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ANALYSIS OF AN ADAPTIVE FINITE ELEMENT METHOD FOR
RECOVERING THE ROBIN COEFFICIENT*

YIFENG XUT AND JUN zZOUf#

Abstract. Based on a new a posteriori error estimator, an adaptive finite element method is
proposed for recovering the Robin coefficient involved in a diffusion system from some boundary
measurement. The a posteriori error estimator cannot be derived for this ill-posed nonlinear inverse
problem as was done for the existing a posteriori error estimators for direct problems. Instead, we
shall derive the a posteriori error estimator from our convergence analysis of the adaptive algorithm.
We prove that the adaptive algorithm guarantees a convergent subsequence of discrete solutions in an
energy norm to some exact triplet (the Robin coefficient, state and costate variables) determined by
the optimality system of the least-squares formulation with Tikhonov regularization for the concerned
inverse problem. Some numerical results are also reported to illustrate the performance of the
algorithm.
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1. Introduction. This work is concerned with estimation of the Robin coef-
ficient associated with a diffusion equation. This is a severely ill-posed nonlinear
inverse problem. To describe the inverse problem, we let Q C R? (d = 2,3) be an
open bounded polyhedral domain, with its boundary I' made up of two connected
disjoint open subsets satisfying I'; UT; = I', both of which are a union of some
(d — 1)-dimensional polyhedral domains. The governing system of our interest is the
diffusion equation:

(1.1) -V - -(aVu)=f in€Q,

(1.2) a%:q on I'y; a%—i—"/u:O on I';,

where f € L2(f2), coefficient « is assumed to be piecewisely W1° such that 0 <
a1 < a < ag ae. in Q for two positive constants o1 and as, and m is the unit
outward normal on I'. In addition, ¢ is a prescribed flux in L?*(T,), and 7 is the
Robin coefficient belonging to the admissible set

o ={yeL®T;):co<y<c ae onl;}
with ¢y and ¢; being two given positive constants.
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The Robin boundary condition in (1.2) is encountered in many industrial applica-
tions, such as convection between the conducting body and the ambient environment
in heat transfer [46], damage in corrosion detection [29], [32], and the metal-to-silicon
contact in semiconductor devices [8], [18], where the Robin coefficient represents the
material profile on part of the boundary. As collecting accurate values of this coeffi-
cient is very expensive and difficult experimentally [46], some nondestructive methods
involving boundary or internal measurements are used in engineering [14], [37], which
leads to the inverse problem of our interest: determine the Robin coefficient ~ with
partial measurement data g of u on the accessible boundary I',. Both identifiability
and stability of this inverse problem have been investigated intensively [11], [12], [13],
[20], [29].

In terms of numerical methods, there have been various techniques applied to the
least-squares formulation with (1.1)—(1.2) as a constraint. This is a commonly used
approach to deal with an inverse problem when measurement errors are present. The
existing studies include the boundary integral method [19], [35] and the finite element
methods [30], [31]. Despite these efforts, it is still challenging to numerically estimate
the Robin coefficient accurately and efficiently in a PDE-constrained optimization
problem, particularly in the presence of discontinuity of the unknown Robin coefficient
and the nonsmooth boundaries. To resolve this difficulty, we propose in this work
an adaptive finite element method (AFEM) for the inverse problem, in the hope that
AFEM can achieve a desired accuracy for the numerical reconstruction with minimum
degrees of freedom.

In practical computations, AFEM generates a sequence of nested triangulations
and discrete solutions by successive loops:

(1.3) SOLVE — ESTIMATE — MARK — REFINE.

This procedure is mainly driven by the module ESTIMATE consisting of a posteriori
error estimation, i.e., some computable quantities formed by the discrete solution, the
local mesh size, and the given data. This field has been explored extensively for finite
element approximations of direct PDEs and the relevant theory is well understood for
elliptic problems; see the monographs [1], [45] and the references therein. Over the
past decade, there have also been great developments in the a posteriori error analysis
for PDE-constrained optimal control problems; see [3], [27], [28], [34], [36]. Compared
with optimal control problems, inverse problems are quite different in nature due to
their severe instability with respect to noise in the data. Several efforts have already
been made in this direction; see, e.g., [2], [4], [5], [21], [33].

Another crucial issue regarding AFEM is its convergence: does the iteration (1.3)
ensure the convergence of the resulting approximate solutions? This issue has been
investigated intensively for second order linear boundary value problems (see [7], [9],
[38], [41], [42]) and for some nonlinear equations (see [6], [16], [22], [24], [25]). On
the contrary, little has been done for inverse problems in this direction. The only
related work is [26] for a PDE-constrained optimal control problem, which studied
the asymptotic error reduction property of an adaptive finite element approximation
for the distributed control problems. The adaptive algorithm in [26] requires one extra
step for some oscillation terms in the module MARK and the interior node property
in the module REFINE. To the best of our knowledge, our earlier work [47] seems to
be the only one that studies the convergence of an AFEM for an inverse problem. In
[47], we considered the numerical reconstruction of distributed fluxes by an adaptive
finite element method of the form (1.3) with the error estimator from [33] involved in
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ESTIMATE and several practical marking strategies adopted in MARK. Then it was
proved that as the loop (1.3) proceeds, the sequence of discrete solutions generated
by the adaptive algorithm converges to the exact solution in some norm and the error
estimator also goes to zero. Unlike [26], the AFEM in [47] does not require an extra
step for some oscillation terms in the module MARK and the interior node property
in the module REFINE.

In this paper, we shall make a first effort to analyze the convergence of an AFEM
for a nonlinear inverse problem, i.e., estimation of the Robin coefficient associated
with (1.1)—(1.2) from partial measurements on the accessible boundary I',. To be
more precise, we will demonstrate that the sequence of discrete solutions produced
by an adaptive algorithm of the form (1.3) has a subsequence converging in some
appropriate norm to an exact solution to the Robin inverse problem. Though the
analysis on the current nonlinear ill-posed inverse problem is much more technical
and difficult than the ones for direct problems, we can still manage to establish an
AFEM here that is of the same effective framework as the standard one for direct
elliptic problems (cf. [9], [39]), that is, no oscillation term is involved in the module
MARK and no interior node property is enforced in the module REFINE; therefore it
is most favorable to practical computation. A unique feature of our analysis here is
its derivation of the a posteriori error estimator. The existing approaches for direct
PDEs and PDE-constrained optimal control problems fail for the current variational
formulation associated with the Robin inverse problem due to the intrinsic nature in
its severe ill-posedness and strong nonlinearity. Instead, we shall derive the a posteri-
ori error estimator for the state, the costate, and the Robin coefficient in the process
of the convergence analysis for the new adaptive algorithm (see section 5).

In analyzing nearly all the existing adaptive algorithms that are based on a pos-
teriori error estimator, a general procedure consists of three steps. The first step is
to derive an error estimator that provides an upper and a lower bound of the er-
ror between the exact solution and the finite element solution. The second step is
to formulate an adaptive algorithm of the form (1.3) based on the a posteriori error
estimator. The last step is to establish the convergence of the adaptive algorithm. Un-
fortunately the existing approaches to establish error estimators for direct problems
(see, e.g., [1], [45]) or for inverse problems (see, e.g., [21], [33], [47]) do not work for our
current nonlinear inverse problem. On one hand, the least-square functional for the
Robin inverse problem is nonconvex so that we cannot deal with it like [21], [33], [47],
or [34], [36]. On the other hand, the Galerkin orthogonality is an essential property
in a posteriori error analysis for direct problems, but it fails now as the optimality
conditions contain a variational inequality associated with the Robin coefficient.

Because of the reasons above, we plan to consider the convergence directly by
showing some limiting solution given by a successive iteration of the process (1.3) is an
exact solution and derive some computable quantities during the convergence analysis,
and these quantities are used as the error estimator in an adaptive algorithm. More-
over, this estimator is sufficient to guarantee the convergence of the resulting adaptive
algorithm. This is one of the major novelties of the work, and it seems to be the first
time to establish a posteriori error estimates from the perspective of convergence anal-
ysis. And we think this approach works for other nonlinear inverse problems as well.

Even though some of our arguments in convergence analysis follow partial existing
principles (cf. [22], [23], [24], [38], [41]), there are several new yet essential difficulties
and technical differences due to the strong nonlinearity of the inverse problem.

e The problems in [22], [23], [24], [38], [41] are all in the form of variational
equations. However, the formulation of the Robin inverse problem in this work
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is a nonlinear constrained optimization problem, whose optimal conditions
couple the state, the costate, and the Robin coefficient (control) in a saddle-
point system, including a variational inequality.

e To prove strong convergence of a subsequence of discrete solutions by the
adaptive process (1.3) to some minimizer to a limiting optimization problem
we utilize some techniques from nonlinear optimization, while the result for
linear boundary value problems may be established by the standard finite
element convergence theory (see, e.g., [38], [41]).

e To assert the limiting triplet (state, costate, and control) is also an exact
solution, we prove that it also satisfies the saddle-point system for the corre-
sponding continuous optimization problem as in [22] for an eigenvalue problem
and [24] for a quasi-linear elliptic equation. But unlike the existing works, the
optimality conditions in the current situation include a variational inequality,
so we have to first establish the convergence of a subsequence of the error indi-
cators deduced from the relevant discrete inequality residuals of the adaptive
discrete triplets and then come to our conclusion by some density argument.

We shall establish our convergence results in two steps. First, the sequence of
discrete triplets (the approximate state, costate, and Robin coefficient) produced by
the adaptive algorithm is proved to contain a subsequence that converges strongly
to some limiting triplet. It this step, we need to handle a nonlinear optimization
problem with the system (1.1)—(1.2) as a constraint; see section 4. The second step is
to prove that the limiting triplet satisfies the saddle-point system of the Robin inverse
problem, which in turn leads to the desired result. Here we consider and study limiting
behaviors of residuals with respect to the approximate state, costate, and Robin
coefficient; see section 5. It is noted that an a posteriori error estimator to drive an
adaptive process (1.3) for the Robin inverse problem is obtained simultaneously.

The rest of this paper is organized as follows. In section 2, we give a description of
the Robin inverse problem in a variational formulation and its finite element method.
A standard adaptive algorithm based on an a posteriori error estimator is introduced
in section 3, and it is proved to generate a sequence of discrete triplets strongly
converging to some limiting triplet in section 4. Section 5 is devoted to the main
result and the derivation of the error estimator. Two numerical examples for the
algorithm are presented in section 6. Finally, some concluding remarks are provided
in section 7.

Throughout the paper we adopt the standard notation for the Lebesgue space
L?(G) and the Sobolev space W™P(G) as well as H™(G) (p = 2) for integer m > 0
on an open bounded domain G C R?. Related norms and seminorms of W™?(@),
H™(G) and the norm of LP(G) are denoted by |- [lm.p.c; | [lm.cs | lm.c and || -[| ()
respectively. We use (-, -)g to denote the L? scalar product on a domain G C . The
subscript is omitted when G = 2. Moreover, we shall use C', with or without subscript,
for a generic constant independent of the mesh size, and it may take a different value
at each occurrence.

2. Mathematical formulation. The Robin inverse problem of our interest is
severely ill-posed [30], [31]. For a stable estimation of the Robin coefficient, we shall
reformulate it as the following constrained optimization problem with the Tikhonov
regularization:

. 1 B
(2.1) inf (1) = 5llu =gl e, + 5,

where 8 > 0 is a regularization parameter, and u := u(y) € H*({) solves the varia-
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tional formulation of (1.1)—(1.2):

(2.2) (@Vu, Vo) + (yu, ¢)r, = (f,6) + (¢, ¢)r, Vo e H'(Q).

There exists at least one minimizer to the problem (2.1)—(2.2) [31]. We note that over
H(Q) the norm (||V - [|3+]| - ||(2)>Fi)1/2 is equivalent to the usual H'-norm due to the
Poincaré inequality. For efficient evaluation of the gradient in numerical simulation
of the optimal problem (2.1) and (2.2), we often introduce a costate p(v) satisfying
an adjoint problem for (1.1)—(1.2) with respect to u(y) — g:

-V -(aVp)=0 in Q,

a%:u(v)—g on Ig; a%—i—"/p:O on I.

With the help of this adjoint system, the Gateaux derivative of J () at v € &/ in the
direction A € L*°(I';) can be represented by (cf. [31])

T (M)A = (By = u()p(7), Mr, -

Now with the above preparations and the introduction of a costate p*(v*) € H*(Q),
the minimizer (y*, u*(7*)) to the problem (2.1)—(2.2) is characterized by the following
optimality conditions:

(2.3) (aVu*, Vo) + (v u*, ¢)r, = (f,0) + (¢.¢)r, YV ¢ € H(Q),
(2.4) (aVp*, Vo) + (y'p*,v)r, = (u* —g,v)r, YveH(Q),

25) (B v (WP )A=)p, 20 VAEd

We note that (2.3) is the constraint (2.2) for u* and (2.4) is the variational formulation
of the adjoint problem for (1.1)-(1.2) with respect to u* — g. Using the Géateaux
derivative of J(7v) at v*, we find that the variational inequality (2.5) is a necessary
condition for the minimizer v* to the problem (2.1) over a convex set <.

Next we introduce a finite element method to approximate the continuous opti-
mization problem (2.1)-(2.2). Let 7;, be a shape-regular conforming triangulation of {2
into a set of closed simplices with diameter hp := |T|1/ 4 for each T € T, such that the
coefficient o is W1 in each element. Let Vj, be the usual H'-conforming linear ele-
ment space over T, Vi1, := Vi |r, be the restriction of Vj, on I';, and %, := Vi, (7
be the discrete admissible set. Then we approximate the problem (2.1)—(2.2) by

1 B
(2.6) Jmin J () = 3llun(m) - alis.., + ll.r,

where up, := up(vyn) € Vi, solves the discrete problem

(2.7) (aVup, Von) + (yaun, én)r, = (f, on) + (¢, én)r, Y én € Vi,

As in the continuous case, there exists at least one minimizer to (2.6)—(2.7) [31],
and the minimizer v; € 47,, the discrete state, and costate u; € Vj and p; € Vj
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satisfy the optimality conditions:

(2.8) (aVuy, Vén) + (viup, on)r, = (f,¢n) + (¢, ¢n)r, Y ¢n € Vi,
(29) (avp;k“ V’Uh) + (’Y}jpzavh)n = (UTL - gvvh)ra v Vp € Vha
(2.10) (B — (Vi) oh (Vs )s A — A/Z)pi >0 Y\, €.

We end this section with two uniform stability estimates for finite element approx-
imations u;, and (u},p)), which are easily obtained from the problems (2.7), (2.8),
and (2.9):

210) flunly + luplls < CUFllo + ligllor.), PRl < CC1fllo + llgllor. + [lgllo.r.)-

3. Adaptive algorithm. In this section, we propose an adaptive finite element
for the problem (2.3)—(2.5). For this purpose, some more notation and definitions are
needed.

The collection of all faces (resp., all interior faces) in 7y, is denoted by Fy, (resp.,
Fn(€2)) and its restriction on I'y and I'; by Fp(I'y) and Fp(I';), respectively. The
scalar hp := |F|*/(@=1) stands for the diameter of F' € Fj, which is associated with
a fixed normal unit vector np in the interior of 2 and nyp = n on the boundary T
We use Dr (resp., Dg) for the union of all elements in 7;, with nonempty intersection
with element T € Tj (resp., ' € Fy). Furthermore, for any F € Fp(Q) (resp.,
F e Fr(l'y) UFu(T;)) we denote by wp the union of two elements in 7j, sharing the
common face F' (resp., the element with F' as a face).

For any (¢n,vn, An) € Vi, x Vi, x o),, we define two element residuals for each
T € Ty, and three face residuals for each face ' € Fj, by

Rr1(én) = f+V - (aV¢yn), Rra(vn) =V - (aVuy),

[V, - np] for F e Fp (),
Jr1(Pn,An) = —q+aVoy -np for F € Fi(Ta),
Aon +aVo, -np for F € fh(l—‘i),
[V, - np] for F e Fp (),
JF72(’U}I, d)h,)\h) = aVu, -np — ((bh — g) for F e ]:h(l—‘a),
Apop +aVo, -np for F e Fp(ly),

and

Jr3(On, Vn, An) = BAn — ¢pvn, for F € Fip(Ly),

where [aV ¢y, - np| and [aVuvy, - np| are the jumps across F € F,(Q2). Then for any
Sp C Fp, we introduce the error estimator

i (D1 Vhs Ans £1G5 95 Sh) + En(dns Vhs Ans Sh)
= Y nEa@n v A [0 9)+ Y Enn(Bhova, An)

FeSy, FeShﬁ]-'h(Fi)
(3.1) = Z (7511 (Dhs Ans £r@) + 12 (Vh s Oy Ans 9))
Fesy,

+ Z Ern(Pns Vhy An)

FeS,nFL(Ty)
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with
Mona (B Ay £r0) =Y BEI R (0) 8.2 + hell Tra (6n, A3,
Tewr
Moo (Ons &y A g) =Y B3| Rr2(on)|§ 7 + hrllJr2(vn, én, An)lI3 £,
Tewr
and

Ern(Dn, vny An) == W3 || Tp,3(dn. v, M)l 21 ()

When Sy, = Fp, Sp, will be dropped in the parameter list of the error estimator above.

Generally speaking, the error estimator is supposed to admit an upper bound of
the error u* —uj, p* —pj, and v* —~} in some norms as in the case of direct boundary
value problems [45]. But in the current situation, we are unable to achieve such a
result directly due to the high nonlinearity of the Robin inverse problem. Nevertheless,
we shall utilize the estimator as an error measure in an adaptive algorithm for the
minimization problem (2.1)—(2.2) or the saddle-point system (2.3)—(2.5). As we shall
see in section 5, this measure will ensure the convergence of the resulting adaptive
algorithm.

Now we are in a position to state the adaptive algorithm based on the above
error estimator. From now on we will write every dependence on triangulations by
the number k of the mesh refinements and always use, unless specified otherwise, the
pair (uj,v;) for the minimizer of the problem (2.6)-(2.7) with & replaced by k.

ALGORITHM 3.1. Given a conforming initial mesh To. Set k := 0.

1. (SOLVE) Solve the discrete problem (2.6)—(2.7) on Ty for (u}, ;) € Vi X .

2. (ESTIMATE) Compute the error estimator ng(uk, vk, Ve, [, a4, 9)+&e(wh, Pr, V7)
as defined in (3.1).

3. (MARK) Mark a subset S, C Fyi containing at least one face Fin Fi. with
the largest error indicator, i.e.,

nﬁ)k(u27p27727 f7q7g) + §ﬁ7k(u27p2772)

= max (nF,k(u]tapltaA/]:7f7q7g) +€F,k(ultap27’\/2))
FeFy

(3.2)

4. (REFINE) Refine each triangle T with at least one edge in Sy by bisection to
get Ty
5. Set k:=k+1 and go to step 1.
At the end of this section, we state a stability estimate of local error indicators,
which will be used in convergence analysis in section 5.
LEMMA 3.1. Let {(uy,pi.7i)} be the sequence of discrete solutions given by
Algorithm 3.1. Then there holds for the error indicator np, defined in (3.1) that

n%,k(ult?p]thZv .f7 Qag)
(3.3) < Clugli wp + Ikl
+hpl

Lop + MRG0

g||(2),FﬁFa + hFHqu,FmFa) VFeF.
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Proof. By the inverse estimate, local quasi-uniformity of 7; and the constraints
of a and v, we get

e (Ul i, 9) < C (ma e} o 21k 1E o + BENFIG o + hF|Q|3,FmI‘a) :

X
Tewr

2 lptlE, + hFlgllaFmpu) ,

a0k o) < © (IR oy + e o
which, along with the definition (3.1), leads to the estimate (3.3). o
Remark 3.1. One may notice that only a general principle is given for possi-
ble marking strategies to be used in step 3 of Algorithm 3.1. In fact, the condition
(3.2) there can be easily fulfilled by some commonly used marking strategies, such
as the maximum strategy, the equidistribution strategy, and the modified equidis-
tribution strategy. In addition, the bisection in the module REFINE divides a given
tetrahedron/triangle into two subtetrahedra/subtriangles of the same size such that
the shape-regularity of {73} holds uniformly [39], [44]. In other words, all constants
in our subsequent estimates depend only on the initial mesh and the given data.

4. Limiting behavior. In this section, we study the limiting behavior of the
sequence {(uy, pr,vi)} generated by Algorithm 3.1. It is noted that all results in this
section are independent of any specific marking strategy in the module MARK. We
start with a limiting space and a limiting admissible set

Voo 1= U Vi (in H'-norm) and 7., = U ), (in L*(T;)-norm),
k>0 k>0

where {Vj} and {7} are both induced by Algorithm 3.1. It is worth pointing out
that Vo, and A, are generally different from H!(Q) and A, respectively, since the
sequence of underlying meshes is produced by the nonuniform refinement. To be
precise, it is easy to check that V. is a closed subspace of H(§2). For /.., we have
the following lemma.

LEMMA 4.1. o is a closed convex subset of < .

Proof. The strong closedness of o7, comes directly from its definition. Now for
any A and p in @, there exist two sequences {\r} and {px} C Uy>o @% such that
A — X and pp — p in L?(T;). Therefore, noting the convexity of .27, we have
{th + (1 = )i} C Upso @ and tA, + (1 — ) — tA+ (1 — t)p in L*(T;) for any
t € [0,1]. As a result, the convexity follows. Furthermore, we have A\, — \ a.e.
on I'; after (possibly) passing to a subsequence, which, together with the constraint
co < A < ¢ on I';, implies that ¢ < A < ¢; a.e. on I';. This proves that o7, C
o O

Now we introduce a counterpart of the minimization problem (2.6)—(2.7) over
s

: 1 B
(1) nt 7() = 3lluse(h) ~ gl r, + SIlErs

where s 1= uoo () € Voo satisfies the variational problem

(4.2) (@Voo, VO) + (Yoo, O)r: = (f,0) + (¢, )r. V¢ € Voo

THEOREM 4.1. There exists at least one minimizer to the optimization problem
(4.1)—(4.2).
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Proof. Let {v"} C 4/ be a minimizing sequence satisfying J (") — inf J (7).
As o, is a closed convex set in L?(T;), there exists a subsequence, still denoted by
~™, and some y* € o7, such that

(4.3) A" = 4*  weakly in L*(T;).
With v = 4™ in (4.2), u™ := u™(y") € Vi satisfies
(44) (O[V’U,n, V(b) + (A/nuna (b)l—‘i = (f7 (b) + ((L ¢)Fa v ¢ € Voo

Taking ¢ = u™ in (4.4), we obtain by the norm equivalence and the trace theorem that
[|[u™]|1 is uniformly bounded independent of n. Therefore, there exists a subsequence,
also denoted by {u"}, and some u* € Vo, as Vi is weakly closed such that

(4.5) u™ = u* weakly in H'(Q); u"™ —u* in L*(T).

Next we prove u* = u(v*). Letting n go to infinity and noting the assumption on ~"
and u*, ¢ € L*(T;) due to the trace theorem, we deduce from the convergence results
in (4.3) and (4.5)

(aVu", Vo) = (aVu*, Vo),
(Y"u", d)r, = (V"u, P)r, + (" (W —u”), d)r, = (YU, P)r,,

which imply

(@Vu®, V) + (v, d)r, = (f,¢) + (¢, ). V ¢ € Voo

Finally, the standard argument, together with the strong convergence in (4.5) and
the weak lower semicontinuity of || - ||o.r,, vields that v* is a minimizer of the cost
functional J(-) over @7. O

To present the main results of this section, we need some auxiliary results in the
following lemma.

LEMMA 4.2. Let {Vi X .} be a sequence of discrete spaces and discrete sets
generated by Algorithm 3.1. If the sequence {vi} C Up>o @ converges weakly to some
v* € oo in L?(L;), then there exists a subsequence {vx, } such that for the sequence
{ur, V) € Upso Vi produced by (2.7) with h replaced by k, and us(v*) € Vao
generated by (4.2) with v = ~* there holds that

(4.6) ur, (Yr,) = Uoo(7v*) in L3(T).

If the sequence {vi} C Upso @ converges strongly to some v* € oo in L*(T';), then
for the whole sequence {ur(vk)} C Uypso Vi given by (2.7) with h replaced by k and
Uso (7*) € Vo given by (4.2) with v = v* there holds

(4.7) up(Yr) = Uso(y*)  in HY(S).

Proof. Taking ¢r = uk(vyk) in (2.7), we immediately know from (2.11) that
||wk (v&) |1 is uniformly bounded independently of k, hence there exists a subsequence,
denoted by {ug, (Vx, )}, and some u* € H(Q2) such that

(4.8) ug, (Y, ) — u*  weakly in H'(Q); ug, (v, ) — u* in L*(T).
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As V, is weakly closed, u* € V. For any integer [ > 0, if we choose k,, > [ we know
from (2.7) that

(aVur, (W, ), Vo) + (W, vk, (W, ) d1)r, = (f, &) + (¢, ¢0)r, Y é € V.

Letting n go to infinity and noting the convergence results in (4.8) as well as the weak
convergence of {v;}, we find

(aVug, (Vk,), Vér) = (aVu*, V),
(Ve Uk, (Ve )» 20)T0 = (Vi ™5 &)1, + (Yo, (Wher, (Vi) — w5, 1)y — (Y ™, &),

which imply
(@Vu*, Vo) + (v'u*, ¢)r, = (f, 1) + (¢, ), Y ¢ € Vi

As [ is arbitrary and ¢; € V;, we easily see

Now the first claim holds with ©* = us (7*) in the second convergence result in (4.8).
To show the second convergence (4.7), we begin with an auxiliary discrete prob-
lem: Find ug(v*) € Vi such that

(4.9) (@Vur(v"), Vo) + (v ur(v"), @), = (f,0) + (¢, ¢)r, V¢ € V.

Subtracting (2.7) from (4.9) with ¢ = ug(y*) — ur(yx) and using the generalized
Holder inequality, the Sobolev embedding theorem, and the stability estimate (2.11),
we come to

lue(7*) — ue ()T < CU(ve — 7 )ur(y), wn(v*) — wr (k)

< Ol = vllors luk (ve)ll e llwe (7)) — wr (vl a(ry)
<Ol = vkllo,r, lur(v*) — wr (i) |-

ie.,

[ur(v") = ue ()l < ClIv* =l L2y

On the other hand, we note that (4.9) is a finite element approximation of (4.2) with
v =% € @, so the Cea’s lemma admits an optimal approximation property

[tioo (v") = ur(v9)l < C inf Jlueo (") — vl
veVy

Now the desired convergence (4.7) is a consequence of the above two estimates and
the density of |J,~, Vi in Va. O

Next comes the first main result of this section.

THEOREM 4.2. Let {Vj x @} be a sequence of discrete spaces and discrete sets
generated by Algorithm 3.1 and let {~;:} be the corresponding sequence of minimizers
to the discrete problem (2.6)-(2.7). Then the sequence {7} has a subsequence {v; }
converging strongly in L*(T;) to a minimizer 7%, € s of the problem (4.1)—(4.2).

Proof. Since {;} is uniformly bounded in L?(T';) there exist a subsequence (still
denoted by {v;}) and some v* € o7 such that

(4.10) v — " weakly in L*(T;).
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Then we know from Lemma 4.2 by extracting a subsequence that

(4.11) ur, (Ve,) = Uo(7*) € Ve in L3(T,).

Furthermore, for any v € o/ there exists a sequence {1} C Uy>q @ such that
(4.12) Jim [l = lor, =0,

which, along with (4.7) in Lemma 4.2 and the trace theorem, implies

(4.13) Jim (o) = gli3r, = luse() — 1B r,.

Noting the whole sequence {~;} are minimizers of J(-) over {<#;}, we know

1
TOR) < TOn) = glu) ~ gl + Sl

when k > [ for sufficiently large I. Then a collection of (4.10)—(4.13) gives

1

" B s
= 5lluee () = dllér, + 517 Il5r,

J(")

.1 . LB
< lim S, (O0F,) = gll6.p, +liminf S, 5.,

< liminf J(yg,) < limsup J (vy;,) < limsup J () < limsup J () = J(7)
n—>00 n—00 k— o0 l—00
for any v € /.. This indicates that v* is a minimizer of the problem (4.1)—(4.2).
The choice v = 7" in the above estimate yields equality lim, 7 (v}, ) = J(v*) =
inf J (s ), which, along with (4.11), implies that lim, o[|v;: 1§ 1, = 75|13, Now
the desired strong convergence follows from (4.10). O / /

From the above theorem, it can be observed that if the sequence {Vj x <} is
given over uniformly refined triangulations, the strong convergence of ; to v* holds
directly since we have naturally H'(Q) = (J,> Vi in H'-norm and & = (J;~, % in
L?(T';)-norm. But this is generally not true for a sequence of adaptively generated
meshes. To achieve the desired convergence, we have to show that % is also a
minimizer of the problem (2.1)-(2.2). Noting that Algorithm 3.1 involves the solution
of the discrete saddle-point system (2.8)—(2.10), we introduce a costate p’, € Vi like
the continuous case; then this costate, together with the minimizer v, € 7 and the
related state u’, € Vi of the problem (4.1)—(4.2) solves the following system:

(4.14) (aVul,, Vo) + (Vus, d)r, = (f,0) + (¢, d)r, V¢ € Ve,
(415) (anZov VU) + (’Y;op?;oa U)Fi = (uZo -9 U)Fa VeV,
(4.16) (B7% = w5 (V)P (150): A = Vo), 20 VA € o

It is easy to verify that the solution (uw’,,pk) to (4.14)—(4.15) admits the stability
estimates:

(4.17)  usll < CUIfllo + llallor.)s  1P5ll < CUfllo + llallo,r. + lgllo,r.)-
Now we end this section with the second main result of this section for the above
system.

THEOREM 4.3. Let {Vi X @} be a sequence of discrete spaces and discrete
sets generated by Algorithm 3.1. Then the sequence {(uy,py,7V;)} of discrete solu-
tions to the system (2.8)—(2.10) has a subsequence {(uy ,py ,7Vi )} which converges
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to (ul,, i, V) € Voo X Voo X “sg, a solution of the problem (4.14)—(4.16), in the
following sense:

(4.18)  lug, —uilh =0, lpk, —picl = 0, v, = v&llor, =0 asn — oc.

Proof. The last convergence in (4.18) follows directly from Theorem 4.2, while
the first one is a consequence of Lemma 4.2 (cf. (4.7)). To demonstrate the second
convergence in (4.18), we introduce a solution pg, € Vi, to the following auxiliary
problem:

(4.19) (aVDk,; V) + (VaPk, s V), = (U3 — g;v)r, V0 E Vi,

Combining (2.9) and (4.19) with v = pi, — p; ~and arguing as in the proof of
Lemma 4.2, we obtain

Pk, — Pk, 1T < ClVi, — Yi)Pk, » Prn — Pii, )T, + (U, — b, Pr, — D, )T

< C(llv, —vallor;
+ [lug, — usl

Prn Loy 1Pk, — Pk, 22y

o,FaHﬁkn —PZHHOEQ)
< Clvi, — vaollor, + lluk, —uilor )Pk, — Pk, 1,

which implies
(4.20) 1Pk, — Pk, Il < Cllvk, —veollo.r; + lJug, —uillv)-

Furthermore, it is easy to see that the problem (4.19) is a discrete version of (4.15).
Hence the Cea’s lemma gives

(4.21) [P% = D, ln < C inf [Ip%, — vl
’UEan

Now the desired result comes readily from (4.20)—(4.21), the first and last convergences
in (4.18), and the construction of V. O

5. Convergence. In this section, we shall present the main result of this paper:
the sequence {(u},p;,7;)} generated by Algorithm 3.1 has a subsequence {(u,’;n, P,
5, )} converging strongly to some true solution of the problem (2.3)~(2.5). By The-
orem 4.3 this reduces to verifying that (u’,, pl, 75 ) satisfies the system (2.3)—(2.5).
For this purpose, we shall first show that two sequences of the residuals with respect
touy and p; have vanishing weak limits (see Lemma 5.2), with the help of which the
limiting triplet (u’_, p% , %) is proved to satisfy (2.3) and (2.4) (see Lemma 5.3). For
the variational inequality (2.5), the existing approaches for variational equations (see,
e.g., [38], [41]) do not work. Instead, we shall relate it to &, (uj ,py .7z, ) (cf. (3.1))
through some residual of the discrete problem (2.10), then prove the error indicator
tends to zero and apply a density argument (see Lemmas 5.4-5.6). This new approach
is one of the key ingredients in our arguments specifically for the variational inequality
(2.5) featured by the Robin inverse problem. It is also worth mentioning that the a
posteriori error estimator 7y, + & (cf. (3.1)) in the module ESTIMATE of Algorithm
3.1 is a natural consequence of the above arguments. This approach is completely
different from traditional ones for boundary value problems [1], [45]. Particularly,
the existing standard way is to bound the error in some norm from above by some
computable quantities, while this is difficult to achieve for the state, the costate, and
the control variable due to the strong nonlinearity of the current inverse problem.
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Before starting our proof, we state some properties of adaptively generated trian-
gulations and the error estimator first. Let T be the class of all possible conforming
triangulations of Q refined from a certain shape-regular initial mesh by the successive
bisections [39], [43]. We call T’ a refinement of T for any 7 and 7' € T if T’ is
produced from 7T by a finite number of bisections. For any triangulation sequence
{Tr} C T with Tg41 a refinement of T, we define

TE= T =TT Fo= (R Fl=F\F

1>k 1>k

and

Q: = U DT, Qg = U DT.

TET;S TeT?

That is, '77:' consists of all elements not refined after the kth iteration, while all
elements in 7,2 are refined at least once after the kth iteration. The same is also said
of faces in 7} and F7. In addition, we define a mesh-size function hy, : & — Rt almost
everywhere by hy(x) = hr for x in the interior of an element T € Ti and hi(z) = hp
for z in the relative interior of a face F' € Fy. Letting x% be the characteristic function
of QY, then this mesh-size function has the following property [38], [41]:

(5.1) [ hax Rl oo ) = 0.

lim
k—o00
By virtue of Theorem 4.3 and the property (5.1), we can study the convergence
behavior of the maximal error indicator in the set of marked elements.
LEMMA 5.1.  Let {Ti, Vi x a, (uf,p;, 7))} be the sequence of meshes, finite
element spaces and discrete admissible sets, and discrete solutions produced by Algo-
rithm 3.1 and S the set of marked elements given by (3.2). Then for the convergent

subsequence {(uj;, ,py .7V, )} given by Theorem 4.3, there holds for the error indicator
defined in (3.1) that

(5.2) lim max ngk, (uy, Pk, Ve >0 9) + Erk, (ur, s Pk, sV, ) = 0.

n—oo FeSy,,

Proof. For each k,,, we denote by F the face in Sk, with the largest error indicator.
As F € 8, , we know wp C ) , from which and from (5.1) it follows that

(5.3)  |F| < Cflh, |42

L 1(95; y =0, lwg| < C”hkn”%oo(gg ) =0 asn — oo

By means of the stability estimate (3.3), inverse estimates, and the triangle inequality,
we have
Mo o Wk P Vi £ 0,.9)
< O(uf, 12 oy + 108 2 + BNy + Rl 5, + Rl e,
< Cllug, = uSllf + luse | o, + Dk, — D51 + 1P51F

+ [EPADNFIS o+ [E NGNS e, + E V4l 7o)

2
1
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and
€0 (Wh P EL)
< (8%l ey + Wk, 2k, o)
< (B2BIg, — Vel + 2BV Farsy + halui, o, 7o 15, o, 7o)

< CIFIM D (i, = el + Il + (luk, —ulll + luglliw,)
x (lpk, = Plollt + P ll1ws)-
Now the desired result comes from (4.18), (5.3), and the absolute continuity of || - [|1
and || - [Jo,r with respect to the Lebesgue measure. O

As mentioned at the beginning of this section, we now introduce two residuals
with respect to uj and pj;, respectively, as follows:

(R(uf), ¢) = (aVuj, Vo) + (vius, &)r, — (f,0) = (¢, 0)r, ¥ é € H(Q),
<R(p2)a U> = (Oévpltv VU) + (’Y;pzvv)m - (ult - gvv)Fa Vwve Hl(Q)

It is easy to see from (2.8) and (2.9) that

(5.4) (R(ug),0) =0 VeV, (Rlpr),v)=0 VveV.

LEMMA 5.2. The following convergences hold for the convergent subsequence
{(u,’;n,p,’;n,'y,jn)} of {(uy, pr,vi)} gwen by Theorem 4.3:

(55)  lm (R(uj,),¢) =0 and lim (R(pj ), 6) =0 Y ¢eH'(%).

Proof. The desired convergence can be proved in a standard way. Only the
proof for the first result is given, while the second one can be done in a similar
manner. Let {(uj ,pj ,7i )} be the convergent subsequence given by Theorem 4.3.
For notational convenience, the counter k, is replaced with m. We write I, and
15% for the Lagrange and Scott-Zhang interpolation operators respectively associated
with Vj [40] and use the orthogonality (5.4) and the definition (3.1) to proceed for
m > [ and any ¢ € C>(Q):

<C Z NE,m,1 Uy Vs [ DY — Im¥ 10D
FEFn

:C< Z nF7m,l(u;§1a’\/;mf7q)Hw_Imw”LUDT

FeF \F;"

+ Z T]F,m,l(u:rw’y:;m .f7 Q)H‘/’ - Imw”l,UDT) 5

FeFy

where UD7 is the union of Dy with T" € wg. In the third inequality, we also use the
definition of (R(uf,), ), elementwise integration by parts, error estimates for I5# [40],

and the Cauchy—Schwarz inequality. Noting Lemma 3.1 and the stability estimate
(2.11) we have

1/2

ST Bl g <C
FeF \F;"
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and then by the error estimate for I,,, [15] we are further led to
1/2

[(R(up) )| < Cullballpe o) [9ll2 + Co | D B (v fra) | 02

FeFy

Due to (5.1), for any given € > 0 we have C1[|lu| < qo)[|¢[l2 < € for sufficiently large

l. Moreover, the inclusions that _7_-l+ C Ff € Fp, for m > [ and the marking property
(cf. (3.2)) imply that

1/2

Z n%'7m,l(u:n77:rw fa q)

FeF"

<VIFT| max npm(up,, v, fq)
FeF;"

< AVIFST s e (Ui, Py Yo £33 9) + Erm (i Pl Vi)
By Lemma 5.1, we can choose M > [ for some fixed [ such that the following estimate
holds for m > M:
1/2
Co | > nbmi(h i fr0) | bl <e.
FeF"

This proves

lim (R(u?), ) =0 Ve C®(Q),

m— 00

which, in combination with the density of C>°(Q) in H(f2), yields the first vanishing
limit. a

LEMMA 5.3. The solution (ul,,pk ,v%) of the problem (4.14)—(4.16) also satisfies
the variational problems (2.3) and (2.4), i.e.,

(5.6) (@Vui, Vo) + (Vauie, O)r, = (f,¢) + (¢, 9)r, ¥ ¢ € H'(Q),
(57) (OCVP:;oa V’U) + (Py;op;covv)l—‘i = (u:;o - ga“)ra Vve Hl(Q)

Proof. Let {(uzn s Dr s Vi, )} be the convergent subsequence given by Theorem 4.3.
For any ¢ € H'(Q2), we can easily deduce

|(OCVUZ<)7 V¢) + ('Y;ou;o; ¢)F'L - (fa ¢) - (q7 ¢)Fa|
= (aV(ui, —ug, ), Vo) + (Viuie — i, Uk, D)1 + (Rlug, ), 9)|
(5.8) < oollul, — ug, [1lloll + [(Veuse = W, vk, > O)r.| + (R(ug,), ) -

The second term above is further estimated by the generalized Holder inequality, the
Sobolev embedding theorem, and the trace theorem

|(VaoUn = Vi, Uk, > O)T
= (v — Vi, Jude, D), + (i, (us, — ujp,), d)rs
< Vs = v o lluss a9l Lar,) + ealluse — ug, llo,r; 16llo,r;
< C(Ivs = i llorsllusslln + enlluse —ug, (109l
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Theorem 4.3, the stability (4.17), and Lemma 5.2 imply that the three terms in the
right-hand side of (5.8) all tend to zero as n goes to infinity, from which we conclude
the first equation (5.6).

As for the second equation (5.7), it is not difficult to proceed as above for any
v € HY(Q) that

@V DL, V) + (YaePae, V)T — (ule — g, 0)1, |
= [(aV(pi — Pk, ), V) + (VaPoe — Ve, Ph s V)rs — (Ul —ug s v)r, + (R(pg,),v)]
< asllp — i, lllvlls + [(VaeP5e — Ve, Phs V)T
+ lluz, = uk, o, lvlls + (R, ), v)]-

Then the proof is finished by using Theorem 4.3, Lemma 5.2, and the same argument
as for (5.8). O

Next we turn our attention to the following claim: the variational inequality
(2.5) holds for the limiting triplet (ul,,pi.,v5 ). As in the proof of Lemma 5.2, our
approach still lies in a density argument. Therefore, we need the following density
result with respect to the admissible set 7. .

LEMMA 5.4. Suppose I'; is split in L open faces/edges T';1,..., 1. Then of =
Ae dNCIy)A € C®(Tyy),1 <1 < L} is weakly-+ dense in </ with respect to
L(Ty).

Proof. We only focus on d = 3 as the arguments for the two-dimensional case
are similar. Let us first assume that I'; is the intersection of the whole boundary I’
with a plane in R?, i.e., L = 1. For any A € &/, we define an extension of A in R?
as A= Ain I'y; A= co in T3¢90 \ T'i5 A := 0in T 3¢, \ [ 3¢, /2, where ¢ > 0 is
a positive constant and T'; 5 := {x € R?| d(z,T;) < §} with d(z,T;) denoting the
distance between & and T; and § > 0. Recall ¢y is the lower bound of the Robin
coefficient . Then we make use of the standard mollifier p(x) in R? to construct a
sequence {\, }n>0 C C(T;) with A\, = (e, 2p(x/en) * X”E’ where {€,} is a positive
sequence of numbers decreasing to zero. Since A, — A a.e. in I'; as ¢, — 0% (cf.
[17]) and sup,, [|An|lLe,) < c1, the upper bound of the Robin coefficient ~, the
dominated convergence theorem admits A\, — A weakly-* in L>°(T';). Moreover by
the construction of {\,}, we find ¢g < A\, < ¢; a.e. in I'; for all n.

For the general case that I'; = UZ T;,, we extend any A € &/ on the whole
boundary I such that X :== X on I'; and \ := ¢q otherwise. As the boundary I' is closed
and Lipschitz continuous, there exist finite open cubes {U,}i1<j<; covering I' and a
corresponding Lipschitz continuous function sequence {¢;}1< ;< of two variables such
that I' N U; is the graph of ¢; defined on some open square S; in R?. Arguing as

above, on each I'NU; we obtain a sequence {\; ,(z, ¢j(x))} C C>(S;) satisfying that
j\j,n — X weakly-* in L>(I'nU;) when n — oo and ¢ < ;\jm < ¢ a.e.in I'NUj;. Then
using the partition of unity {1;}1<;j<s subordinate to {U;} and noting ¢; is smooth
when (z, ¢;(z)) in some T, A, = (Z;-le 1/’j;\j,n)|fi € o and A\, — X weakly-* in
L*>°(T;), which completes the proof. O

With Lemma 5.4 in hand, we first prove the result in o/ and then extend to <.

LEMMA 5.5. The solution (u’,,pi, Vi) of the problem (4.14)-(4.16) satisfies

(5.9) (B — uiepios st —7i)r, >0 Ve o,

Proof. As in the proof of Lemma 5.2, we still denote the convergent subsequence
{(u,’;n,p,’;n,'y,jn)} given in Theorem 4.3 by {(u’,,p%,,7%)}. Invoking the Lagrange
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interpolation operator .#,, associated with V,,, r,, we note %, € o7, for any u € o
Then the variational inequality (2.10) allows

(5’721 - u:;mp:na H— P)/r*n)f‘z‘
= (Bvm = UmPrns 1t — Imp)r; + (B — UnDins Il — Yo )T
(5.10) > (BYm — UmPs 1t — Iy, V€ .

By the error estimate of .#,, [15] and the definition of &, in (3.1) we know for m > [

|(BYm — U P> b — Fm )T

< D B = unph eyl — Impll L)
FeF,,(T';)

<C Z gF,m(u;';l’p:,l"Y’;’;’L)HHHQ)OO)Fi

= C(ﬁm(“%ap;m’yzw}_m \ ]:l+) + gm(u:nvp;knv7;17'F.I+))||M||2,00,Fi'

By the definition of &,,, the constraint of +;,, and the stability estimate (2.11), we
further come to

Em (s, Drns Vo Frn \ Fi) < Cllhall7 o) 170 = w0l 2 )
< CllhallF o gy (Ml ey + Iz 103l 22 e )
< Cllhallg o gy (exITa| + w2l < CllaalZ e )
Therefore,

(5.11)  |(BYm — UmPrns 1t — Fmb)r,
< Csllull 7w o) ltll2,00,0, + Calon (s Py Vs i) el 2,00, -

Now noting (5.1), we find that for any given € > 0 there exists a large [ such that
(5.12) C3||hl||ioo(glo)||N||2,oo,1‘i <E.
Since ;" NSy, = 0 the condition (3.2) in the module MARK of Algorithm 3.1 admits

Em (U Doy Yo F1) SR max  Epm(up, Py Vi)
FeF, " NFn(T:)

< 1] max mm (U Py Yows 66.9) + € (U5 Do V)
Then using Lemma 5.1, we can choose M > [ such that
(5.13) Ca&m (s Doy Yoms Fi ) 1ll2,00,0, < €
for m > M. Summarizing (5.11)—(5.13) gives
(5.14) By, —urpr o — Imp)r, — 0 as m — oo.
On the other hand, recalling some elementary identities

— UL )P T (P — Do) Ubes )T, 5

(U D — U D 0> )T, = (U,
(U = USDE)s Y )T (WS D0, Yo — Voo )T

(u:np:;w A/:‘;l)ri - (U;p;, Pyzo)ri
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we know from the generalized Holder inequality, the stability estimates (2.11), (4.17),
and Theorem 4.3 that

(5.15) (B = U 1= Yo )Ts = (B — WseDhor b — Vo) Y 1 € .

lim
m—r oo
The proof is concluded by a combination of (5.14) and (5.15) in (5.10). 0

LEMMA 5.6. The solution (uk, pio, Vi) of the problem (4.14)—(4.16) satisfies the
variational inequality (2.5), i.e.,

(5.16) (BY5% — UsePaor A = Yao)rs =0 VA E .

Proof. We argue by contradiction. If (5.16) fails, then there exists some v € &
such that

(5.17) (8750 = UseP3esV — Yao)rs < 0.
Lemma 5.4 implies for any € > 0 there exists a p € o/ such that

(ﬁ’\/;o - u:;op:;oa n—= A/;o)f‘z = (57;0 - U’Zop;o7u - V)Fi + (57;0 - ’u’ZopZov v —= ’Y;o)l“i
< e+ (875 — P,V = Voo )T

It follows from (5.17) that when e < gy for some gy > 0,

(BVo — UsePher 1 — V5 ): < 0.

This contradicts Lemma 5.5. a
Remark 5.1. As can be seen from the proofs of Lemmas 5.2 and 5.5, the residuals
(R(uf,), ¢) and (R(prk,), ¢) associated with (2.8) and (2.9) are bounded by

[(R(uz); &) + (R (05,), D) < Cttn (i D7 Y o 0, 9ISl Y 6 € HY(Q)

and the residual (87, — ul pr,, 1 — 5 )r,

, with respect to the variational inequality
(2.10) leads to

|(BYm = U P> = In)1; | < C&m (s D> V) I ll2,000 ¥V 00 €

The terms 7, and &, (see (3.1) for definitions) in the right-hand side of the above two
inequalities depend only on the discrete solutions, the mesh size, and the given data.
Consequently, we use 7, + &, as the estimator in Algorithm 3.1. More importantly,
the proofs of the above lemmas show that the estimator is sufficient for convergence
of the adaptive algorithm although it does not provide an upper bound for each of
the errors ||u* —uj||1, [[p* —pill1 and ||v* — v} |lo,r,. In terms of the a posteriori error
analysis, this is quite different from the existing works for direct PDEs.

Finally, by virtue of Theorem 4.3, Lemma 5.3, and Lemma 5.6 we present the
main result of the current work.

THEOREM 5.1. The sequence of discrete solutions {(uj,py,vi)} produced by Al-
gorithm 3.1 has a subsequence converging to a solution (u*,p*,~*) of the problem
(2.3)-(2.5) in the following sense:

(5-18)  lug, —u*llv =0, lp, =2l =0, [, =7 lor; 20 asn— oc.
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6. Numerical experiments. In this section, we shall provide some numerical
experiments to verify the effectiveness of our proposed adaptive finite element Algo-
rithm 3.1. In all the experiments, the general requirement (3.2) in the module MARK
is represented by a specific maximum strategy (see Remark 3.1), i.e., mark a subset
Sk C Fj, such that

77F7k(UZ=PZa’YZa fia,9) + §F7k(u27p2772)
Z OSFHg}_).i(T]Fk(quva'YZa fa qvg) + £F,k(u27p2772))

for any F' € Sg. The resulting discrete nonlinear optimization problems (2.6)—(2.7)
are solved by a conjugate gradient method formulated in [31] and the initial guess
of the Robin coefficient for reconstruction on I'; is set to be constants 0.1 and 0.2
everywhere for Examples 1 and 2, respectively. These are very poor initial guesses for
the concerned nonlinear inverse problem.

We will mainly focus on the difficulties arising from the challenging nature of two
different types of Robin coefficients. To make our examples more practical and rea-
sonable, the true solution u(x) of the diffusion system (2.3) is assumed to be unknown
in advance and is calculated in a very fine mesh under the boundary conditions (1.2)
on I'y and I';, with coefficients « = 1 and f = 0in Q, and ¢ = 1 on [',. In appli-
cations, the boundary data g on I', is experimentally measured and thus inevitably
contaminated by measurement errors. In our examples, the simulated noisy data is
synthesized as follows:

g(x) = u(x) + du(x)rand(x) on T,

where u(x) denotes the true solution, § represents the noise level and is set to be 1%,
and rand(z) is a uniformly distributed random function in the range between —1 and
1.

The computational domain is designed to be an open domain lying between two
circles centered at the origin, with its outer boundary I', being a circle with radius 2
and its inner boundary I'; being a unit circle. The outer boundary I', is accessible,
while the inner boundary I'; is inaccessible.

For ease of visualization, the plot of the Robin coefficient on the inner boundary
T'; is parametrized in the order of left, bottom, right, and top by its arc length so that
the Robin coefficients can be represented by a function of arc length in one dimension.

Ezample 1 (Robin coefficient with sharp spike).  The true distribution of the
Robin coefficient has a sharp spike at the point (0,1) and is given by

Y(z,y) = exp(—=10(z® + (y — 1)%))

restricted on the inner boundary T';.

The true solution u is shown in Figure 1(a). With Algorithm 3.1 starting from
the initial mesh with 480 nodes in Figure 1(b), the reconstructed Robin coefficient
(blue) approximates the exact one (green) reasonably well, as shown in Figure 2(a)
and the corresponding adaptively generated mesh is displayed in Figure 2(b). We
observe that the reconstructed coefficient has well captured the location and height
of the sharp spike. In addition, mesh refinements are correctly centered around the
upper point of the interior boundary due to the spike point of the Robin coefficient.

Ezample 2 (discontinuous Robin coefficient). In this example, the true Robin
coefficient is set to be highly discontinuous, which is expressed in the polar coordinate
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F1G. 1. True solution u (left) and the initial mesh with 480 nodes (right) in Example 1.
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Fic. 2. Ezact and numerically reconstructed Robin coefficients (left) and adaptively generated
final mesh (right) in Ezample 1.

as

2(1,0) = 1 if sin(?ﬁ) > 0.9,
0.1 otherwise

restricted on the inner boundary I';. It behaves like two narrowly banded Delta
functions (see Figure 4(a) (green)). Figure 3(a) provides a graphical representation
of the true solution u. An approximate Robin coefficient (blue) reconstructed by
Algorithm 3.1, starting from the initial mesh in Figure 3(b), is depicted in Figure 4(a)
and the corresponding adaptively generated final mesh in Figure 4(b). We observe
that the reconstructed Robin coefficient has well detected the location and height
of the strongly discontinuous exact coeflicient, in view of the severe ill-posedness of
the nonlinear inverse problem and the very poor constant initial guess of v = 0.2.
Moreover, as one expects, the mesh refinements are correctly centered around two
highly spiky regions to resolve the singularities of the strong discontinuities of the
true Robin coefficient.

7. Concluding remarks. We have proposed in this work an adaptive finite el-
ement method for recovering the Robin coefficient and established its convergence.
With a general yet practical assumption imposed in the module MARK; discrete solu-
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final mesh (right) in Example 2.

tions produced by the adaptive algorithm are proved to converge to some exact Robin
coefficient, state, and costate variables.

One of the major difficulties in the analysis is a lack of convexity in the objective
functional J () for the Robin inverse problem, so we are unable to establish a reliable
bound of the error in terms of an error estimator as in the existing theories for posterior
error estimates for direct PDEs or PDE-constrained optimal control problems. To
overcome the difficulty, we have made use of some techniques in nonlinear optimization
to study a limiting saddle-point system and the solution of this limiting problem is
proved to satisfy the optimality conditions for the continuous problem. In our proofs
a density argument is also utilized to handle a variational inequality. Then some
computable quantities are derived only from our convergence analysis and serve as
the effective estimator in our adaptive algorithm to guarantee the desired convergence.
Numerical results show that the adaptive algorithm is efficient in the reconstruction
of Robin coeflicients.

We think the approach in this work can be extended for the convergence analysis
of AFEMs for other nonlinear inverse problems.
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