonic function on R? is bounded, then it
is constant.

Proof. Let R — oo in the gradient estimate. O

Exercise 6. Complete the following alternative proof of Liouville’s theorem:

By Poisson integral formula, we have the following Harnack inequality for nonnegative
harmonic v on R?

1 R—|:z:|u ulx 1 R+|:z:|u

Liouville’s theorem for nonnegative functions then follows by letting R — oo on the far
right. The general case follows by translation.




