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Abstract

This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrat-
ing the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated
into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The
spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization prob-
lem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system.
Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the
stochastic finite element method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Inverse problems arise naturally in assorted engineering design, control and identification problems, and
inverse theory has witnessed great success during the past few decades. In this paper, we are interested in prob-
abilistically calibrating the heat transfer coefficient, hereafter denoted as the Robin coefficient, of a Robin
boundary condition, which models the convection between the conducting body and the ambient environ-
ment, from the boundary measurements of the temperature and heat flux.

The values of the Robin coefficient are of immense practical interest in thermal problems, such as the design
of gas-turbine blades and nuclear reactors and the analysis of quenching processes [1]. But its accurate values
are difficult to obtain experimentally since they depend strongly on at least twelve variables or eight non-
dimensional groups [2]. Instead engineers seek to infer it from measured data, which leads naturally to the
nonlinear inverse problem of estimating the Robin coefficient from boundary or interior measurements
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[3,4]. Several non-destructive evaluation methods also give rise to this inverse problem. In corrosion detection,
the Robin coefficient could represent the corrosion damage profile [5,6]; and in the study of MOSFET semi-
conductor devices, it contains information about the contact resistance and location of the metal-to-silicon
contact window [7].

Several numerical methods [6,8–12,14] have been proposed for the Robin inverse problem, in particular in
the context of corrosion detection, among which the least-squares method [9–12] has received intensive inves-
tigations and it has been implemented in the boundary integral equation method [9,10], the boundary element
method [11] and the finite element method [12]. The Robin inverse problem studied in the literature so far is
deterministic in the sense that the stochastic nature of the measurement errors is not rigorously considered and
analyzed, and these deterministic inverse techniques yield only a single estimate of the large ensemble of solu-
tions that are consistent with the given data without quantifying the uncertainties in the inverse solution.

Uncertainties are ubiquitous due to imperfect data acquisition, modeling errors and solution errors. The
data is always contaminated by the inherent measurement errors, and only known with certain confidence,
e.g. bounds on the error or the standard deviation of the noise. The forward model may be imprecise
due to the presence of unmodeled physics, inherent variability of the physical system and limited ability of
building realistic models. This occurs naturally for complex models with significant microstructures, e.g.
the permeability of porous media [15], the heat conductivity of composite materials and polymeric materials,
thermo-mechanical properties of polycrystalline materials, and domains with rough surfaces. Finally, the
model may be so complex that the numerical approximation commits considerable amount of numerical noise
[16], which in turn can affect the inverse solution significantly [17]. Uncertainties can be described in several
ways, depending on the amount of information available, e.g. evidence theory, fuzzy set theory, worst-case
scenario analysis and probabilistic setting (see e.g. [18] and extensive references therein). In this paper, we
focus on probabilistic description of uncertainties, where the uncertain input data is modeled as random vari-
ables, or more generally, as stochastic processes with given correlation structures, and the resulting mathemat-
ical model is often a stochastic partial differential equation [19].

These uncertainties would certainly affect the inverse solution, and rigorous quantification of their effect on
the inverse solution would allow enhanced decision-making strategies and deeper insight into the physical prob-
lem. However, the numerical analysis of inverse problems under uncertainties remains largely unexplored due
to unprecedented computational challenges associated with stochastic numerics. Therefore, the development of
computationally efficient and mathematically founded stochastic inverse methods that could account for uncer-
tainties and that are able to provide the inverse solution with its uncertainties quantified is compelling.

Recent efforts on numerical methods for stochastic inverse problems include the Bayesian inference
approach [17] and the spectral stochastic approach [20]. The Bayesian inference approach [17] could provide
a complete probabilistic description of the inverse solution, and it also alleviates the difficult problem of select-
ing a suitable regularization parameter via hierarchical Bayesian models. However, it could be computation-
ally expensive for nonlinear inverse problems. The spectral stochastic approach [20] elegantly integrates the
powerful and efficient variational method with the state-of-art uncertainty quantification techniques, and it
has been applied to reconstructing the heat flux. But no regularization has been considered in the mathemat-
ical formulation [20]. Considering the ill-posedness of the inverse problem, regularization should be incorpo-
rated in the variational formulation in order to rigorously justify the formulation, its stability and
discretization as well as the convergence of the discrete system.

Motivated by the encouraging numerical results reported in [20], we shall propose a spectral stochastic
finite element method using polynomial chaos for the stochastic Robin inverse problem, with some regulari-
zation incorporated in the variational formulation of the considered inverse problem. We shall also provide a
systematic mathematical justification of the algorithm. This seems to be the first work of the kind for a sto-
chastic inverse problem. The outline of the paper is as follows. Section 2 describes the mathematical formu-
lation of the inverse problem and its reformulation as an optimization problem by defining a certain
functional. Section 3 investigates mathematical properties of the functional relevant to its numerical compu-
tations. Section 4 describes the conjugate gradient method implemented in the spectral stochastic finite ele-
ment method for the numerical solution of the optimization problem, and analyzes the convergence of the
stochastic finite element approximation. Numerical results for several two-dimensional problems with the
input data given in terms of polynomial chaos expansion (PCE) coefficients are presented and discussed in
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Section 5 to illustrate the efficiency and accuracy of the numerical algorithm. Some existing techniques for
constructing PCE coefficients from experimental data are also briefly discussed in Section 5.

We will use standard notations for Sobolev spaces in the sequel. For a non-negative integer s and
1 6 p 6 þ1, let W s;pðXÞ be the Sobolev space of functions with generalized derivatives up to order s in the
space LpðXÞ, and its norm be denoted by k � kW s;pðXÞ. Whenever p = 2, we shall use the notation HsðXÞ instead
of W s;2ðXÞ. Hereafter C denotes a generic constant, which may differ at different occurrences, and it is inde-
pendent of the discretization parameters, i.e. the finite element mesh size h and the polynomial chaos expan-
sion order p.

2. Mathematical formulation of the problem

2.1. Representation of stochastic processes

In the following, we confine our discussion to the case that the probability space has a finite dimensionality.
This is the case for problems depending on a few parameters. Infinite-dimensional stochastic processes can be
approximated by a finite number of random variables using the Karhunen–Loève expansion described next.

Let ðD; E;PÞ be a probability space, with D being the sample space, E the minimal r-algebra of elementary
events and P the probability measure. We will use D to denote the triplet ðD; E;PÞ for short. Let Y be an
Rn-valued random variable in D, i.e. a measurable function from D to Rn. Moreover, we assume that its distri-
bution is absolutely continuous with respect to the Lebesgue measure. Then its expected value E½Y � is given by

E½Y � ¼
Z
D

Y ðxÞdPðxÞ ¼
Z

Rn
yqdy;

where q is the probability density function. The covariance matrix of Y, Cov½Y � 2 Rn�n, is defined by

Cov½Y �ði; jÞ ¼ CovðY i; Y jÞ ¼ E½ðY i � E½Y i�ÞðY j � E½Y j�Þ�; i; j ¼ 1; . . . ; n:

For a stochastic process wðx;xÞ with index x 2 X, its covariance function Cðx1; x2Þ is defined as

Cðx1; x2Þ ¼ Cov½wðx1; �Þ;wðx2; �Þ�:
Then the covariance operator, i.e. the integral operator associated with the covariance function Cðx1; x2Þ, is
compact, real symmetric and semi-positive definite. Therefore it is Hilbert–Schmidt, and its eigenfunctions
can be chosen to be mutually orthogonal and form a complete set. The Karhunen–Loève expansion (KLE)
[19] employs the eigenpairs of the covariance operator to represent the stochastic process wðx;xÞ by

wðx;xÞ ¼ �wðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
niðxÞfiðxÞ; ð1Þ

where �wðxÞ denotes the mean of the stochastic process and fniðxÞg1i¼1 form a set of uncorrelated random vari-
ables spanning the probability space D. The random variables fnig1i¼1 arising from the KLE are not necessarily
independent, but they are often assumed to be independent in the literature. The scalars ki and the determin-
istic functions fiðxÞ are the eigenpairs of the covariance operator, i.e.Z

X
Cðx1; x2Þfiðx1Þdx1 ¼ kifiðx2Þ; ð2Þ

and the eigenvalues are non-increasingly ordered

k1 P k2 P k3 P � � � :
The KLE is optimal in the mean-square sense among all possible decomposition of a stochastic process [19].

However, its application is limited by the fact that the covariance function needs to be known a priori. This
can be complemented using the polynomial chaos expansion described in Section 4.2. The infinite sum (1) is
not amenable with numerical computations, and a truncated KLE is often employed

wðx;xÞ � �wðxÞ þ
XN

i¼1

ffiffiffiffi
ki

p
niðxÞfiðxÞ:
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The number of terms N needed to give an accurate approximation depends on the decay rate of the eigen-
values ki, which in turn depends on the regularity of the covariance function Cðx1; x2Þ. If the eigenvalues ki

decay rapidly, e.g. in the case of smooth kernels, a small N would suffice. In practice, an ad hoc choice of
the covariance function, e.g. the exponential distribution, is often made, without or with little physical justi-
fication [19]. Constructing the covariance function out of experimental data has been considered by Babuška
et al. [21].

2.2. Formulation of the Robin inverse problem

Let X be an open and bounded domain in Rd ðd ¼ 2; 3Þ with a boundary C ¼ oX. The boundary C consists
of two disjointed parts C ¼ Ci [ Cc. The boundaries Ci and Cc refer to the part of the boundary C that is inac-
cessible and accessible to experimental measurement, respectively. Then the steady-state heat conduction
problem under uncertainties could be described by the stochastic elliptic partial differential equation [22,23]

�r � ðaruÞ ¼ f ; ðx;xÞ 2 X�D; ð3Þ
where the stochastic function f ð�;xÞ 2 ðH 1ðXÞÞ0 for almost every (a.e.) x 2 D represents the heat source. Un-
less otherwise specified, the operator r always takes the gradient with respect to the variable x. The stochastic
function aðx;xÞ denotes the heat conductivity, and we assume that there exist positive constants a0 and a1 such
that a0 6 aðx;xÞ 6 a1. The stochasticity of the functions a and f represents the variability or uncertainty of the
heat conductivity and the thermal load, respectively, which can never be exactly measured or applied.

When convective heat transfer occurs through the boundary Ci, Newton’s law states that the problem is
subjected to the Robin boundary condition

a
ou
on
þ cu ¼ cua; ðx;xÞ 2 Ci �D;

where uaðxÞ is the ambient temperature, and cðx;xÞ is the Robin coefficient.
The inverse problem is to recover the Robin coefficient cðx;xÞ on the boundary Ci from the Cauchy data on

the accessible part of the boundary Cc

u ¼ g; a
ou
on
¼ q; ðx;xÞ 2 Cc �D;

where the stochastic functions gð�;xÞ 2 H
1
2ðCcÞ and qð�;xÞ 2 H�

1
2ðCcÞ for a.e. x 2 D. In this paper we confine

ourselves to the practical case of finite-dimensional noise.

Assumption 2.1. The stochastic functions a; f and q : X�D7!R have the form

aðx;xÞ ¼ aðx; Y 1ðxÞ; . . . ; Y N ðxÞÞ;
f ðx;xÞ ¼ f ðx; Y 1ðxÞ; . . . ; Y N ðxÞÞ;
qðx;xÞ ¼ qðx; Y 1ðxÞ; . . . ; Y N ðxÞÞ;

where N is a positive integer, fY ngN
n¼1 are real-valued independent random variables with zero mean and unit

standard deviation. Furthermore, we denote with In ¼ Y nðDÞ the image of Y n, with In being a bounded interval
in R, and each Y i has a density function qi : I i 7!Rþ for i ¼ 1; 2; . . . ;N .

The finite-dimensional noise assumption has been assumed by several authors [19,24,25,18]. It corresponds
to the situation where the uncertainty of the problem is inherently associated with a finite number of random
variables. It can also be satisfied for situations where the uncertainty derives from infinite-dimensional sto-
chastic processes by dimensionality-reduction techniques such as the Karhunen–Loève expansion or the poly-
nomial chaos expansion. The Doob–Dynkin theorem [25] asserts that the solution uðx;xÞ depends only on
fY igN

i¼1, and thus uðx;xÞ ¼ uðx; Y 1ðxÞ; . . . ; Y N ðxÞÞ. Denote the joint probability density function of the ran-
dom variables Y 1ðxÞ; . . . ; Y N ðxÞ by qðyÞ �

QN
i¼1qiðyiÞ for y 2 I �

QN
i¼1I i. Then the stochastic functions

aðx;xÞ; f ðx;xÞ and qðx;xÞ can be succinctly written as aðx;xÞ � aðx; yÞ; f ðx;xÞ � f ðx; yÞ and
qðx;xÞ � qðx; yÞ with y 2 I . The admissible set A of the Robin coefficient cðx; yÞ is taken to be
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A ¼ fc : c 2 L1ðCi � IÞ \ W 1ðCi � IÞ; c0 6 cðx; yÞ 6 c1g;
where c0 and c1 are positive constants. The weighted Sobolev space W 1ðCi � IÞ is given by

W 1ðCi � IÞ ¼ fcðx; yÞ 2 L2ðCi � IÞ : c 2 L2ðI ; H 1ðCiÞÞ; c 2 H 1ðI ; L2ðCiÞÞg;

and the norm k � kW 1ðCi�IÞ is defined as

kck2
W 1ðCi�IÞ ¼

Z
I

q kck2
H1ðCiÞ þ kryck2

L2ðCiÞ

� �
dy;

where ry denotes taking gradient with respect to y.
The inverse problem is ill-posed in the sense that the existence and uniqueness of the solution may be

violated, and more importantly, a small perturbation in the data could cause an enormous deviation in the
solution. Thus we resort to its variational formulation: minimizing the functional J over the admissible set A

J ðcÞ ¼ 1

2

Z
I

q
Z

Cc

ðuðcÞ � gÞ2 dsdy þ g
2
kck2

W 1ðCi�IÞ: ð4Þ

Here the first term represents the mean-squares error between the solution uðcÞ and the data g. The second
term refers to the well-known Tikhonov regularization in the W 1 norm, and the regularization parameter
g > 0 controls the tradeoff between the data fitting and a priori information. Note that for notational simplic-
ity we abuse slightly g to denote the measured data, i.e. gðx; yÞ 2 L2ðCcÞ for a.e. y 2 I . In particular, the
functional J will be denoted by J 0 in the case of g ¼ 0. The function uðcÞðx; yÞ is the solution to the stochastic
boundary value problem

�r � ðaruÞ ¼ f ; ðx; yÞ 2 X� I ;

a
ou
on
¼ q; ðx; yÞ 2 Cc � I ;

a
ou
on
þ cu ¼ cua; ðx; yÞ 2 Ci � I :

ð5Þ

Assumption 2.1 reduces the stochastic forward problem to a parametric yet deterministic problem, and allows
the use of the finite element method to approximate its solution. In the next subsection we collect some basic
properties of the forward problem.

2.3. Well-posedness of the forward problem

Since stochastic functions have intrinsically different structure with respect to x and with respect to y, the
analysis of numerical approximations requires tensor spaces. In particular, we will need the Hilbert space
L2ðI ; H 1ðXÞÞ for discussing the well-posedness of the forward problem. The Hilbert space L2ðI ; H 1ðXÞÞ is
defined by

L2ðI ; H 1ðXÞÞ ¼ fw : a measurable function from X� I to R and E kwð�; yÞk2
H1ðXÞ

h i
< þ1g;

and its norm k � kL2ðI ;H1ðXÞÞ is given by

kwk2
L2ðI;H1ðXÞÞ ¼ E kwð�; yÞk2

H1ðXÞ

h i
�
Z

I
qkwð�; yÞk2

H1ðXÞ dy:

Here we have omitted the weight q in the norm notation, and hereafter we assume this convention for the L2

and H 1 norms involving I. Note that the space has an obvious probabilistic interpretation as expectation, but
we will use the integral notation

R
I q � dy consistently in place of the expectation operator E½�� in the sequel for

its simple variational justification.
With these notations, the forward problem (5) could be recast into the variational formulation

Bðu;/Þ ¼ Lð/Þ 8/ 2 L2ðI ; H 1ðXÞÞ; ð6Þ
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where the bilinear form B : L2ðI ; H 1ðXÞÞ � L2ðI ; H 1ðXÞÞ7!R and the linear functional L : L2ðI ; H 1ðXÞÞ7!R are
respectively defined by

Bðu;/Þ �
Z

I
q
Z

X
aru � r/dxdy þ

Z
I

q
Z

Ci

cu/dsdy 8u;/ 2 L2ðI ; H 1ðXÞÞ;

Lð/Þ �
Z

I
q
Z

X
f /dxdy þ

Z
I

q
Z

Cc

q/dsdy þ
Z

I
q
Z

Ci

cua/dsdy 8/ 2 L2ðI ; H 1ðXÞÞ:

One can verify that the variational formulation (6) has a unique weak solution u 2 L2ðI ; H 1ðXÞÞ, and the
solution is bounded independent of c; see [13] for details.

3. Properties of the functional J

This section investigates mathematical properties of the functional J . We need the following lemma for
establishing the existence result.

Lemma 3.1. Assume that fcng � A and c	 2 A. Then limn 7!1cn ¼ c	 in L1ðCi � IÞ implies that there exists a
subsequence of uðcnÞ, also denoted as uðcnÞ, such that

lim
n7!1

uðcnÞ ¼ uðc	Þ in L2ðI ; H 1ðXÞÞ:

Proof. Let wn ¼ uðcnÞ � uðc	Þ. Then the definition of un � uðcnÞ and uðc	Þ givesZ
I

q
Z

X
arwn � r/dxdy þ

Z
I

q
Z

Ci

cnwn/dsdy ¼
Z

I
q
Z

Ci

ðcn � c	Þðua � uðc	ÞÞ/dsdy:

Taking / ¼ wn, we obtain

a0

Z
I

q
Z

X
jrwnj2 dxdy þ c0

Z
I

q
Z

Ci

ðwnÞ2 dsdy 6
Z

I
q
Z

Ci

ðcn � c	Þðua � uðc	ÞÞwn dsdy:

By the Cauchy–Schwarz inequality and the Young’s inequality, we deriveZ
I

q
Z

Ci

ðcn � c	Þðua � uðc	ÞÞðun � uðc	ÞÞdsdy

6 kwnkL2ðI ;L2ðCiÞÞkðc
n � c	Þðua � uðc	ÞÞkL2ðI ;L2ðCiÞÞ

6
c0

2
kwnk2

L2ðI;L2ðCiÞÞ þ
1

2c0

kðcn � c	Þðua � uðc	ÞÞk2
L2ðI ;L2ðCiÞÞ:

Therefore,

a0

Z
I

q
Z

X
jrwnj2 dxdy þ c0

2

Z
I

q
Z

Ci

ðwnÞ2 dsdy 6
1

2c0

kðcn � c	Þðua � uðc	ÞÞk2
L2ðI;L2ðCiÞÞ:

Recall that the L1ðCi � IÞ convergence of the sequence cn to c	 implies that there exists a subsequence of cn

converges almost everywhere [26]. By passing to a subsequence, the term on the right hand side tends to 0
as n tends to infinity using Lebesgue dominated convergence theorem [26]. This concludes the proof of the
lemma. h

Assisted with Lemma 3.1, one can justify the existence of a minimizer to the optimization problem (4) and
the stability of the formulation; see [13] for the detailed proof.

We attempt to solve the optimization problem (4) by gradient type methods, and thus the gradient of the
functional J with respect to the Robin coefficient c is of much interest. We first establish the differentiability of
the solution uðcÞ with respect to c. To do so, we define the sensitivity problem for u1 � u1ðc; kÞ for any c 2 A
and k 2 L1ðCi � IÞ by
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�r � ðaru1Þ ¼ 0; ðx; yÞ 2 X� I ;

a
ou1

on
¼ 0; ðx; yÞ 2 Cc � I ;

a
ou1

on
þ cu1 ¼ kðua � uðcÞÞ; ðx; yÞ 2 Ci � I :

ð7Þ

The sensitivity problem will also be utilized in the nonlinear conjugate gradient method for determining an
appropriate step length.

Lemma 3.2. For any c 2 A, the solution uðcÞ is differential in the sense that

kuðcþ kÞ � uðcÞ � u1ðc; kÞkL2ðI ;H1ðXÞÞ

kkkL1ðCi�IÞ
! 0 as k! 0 in L1ðCi � IÞ:

Proof. The function w � uðcþ kÞ � uðcÞ � u1ðc; kÞ satisfies

�r � ðarwÞ ¼ 0; ðx; yÞ 2 X� I ;

a
ow
on
¼ 0; ðx; yÞ 2 Cc � I ;

a
ow
on
þ cw ¼ �kðuðcþ kÞ � uðcÞÞ; ðx; yÞ 2 Ci � I :

Therefore we haveZ
I

q
Z

X
ajrwj2 dxdy þ

Z
I

q
Z

Ci

cw2 dsdy ¼ �
Z

I
q
Z

Ci

kðuðcþ kÞ � uðcÞÞwdsdy:

The Cauchy–Schwarz inequality and the Sobolev trace lemma imply

�
Z

I
q
Z

Ci

kðuðcþ kÞ � uðcÞÞwdsdy 6kkkL1ðCi�IÞkuðcþ kÞ � uðcÞkL2ðI;L2ðCiÞÞkwkL2ðI;L2ðCiÞÞ

6CkkkL1ðCi�IÞkuðcþ kÞ � uðcÞkL2ðI ;H1ðXÞÞkwkL2ðI ;H1ðXÞÞ:

Therefore, we derive that

kwkL2ðI;H1ðXÞÞ 6 CkkkL1ðCi�IÞkuðcþ kÞ � uðcÞkL2ðI ;H1ðXÞÞ:

Similarly we can show that

kuðcþ kÞ � uðcÞkL2ðI;H1ðXÞÞ 6 CkkkL1ðCi�IÞðkuakL2ðI;L2ðCiÞÞ þ kuðcþ kÞkL2ðI;H1ðXÞÞÞ:

However, for kkkL1ðCi�IÞ sufficiently small kuðcþ kÞkL2ðI;H1ðXÞÞ can be uniformly bounded independent of k.
Thus it follows directly

kuðcþ kÞ � uðcÞ � u1ðc; kÞkL2ðI ;H1ðXÞÞ

kkkL1ðCi�IÞ
! 0 as k! 0 in L1ðCi � IÞ: �

From the proof of Lemma 3.2, we also have the following expansion

uðcþ kÞ ¼ uðcÞ þ u1ðc; kÞ þOðkkk2
L1ðCi�IÞÞ:

For the efficient evaluation of the gradient, we introduce the adjoint equation associated with uðcÞ: Find
vðcÞ 2 L2ðI ; H 1ðXÞÞ such that

�r � ðarvÞ ¼ 0; ðx; yÞ 2 X� I ;

a
ov
on
¼ uðcÞ � g; ðx; yÞ 2 Cc � I ;

a
ov
on
þ cv ¼ 0; ðx; yÞ 2 Ci � I :

ð8Þ
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Theorem 3.1. The functional J is Fréchet differentiable, and its Fréchet derivative J 0ðcÞ at c 2 A is given by

J 0ðcÞ½k� ¼
Z

I
q
Z

Ci

kðua � uðcÞÞvðcÞ þ g kcþrk � rcþryk � ryc
� �

ds dy: ð9Þ

Proof. By Lemma 3.2 we observe

J 0ðcþ kÞ � J 0ðcÞ ¼
1

2

Z
I

q
Z

Cc

ðuðcþ kÞ � gÞ2 dsdy � 1

2

Z
I

q
Z

Cc

ðuðcÞ � gÞ2 dsdy

¼ 1

2

Z
I

q
Z

Cc

ðuðcÞ þ u1ðc; kÞ þOðkkk2
L1ðCi�IÞÞ � gÞ2 � ðuðcÞ � gÞ2

n o
dsdy

¼
Z

I
q
Z

Cc

ðuðcÞ � gÞu1ðc; kÞdsdy þOðkkk2
L1ðCi�IÞÞ;

and consequently

J 00ðcÞ½k� ¼
Z

I
q
Z

Cc

ðuðcÞ � gÞu1ðc; kÞdsdy:

Now the Green’s second identity applied to u1ðc; kÞ and vðcÞ reads

0 ¼
Z

I
q
Z

X
fvðcÞr � ðaru1ðc; kÞÞ � u1ðc; kÞr � ðarvðcÞÞgdxdy

¼
Z

I
q
Z

C
a
ou1ðc; kÞ

on
vðcÞ � a

ovðcÞ
on

u1ðc; kÞ
� �

dsdy:

Substituting the boundary conditions for vðcÞ and u1ðc; kÞ we obtainZ
I

q
Z

Cc

ðuðcÞ � gÞu1ðc; kÞdsdy ¼
Z

I
q
Z

Ci

kðua � uðcÞÞvðcÞdsdy:

Therefore

J 00ðcÞ½k� ¼
Z

I
q
Z

Ci

kðua � uðcÞÞvðcÞdsdy;

and consequently

J 0ðcÞ½k� ¼
Z

I
q
Z

Ci

kðua � uðcÞÞvðcÞ þ gðkcþrk � rcþryk � rycÞdsdy: �

4. Numerical algorithm

This section describes the conjugate gradient method with its spectral stochastic finite element implemen-
tation for the numerical solution of the optimization problem, and analyzes the convergence of the stochastic
finite element approximation.

4.1. Conjugate gradient method

The ill-posed nature of the inverse problem carries over to the optimization problem, and thus it suffers also
from numerical instability. Regularization techniques are among the most popular methods for stabilizing ill-
posed problems. The Tikhonov regularization method stabilizes the functional by penalizing large solution
norms. An alternative attracting much recent attentions is iterative regularization methods, e.g. the conjugate
gradient method (CGM) and the generalized minimal residual method. The CGM in conjunction with an
appropriate stopping rule can serve as a regularization method, and it has been successfully applied to various
inverse problems.
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Since an expression for the gradient J 0ðcÞ of the functional J is explicitly available, and easily obtained by
solving the adjoint problem, the CGM can be readily implemented. The Fletcher-Reeves conjugate gradient
algorithm [27] applied to the optimization problem takes the form

(a) Choose c0, and set k ¼ 0;
(b) Solve the direct problem (5) with c ¼ ck, and determine the residual

~rk ¼ uðckÞjCc�I � g;

(c) Solve the adjoint problem (8) for vðckÞ with the Neumann boundary condition given by

a
ovðckÞ

on
¼ ~rk; ðx; yÞ 2 Cc � I :

Determine the gradient J 0ðckÞ by

J 0ðckÞ ¼ vðckÞðua � uðckÞÞ þ gðck � Dck � Dyc
kÞ;

then calculate the descent direction

dk ¼ �J 0ðckÞ þ bk�1dk�1

with the conjugate coefficient bk given by

bk�1 ¼
kJ 0ðckÞk2

L2ðI;L2ðCiÞÞ

kJ 0ðck�1Þk2
L2ðI;L2ðCiÞÞ

;

and assuming the convention that b�1 ¼ 0.
(d) Solve the sensitivity problem (7) for u1ðc; kÞ with k ¼ dk;
(e) Calculate the step length ak in the conjugate gradient direction dk by

ak ¼ �
h~rk; u1ðc; kÞiL2ðI ;L2ðCcÞÞ þ ghck; dkiW 1ðCi�IÞ

ku1ðc; kÞk2
L2ðI;L2ðCcÞÞ þ gkdkk2

W 1ðCi�IÞ
;

(f) Update the Robin coefficient ck by

ckþ1 ¼ ck þ akdk;

(g) Increase k by one and go to Step (b), repeat the above procedure until a stopping criterion is satisfied.

The standard CGM typically employs a line search procedure to determine the step length ak, which requires
evaluating the functional multiple times per iteration. This is undesirable in the present context since each func-
tional evaluation requires one forward solver. Instead, here the step length is determined by a quadratic approx-
imation of the functional using the sensitivity problem. For all numerical examples considered in the present
study and previous works (see e.g. [27]) with inverse problems, this step size calculation has proved to be effective.

4.2. Spectral stochastic finite element method

We employ the spectral stochastic finite element method (SSFEM) [19] to discretize the optimization prob-
lem and the forward problems arising from the CGM. The SSFEM originated from the pioneering works of
Ghanem and Spanos [19], and since then it has witnessed considerable success in various engineering prob-
lems, e.g. solid mechanics, heat transfer and fluid flow. Its horizon has also been vastly extended in various
aspects, e.g. the Wiener–Askey scheme for non-Gaussian random variables [24] and sparse grid-based stochas-
tic collocation methods [28] and model reduction [29] for mitigating the curse of dimensionality. For the
numerical analysis of the SSFEM for solving elliptic problems, we refer to the recent works [25,18].

To formulate the SSFEM approximation, we first triangulate the spatial domain X with a shape regular and
quasi-uniform triangulation T h of simplicial elements. Then we define the piecewise linear finite element space
V h by
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V h ¼ fwh 2 C0ðXÞ : whjT i
2 P 1ðT iÞ; 8T i 2 T hg;

where P 1ðT iÞ denotes the space of linear polynomials on the finite element T i. Moreover, we define the space
V Ci ;h to be the restriction of V h on Ci.

The SSFEM employs the polynomial chaos, i.e. orthogonal polynomials in multidimensional random vari-
ables with respect to the probability density q, based on Wiener’s pioneering works on homogeneous chaos
[30]. Consider a set of independent, identically distributed random variables fniðxÞg1i¼1. The polynomial chaos
expansion (PCE) [19] represents a stochastic process wðx;xÞ by

wðx;xÞ ¼ a0ðxÞH 0 þ
X1
i1¼1

ai1ðxÞH 1ðni1ðxÞÞ þ
X1
i1¼1

Xi1

i2¼1

ai1i2ðxÞH 2ðni1ðxÞ; ni2ðxÞÞ þ � � � ;

where H pð�Þ; p ¼ 0; 1; 2; . . . are orthogonal polynomials (known as generalized polynomial chaos). For com-
putational convenience, the PCE is succinctly rewritten as

wðx;xÞ ¼
X1
i¼0

wiðxÞuiðxÞ;

where there is a one-to-one correspondence between the functionals H pð�Þ and uiðxÞ. Here w0ðxÞ is the mean of
the stochastic process, and wiðxÞði P 1Þ capture its probabilistic characteristics [19,24]. Cameron and Martin
[31] established that such a choice of basis leads to a spectral expansion that converges in L2 sense to any ran-
dom variable with finite variance for the Wiener–Hermite chaos. Invoking Assumption 2.1 and truncating the
order of the orthogonal polynomials to p yield

wðx; yÞ ¼
XM

i¼0

wiðxÞuiðyÞ;

where M þ 1 ¼ ðNþpÞ!
N !p!

. The polynomial chaos is normalized such that

E½uiuj� �
Z

I
quiðyÞujðyÞdy ¼ dij; i; j ¼ 0; 1; . . . ;N ;

where dij is the Kronecker delta. We denote the space spanfui; i ¼ 0; 1; . . . ;Mg by W p.
In the SSFEM, the Robin coefficient cðx; yÞ and the solution uðx; yÞ are approximated by

cðx; yÞ �
XM

i¼0

ciðxÞuiðyÞ; and uðx; yÞ �
XM

i¼0

uiðxÞuiðyÞ; ð10Þ

respectively, where ciðxÞ and uiðxÞ are referred to as the ith PCE coefficient for the stochastic processes cðx; yÞ
and uðx; yÞ, respectively. The SSFEM amounts to approximating the solution uðx; yÞ in the tensor product
space

W p 
 V h � f/ ¼ /ðx; yÞ 2 L2ðI ; H 1ðXÞÞ : / 2 spanfwðxÞuðyÞ : w 2 V h;u 2 W pgg;
followed by Galerkin-type procedures or collocation-type methods. Similarly, we can define the tensor prod-
uct space W p 
 V h;Ci . Then the discrete admissible set Ah;p is given by

Ah;p ¼ fch;p 2 W p 
 V h;Ci : c0 6 ch;p 6 c1g:
Now the discrete optimization problem can be formulated as:
Minimizing the following functional J h;p over the discrete admissible set Ah;p

J h;pðch;pÞ ¼
1

2

Z
I

q
Z

Cc

ðuh;pðch;pÞ � gÞ2 dsdy þ g
2
kch;pk

2
W 1ðCi�IÞ; ð11Þ

where the function uh;p 2 W p 
 V h is the SSFEM solution to the stochastic variational formulation (6):Z
I

q
Z

X
aruh;pðch;pÞ � r/h;p dxdy þ

Z
I

q
Z

Ci

ch;puh;pðch;pÞ/h;p dsdy

¼
Z

I
q
Z

X
f /h;p dxdy þ

Z
I

q
Z

Cc

q/h;p dsdy þ
Z

I
q
Z

Ci

ch;pua/h;p dsdy; 8/h;p 2 W p 
 V h: ð12Þ
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This gives a finite-dimensional system, which is solved via a direct solver in the present study. In practice, an
expression of the stochastic process cðx; yÞ in the form (10) constitutes a full probabilistic description of the
inverse solution. Informative information in terms of relevant statistics, e.g. the mean and the variance of
the stochastic process, can be directly calculated from the PCE. For example, the mean E½cðx; yÞ� and the var-
iance var½cðx; yÞ� of the stochastic process c are respectively given by

E½cðx; yÞ� ¼
XM

i¼0

ciðxÞE½ui� ¼
XM

i¼0

ciðxÞdi0 ¼ c0ðxÞ;

and

var½cðx; yÞ� ¼ E½ðcðx; yÞÞ2� � E½cðx; yÞ�2 ¼
XM

i¼0

XM

j¼0

ciðxÞcjðxÞE½uiðyÞujðyÞ� � c2
0ðxÞ ¼

XM

i¼1

c2
i ðxÞ:

Note again that the mean is simply the zeroth PCE coefficient. Formulas for characteristic statistical quantities
related to higher order moments, e.g. skewness and kurtosis, can be derived analogously.

4.3. Convergence analysis

This part analyzes the convergence of the SSFEM approximation in the case that the probability density q
has a positive lower bound and a finite upper bound. Then the weighted spaces L2ðI ; L2ðCiÞÞ and W 1ðCi � IÞ
are isomorphic to that defined by the uniform distribution, i.e. the standard Sobolev space L2ðI ; L2ðCiÞÞ and
H 1ðCi � IÞ [32]. We will need the projection operator Rh;p : L2ðI ; H 1ðXÞÞ ! W p 
 V h and the interpolation
operator I h;p : C1ðX� IÞ ! W p 
 V h respectively defined byZ

I
q
Z

X
rðRh;pw� wÞ � r/h;p dxdy þ

Z
I

q
Z

Ci

ðRh;pw� wÞ/h;p dsdy ¼ 0 8/h;p 2 W p 
 V h;

I h;pw ¼
X

i

X
p

hwðxi; yÞ;upðyÞiwiðxÞupðyÞ 8w 2 C1ðX� IÞ:

The operators Rh;p and I h;p have the following approximation properties; see [13] for details.

Lemma 4.1. The operators Rh;p and I h;p defined above satisfy the following error estimates

lim
h7!0;p 7!1

kRh;pw� wkL2ðI ;H1ðXÞÞ ¼ 0 8w 2 L2ðI ; H 1ðXÞÞ; ð13Þ

lim
h7!0;p 7!1

kI h;pw� wkL1ðX�IÞ ¼ 0 8w 2 C1ðX� IÞ; ð14Þ

lim
h7!0;p 7!1

kI h;pw� wkW 1ðX�IÞ ¼ 0 8w 2 C1ðX� IÞ: ð15Þ

Assisted with Lemma 4.1, one can verify the existence of a minimizer to the discrete optimization problem
(11) and the following convergence property, see [13] for details.

Lemma 4.2. Assume fch;pg � Ah;p, and c	 2 A. Then limh 7!0;p 7!1ch;p ¼ c	 in L1ðI � CiÞ implies that there exists a

subsequence of uh;pðch;pÞ, also denoted as uh;pðch;pÞ, such that

uh;pðch;pÞ ! uðc	Þ in L2ðI ; H 1ðXÞÞ;

as h tends to 0 and p tends to 1.

Now we are ready to demonstrate the convergence of the stochastic finite element solution to a minimizer of
the continuous optimization problem.

Theorem 4.1. Assume that the exact solution cðx; yÞ to the Robin inverse problem (4) satisfies

c0 þ d < cðx; yÞ < c1 � d; a:e: ðx; yÞ 2 Ci � I
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for some small number d > 0. Let c	h;p be a sequence of minimizers to the discrete optimization problem (11). Then

each subsequence of fc	h;pgh;p has a subsequence converging weakly in W 1ðCi � IÞ to a minimizer of the continuous

optimization problem (4).

Proof. By taking c ¼ c0, we see that

J h;pðc	h;pÞ 6 J h;pðc0Þ 6 J ðc0Þ þ C

for some constant C. Therefore, the sequence c	h;p in W 1ðCi � IÞ is uniformly bounded. This implies that there
exists a subsequence, also denoted as c	h;p, and some c	 such that

c	h;p ! c	 weakly in W 1ðCi � IÞ as h! 0 and p!1;
and, moreover,

c	h;p ! c	 in L2ðI ; L2ðCiÞÞ as h! 0 and p !1:

Now Lemma 4.2 implies that (possibly after passing to a subsequence)

uh;pðc	h;pÞ ! uðc	Þ in L2ðI ; L2ðCÞÞ:

Now for any c 2 A and Ci � I � ~X, we can find an H 1ð~XÞ function with its maximum norm preserved (e.g. by
solving the Laplace equation). Thus for fixed e > 0, the density of C1ðCi � IÞ in W 1ðCi � IÞ implies that there
exists ce 2 C1ðCi � IÞ \A such that

ce ! c in W 1ðCi � IÞ:
Denote ce

h;p ¼ I h;pce, then Lemma 4.1 ensures that ce
h;p 2 Ah;p for sufficiently small h and sufficiently large p.

Furthermore, the property of the interpolation operator I h;p implies

lim
h 7!0;p 7!1

kce � ce
h;pkW 1ðCi�IÞ ¼ 0

lim
h 7!0;p 7!1

kuh;pðce
h;pÞ � uðceÞkL2ðI ;L2ðCÞÞ ¼ 0:

Noting that c	h;p is the minimizer of J h;pð�Þ over Ah;p, we derive

J h;pðc	h;pÞ ¼
1

2

Z
I

q
Z

Cc

ðuh;pðc	h;pÞ � gÞ2 dsdy þ g
2
kc	h;pk

2
W 1ðCi�IÞ

6
1

2

Z
I

q
Z

Cc

ðuh;pðce
h;pÞ � gÞ2 dsdy þ g

2
kce

h;pk
2
W 1ðCi�IÞ ¼ J h;pðce

h;pÞ ¼ J h;pðI h;pc
eÞ:

Then the use of Lemma 4.2 and the convergence property of the interpolation operator I h;p give

J ðc	Þ ¼ 1

2

Z
I

q
Z

Cc

ðuðc	Þ � gÞ2 dsdy þ g
2
kc	k2

W 1ðCi�IÞ

6 lim
h7!0;p 7!1

1

2

Z
I

q
Z

Cc

ðuh;pðc	h;pÞ � gÞ2 dsdy þ lim
h 7!0;p 7!1

inf
g
2
kc	h;pk

2
W 1ðCi�IÞ 6 lim

h7!0;p 7!1
inf J h;pðc	h;pÞ

6 lim
h7!0;p 7!1

inf J h;pðI h;pc
eÞ 6 1

2

Z
I

q
Z

Cc

ðuðceÞ � gÞ2 dsdy þ g
2
kcek2

W 1ðCi�IÞ:

The W 1ðCi � IÞ convergence of the sequence ce to c, Lemma 3.1 and the Sobolev embedding theorem imply
that there exists a subsequence of uðceÞ, also denoted as uðceÞ, such that

uðceÞ ! uðcÞ in L2ðI ; H 1ðXÞÞ;
uðceÞ ! uðcÞ in L2ðI ; L2ðCcÞÞ:

Now letting e tend to 0, we obtain

J ðc	Þ 6 J ðcÞ 8c 2 A;

which indicates that c	 is a minimizer of the functional J . h
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5. Numerical results and discussions

In this section we illustrate the efficiency and accuracy of the numerical algorithm, namely the CGM in con-
junction with the SSFEM, by several two-dimensional numerical examples. The convergence and stability of
the algorithm for both exact and noisy data are investigated. The following componentwise notations will be
used in this section: x ¼ ðx1; x2Þ, and y ¼ ðy1; . . . ; yN Þ.

The domain X under consideration is a unit square (0,1) � (0,1), and the boundaries Ci and Cc are taken to
be Ci ¼ ð0; 1Þ � f1g and Cc ¼ f0g � ½0; 1� [ ½0; 1� � f0g [ f1g � ½0; 1�, respectively. Unless otherwise specified,
the forward problem is discretized using 1800 uniform triangular finite elements, the order p of the PCE is
taken to be 4, and the regularization parameter g is taken to be 1� 10�6. The variable y in the conductivity
aðx; yÞ and the Robin coefficient cðx; yÞ is taken to be a random variable uniformly distributed in [�1,1], in
order to ensure the well-posedness of the forward problem and the SSFEM formulation, and the correspond-
ing generalized polynomial chaos is Legendre polynomials [24].

Since the analytical solution to the stochastic forward problem is unknown, the exact data is calculated by
solving the stochastic boundary value problem. The forward solver for generating the data is performed on a
finer spatial mesh and with a higher-order PCE, in order to avoid the most obvious form of the notorious
‘inverse crime’. In real inverse problems, the boundary data is experimentally measured and thus inevitably
contaminated by measurement errors. In our test cases, the simulated noisy data, which retains only the zeroth
and first order PCE terms, is generated using the following formula:

~giðxÞ ¼
giðxÞ þmax

x2Ci
jgiðxÞjef; i ¼ 0; . . . ;N ;

0; i ¼ N þ 1; . . . ;M ;

(

where giðxÞ is the ith PCE coefficient of gðx; yÞ. Here f is a Gaussian random variable with zero mean and unit
standard deviation, and e dictates the level of the data noise. In the present study, the random variable f is
realized using the MATLAB function randn(). The data for Examples 1 and 2 studied below can be con-
sidered as an entire range of data ½d0ðxÞ � d1ðxÞ; d0ðxÞ þ d1ðxÞ� with d0ðxÞ and d1ðxÞ being the mean of the data
and the bound on the variability of the data, respectively. It seems reasonable to expect that in many practical
situations this kind of bounds can be obtained experimentally. The existing deterministic inverse techniques
are usually assessed only on one set of data out of this range, and thus provide only a single estimate of
the inverse solution without quantifying the associated uncertainty. In contrast, the SSFEM propagates the
entire range of data to the inverse solution, and thus provides an entire ensemble of solutions consistent with
the given data.

The PCE coefficients are not directly experimentally measurable, and thus their accurate construction from
experimental data is of paramount practical importance. Some major progress has recently been made by
Ghanem et al. [33,34], and the maximum likelihood method [33] and the Bayesian inference approach [34]
are proposed for estimating PCE coefficients from limited data. Mathematically, the problem might be formu-
lated as an approximation problem by multivariate polynomials with data-driven stochastic dimensionality. Its
statistical correlation with the model uncertainties, e.g. material property uncertainties, has to be taken into
account. For our initial demonstration of the algorithm, we employ the PCE coefficients as the given data in
the present investigation.

The initial guess c0 was taken to be

c0
0ðxÞ ¼ 1; c0

i ðxÞ ¼ 0; i ¼ 1; 2; . . . M

for all the examples. The conventional CGM is known to converge slowly, and it might stagnate after a few
iterations [11]. To accelerate the convergence of the CGM, a preconditioner via the Sobolev inner product (see
[35,12] for more details) is applied to the mean c0ðxÞ of the Robin coefficient cðx; yÞ.

5.1. Convergence of the algorithm

As the first example, we consider the case that the inverse solution is smooth and the uncertainty is present
only in the data.
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Example 1. In Eq. (3), the conductivity aðx; yÞ is taken to be aðx; yÞ ¼ ex1 , the exact solution to the
deterministic forward problem is given by uðxÞ ¼ sin x1ex2 þ x1 þ x2, and the Robin coefficient cðx; yÞ is given
by

cðx; yÞ ¼ 1þ sinðpx1Þ þ
x1

2
y; ðx; yÞ 2 Ci � I :

Here the deterministic forward problem is obtained by ignoring the stochasticity, and the functions f ðx; yÞ,
qðx; yÞ and uaðxÞ are taken to be appropriate deterministic functions such that its exact solution is given as
above.

First we investigate the convergence of the algorithm with respect to refining the spatial mesh size h and
increasing the order p of the PCE. To do that, at every iteration we evaluate the accuracy error ec defined by

ec ¼ kc	 � ckkL2ðI;L2ðCiÞÞ; ð16Þ

where c	 is the exact Robin coefficient, and ck is the Robin coefficient on the boundary Ci reconstructed after k
iterations. The residual E after the kth iteration is given by

E ¼ kuðckÞ � gkL2ðI;L2ðCcÞÞ: ð17Þ

In the case of exact data, the residual E tends to zero as the approximation ck converges to the exact solution.
Figs. 1(a) and (b) show, respectively, the accuracy error ec and the residual E as functions of the number of

iterations, k, obtained for Example 1 when using h 2 f1=10; 1=20; 1=30; 1=40g and exact data. The spatial dis-
cretization error diminishes as the mesh size h refines, and consequently both the accuracy error ec and the
residual E decrease. However, little could be gained when the mesh size h is smaller than 1/30. Therefore,
we use h ¼ 1=30 in our subsequent analysis. Figs. 2(a) and (b) show, respectively, the accuracy error ec and
the residual E as functions of the number of iterations, k, obtained for Example 1 when using
p 2 f2; 3; 4; 5; 6g and exact data. The discretization error with the parametric domain I decreases with the
increase of the PCE order p. However, the results do not improve much when the PCE order p is beyond
4, and therefore we use the PCE of order p ¼ 4 in our computations. Note that the number of unknowns
increases drastically with the increase of the PCE order p, which might deteriorate the convergence rate.
Fig. 2 shows that the convergence is relatively independent of the PCE order p up to 40 iterations, and there-
after the convergence deteriorates slightly as the PCE order p increases from p ¼ 2 to p ¼ 5. However, the con-
vergence of the numerical approximation is already achieved well before the 40th iteration, especially in the
case of noisy data, see Fig. 5. Thus increasing the PCE order p seems practically harmless to the
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Fig. 1. (a) The accuracy error ec and (b) the residual E as functions of the number of iterations, k, for Example 1 with exact data and
different mesh size h.
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convergence of the algorithm. It is also observed that both the accuracy error ec and the residual E decrease as
the number of iteration, k, increases, although the convergence slows down significantly as the iteration
proceeds.

In the presence of data noise, the accuracy error of the numerical results by iterative regularization methods
typically exhibits the so-called ‘semi-convergence’ phenomenon [36]. The approximation converges towards
the exact solution up to a certain iteration number, and beyond this point, it deviates from the exact solution.
To illustrate this point, we consider Example 1 with 1% noise in the data. Fig. 3(a) shows the convergence of
the accuracy error ec obtained with different regularization parameters and without preconditioning. The
semi-convergence phenomenon was observed in the case of small values for the regularization parameter g,
e.g. g ¼ 0 and g ¼ 1:0� 10�6. In particular, the formulation without incorporating the regularization term
(i.e. g ¼ 0) is unstable. An appropriate choice of the regularization parameter g, e.g. g ¼ 4� 10�5, can elim-
inate the semi-convergence phenomenon, and stabilizes the numerical algorithm. However, too large a value
of the regularization parameter g, e.g. g ¼ 1� 10�4, can penalize the solution norm too much and lead to
‘over-regularization’.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

e γ

p=2
p=3
p=4
p=5
p=6

0 20 40 60 80 100
10

–4

10
–3

10
–2

10
–1

10
0

10
1

k

E

p=2
p=3
p=4
p=5
p=6

Fig. 2. (a) The accuracy error ec and (b) the residual E as functions of the number of iterations, k, for Example 1 with exact data and
different PCE order p.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

k

e γ

η=0
η=1e–6
η=4e–5
η=1e–4

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

E

η=0
η=1e–6
η=4e–5
η=1e–4

Fig. 3. (a) The accuracy error ec and (b) the residual E as functions of the number of iterations, k, for Example 1 with 1% noise in the data,
obtained with different regularization parameter g and without preconditioning.
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In the presence of the semi-convergence phenomenon, an appropriate stopping rule is necessary for obtain-
ing an accurate and stable approximation to the inverse problem. Stopping criteria for iterative regularization
methods are typically based on the discrepancy principle, the generalized cross-validation (GCV) or the L-
curve criterion [36]. The basic underlying idea of the discrepancy principle is that one cannot expect that
the approximation be more accurate than the data, and it ceases the iterative procedure for

k 2 N : E ¼ kuðckÞ � gkL2ðI ;L2ðCcÞÞ 6 cd; ð18Þ

where d is a measure of the amount of measurement errors of the Cauchy data, and the constant c > 1.
Fig. 3(b) shows that the residual curve is rather flat over a wide range of iteration numbers, and thus the dis-
crepancy principle requires a very accurate estimation of the amount of data noise in order that the CGM
could yield a good approximation, which might not always be practical. And for heuristic methods disrespect-
ing the noise level, e.g. the L-curve criterion and the GCV, it is generally difficult to obtain theoretical results,
such as the convergence and convergence rate. Therefore these stopping criteria are not fully amenable with
practical usage in the present context, and severe practical difficulties can arise in the applications of the math-
ematical formulation without incorporating a regularization term.

The use of the preconditioner via the Sobolev inner product could mitigate greatly the deleterious effect
of data noise and numerical noise [12]. Fig. 4(a) shows the convergence of the approximate solutions with
different regularization parameters in conjunction with preconditioning. The convergence of the approxi-
mate solution is rather steady, and no semi-convergence phenomenon is observed. Thus it undermines
the crucial role of the number of iterations as the regularization parameter, such that a few extra iterations
would not degrade the inverse solution much. Moreover, the value of the regularization parameter g is less
crucial for the preconditioned CGM. The numerical results in terms of both the accuracy error ec and the
residual E for all four regularization parameters considered are practically identical, see Figs. 4(a) and (b),
respectively. A comparison of Fig. 4(a) with Fig. 3(a) indicates preconditioning can accelerate the conver-
gence of the CGM significantly: The conventional CGM converges after approximately 40 iterations, while
the preconditioned one converges within 20 iterations. The comparison in terms of the number of iterations
is fair as the computational cost of applying the preconditioner is negligible compared with that of the for-
ward solver.

Figs. 5(a) and (b) show the accuracy error ec and the residual E, respectively, for Example 1 with various
levels of noise in the data. Both the accuracy error ec and the residual E decrease as the noise level e decreases.
The attainable minimum residual is restricted by the noise level and the discretization error, and it cannot be
brought down to arbitrarily small levels.
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Fig. 4. (a) The accuracy error ec and (b) the residual E as functions of the number of iterations, k, for Example 1 with 1% noise in the data,
obtained with different regularization parameter g and with preconditioning.
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5.2. Numerical results and discussions

The numerical results for Example 1 with various levels of noise in the data are shown in Fig. 6. The numer-
ical solution is practically identical with the exact Robin coefficient for exact data. With up to 5% noise in the
data, the mean of the Robin coefficient is still in excellent agreement with the exact one, and the first order
PCE coefficient represents a reasonable approximation to the exact one. Higher order terms of the PCE,
see Figs. 6(c) and (d), are less accurate, but their magnitude is maintained at a small level. It is noted that
it usually takes more iterations for the higher order terms to converge, and thus the results presented in the
figure are overall optimal, which may not be optimal for each coefficient.

From Figs. 6(a) and (b), it is observed that, while remaining stable, the numerical Robin coefficient con-
verges and predicts the exact solution better as the amount of noise in the data decreases. Therefore, the
numerical algorithm is convergent with respect to decreasing the amount of data noise. The accuracy of
the numerical solutions for noisy data of level 5% are presented in Table 1. It is observed that the error in
the numerical solution is maintained at a small level comparable with that in the data.

Accurate reconstruction of non-smooth solutions is numerically very challenging. As the second example,
we consider the more difficult situation where the inverse solution is non-smooth. Again the uncertainty is
present only in the data.

Example 2. In Eq. (3), the conductivity aðx; yÞ is taken to be aðx; yÞ ¼ 1, the exact solution to the deterministic
forward problem is given by uðxÞ ¼ sin x1ex2 , and the Robin coefficient cðx; yÞ is given by

cðx; yÞ ¼
1þ 2x1 þ x1

2
y; ðx; yÞ 2 ð0; 1

2
Þ � f1g � I ;

3� 2x1 þ x1

2
y; ðx; yÞ 2 ½1

2
; 1Þ � f1g � I :

(

The numerical results for Example 2 with various levels of noise in the data are shown in Fig. 7. The mean
of the numerical Robin coefficient is in good agreement with the exact solution, taking into account the severe
ill-posed nature of the problem and non-smoothness of the solution. However it fails to capture distinct fea-
tures of non-smooth solutions, e.g. the corner. This is attributed to both the CGM and the smoothing nature
of the Sobolev inner product preconditioner [12]. The total-variation or the bounded-variation regularization
might be employed to overcome the undesirable smoothing effect. The inaccuracy in the approximation of the
mean adversely affects the estimation of the first order PCE coefficient, see Fig. 7(b), which consequently loos-
ens the probability bound.

We stress that the inverse solution is overall optimal, and not necessary optimal for each component. This
point is evidenced by comparing the results for the cases of exact data and that of 1% noise in the data. The
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Fig. 5. (a) The accuracy error ec and (b) the residual E as functions of the number of iterations, k, for Example 1 with various levels of
noise in the data.
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first order PCE coefficient for the former seems less accurate than the latter, as its deviation near the end
points is larger. However, this is compensated by the fact that the mean for the former is more accurate than
the latter. The accuracy error for exact data is 5:35� 10�2, as compared with 7:01� 10�2 for 1% noise in the
data, and thus overall more accurate. The magnitude of higher order terms of the PCE are maintained at a
small level comparable with the noise level, see Figs. 7(c) and (d). Therefore, the non-smoothness could affect
the PCE coefficients, but its effect could be negligible on some terms.

Till now, we have considered only problems with deterministic thermal conductivity. We examine the effect
of material property uncertainties on the inverse solution by considering Example 3.

Table 1
Numerical results for the examples with 5% noise in the data

Example k ec E

1 10 4:53� 10�2 3:47� 10�1

2 14 7:32� 10�2 1:95� 10�1

3 18 3:80� 10�2 2:74� 10�1

4 12 5:07� 10�2 2:90� 10�1
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Fig. 6. The numerical results of (a) mean, (b) 1st, (c) 2nd, and (d) 3rd terms in the PCE for Example 1 with various levels of noise in the
data.
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Example 3. In Eq. (3), the conductivity aðx; yÞ is taken to be aðx; yÞ ¼ ex1 þ 1
2
x1y1, the exact solution to the

deterministic forward problem is given by uðxÞ ¼ x2
1 þ x2

2, and the Robin coefficient cðx; yÞ is given by

cðx; yÞ ¼ 1þ sinðpx1Þ þ
x1

2
y2; ðx; yÞ 2 Ci � I :

The problem is discretized using 722 finite elements. For the ease of presentation, we differentiate the sto-
chasticity of the Robin coefficient and that of the conductivity by the prefixes c- and a-, respectively. We con-
sider two cases for Example 3: Case 1 uses both c- and a-first order PCEs of the Cauchy data, and Case 2 uses
only the c-first order PCE.

The numerical results for Case 1 of Example 3 with various levels of noise in the data are presented in
Fig. 8, where the first and second subscripts indicate the order of the polynomial chaos with respect to c- and
a-random variables, respectively. Both the mean and the c-first order PCE coefficient of the numerical Robin
coefficient are in excellent agreement with the exact one with up to 5% noise in the data, and the magnitude of
the c-second order PCE coefficient is small. Therefore, the stochasticity of the conductivity has little effect on
the mean and c-PCE coefficients of the numerical Robin coefficient. Table 1 shows the accuracy error for
Example 3 with 5% noise, which is also comparable to that of Example 1.
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Fig. 7. The numerical results of (a) mean, (b) 1st, (c) 2nd, and (d) 3rd terms in the PCE for Example 2 with various levels of noise in the
data.
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The a-uncertainty indeed affects the numerical Robin coefficient in the sense that the random dimension of
its PCE coefficient is increased by one. Fig. 8(d) shows the a-first order PCE coefficient of the numerical Robin
coefficient. The magnitude of the a-first order PCE coefficient is only of the noise level, and thus the effect of a-
uncertainty might be considered minor. To further assess its effect on the numerical Robin coefficient, we
display its variance for Case 1 of Example 3 with exact data and 5% noise in the data in the logarithmic scale in
Figs. 9(a) and (b), respectively. It is observed that both the c-variance and the overall variance are in excellent
agreement with that of the exact variance, and the a-variance, which here includes all terms not included in the
c-variance, contributes very little to the overall variance of the inverse solution. The magnitude of the a-
variance increases slightly for noisy data, but it is still negligible compared with that of c-variance up to 5%
noise in the data. Therefore, the a-uncertainty has only immaterial effect on the inverse solution if it is
appropriately reflected in the data, e.g. with the a-first order PCE characterized.

The numerical results for Case 2 of Example 3 with 5% noise in the data are presented in Fig. 10, where the
results for Case 1 are also presented for the convenience of comparison. The mean and the c-first order PCE
coefficient for Case 2 deteriorate only slightly as compared with that of Case 1, and the c-second PCE
coefficient is practically of the same small magnitude. Thus inadequate a-uncertainty characterization of the
Cauchy data has limited effect on the c-PCE coefficients of the numerical Robin coefficient. Fig. 10(d) shows
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Fig. 8. The numerical results of (a) mean, (b) c-1st, (c) c-2nd, and (d) a-1st terms in the PCE for Case 1 of Example 3 with various levels of
noise in the data.
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Fig. 9. The variance of the Robin coefficient for Example 3 with (a) exact data, and (b) 5% noise in the data.
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the a-first order PCE coefficient of the inverse solution. The a-PCE coefficient for Case 2 is larger than that for
Case 1 approximately by one order in magnitude, which consequently renders the probabilistic bounds of the
numerical Robin coefficient less accurate. Therefore, the a-stochasticity could have significant effect on the
inverse solution if the data is inadequately characterized in terms of the a-uncertainty. This has a significant
practical implication that the model selection of the data plays a crucial role in obtaining realistic probabilistic
calibration of the inverse solution.

So far we have considered only problems with the stochasticity given by random variables. We next
consider a more realistic setting where the stochasticity is described by a second order random process.

Example 4. In Eq. (3), the conductivity aðx;xÞ is taken to be a second order process with its covariance func-
tion CðrÞ given by

CðrÞ ¼ r2 r
b

K1

r
b

� �
;

where K1 is the modified Bessel function of the second kind of order one, b scales as the correlation length, r is
the distance between two spatial points and r2 is the variance of the random field. For any given point in the
random field, this type of covariance function takes into account the influences of its nearest neighbors in all
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Fig. 11. (a) The distribution of the first 20 normalized eigenvalues ki of the covariance operator, and the contour of (b) the 1st, (c) the 2nd,
and (d) the 3rd eigenfunctions.
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directions and is considered as the ‘elementary’ covariance function in two-dimensional domains [22]. Here we
employ this covariance function and apply the Galerkin procedure [19] to numerically solve the eigenvalue
problem (2) for obtaining the eigenvalues ki and eigenfunctions fiðxÞ. For the purpose of initial demonstration,
a relatively strong auto-correlation with parameter b ¼ 5 is assumed, which results in a fast decay of the eigen-
values. Fig. 11(a) shows the first twenty normalized eigenvalues of the covariance operator, and the first three
eigenvalues are found to encompass over 99.9% of the total ‘energy’

P
iki of the eigenvalue spectrum. There-

fore, the first three eigenfunctions, which are shown in Figs. 11(b)–(d), are sufficient for accurately character-
izing the random field. We employ the first three eigenfunctions for describing aðx;xÞ in the sequel. The mean
of the random field aðx;xÞ is taken to be ex1 , and the variance r2 is taken to be 0.5. The exact solution to the
deterministic forward problem is given by uðxÞ ¼ x2

1 þ x2
2, and the Robin coefficient cðx; yÞ is given by

cðx; yÞ ¼ 1þ sinðpx1Þ þ
x1

2
y4; ðx; yÞ 2 Ci � I :

The problem is discretized using 800 finite elements, and the PCE order p is taken to be p ¼ 3, which results
in a PCE of 35 terms. The numerical results for Example 4 with various levels of noise in the data are shown in
Fig. 12. The accuracy of the numerical results is comparable with that of Examples 1–3, see Table 1. The mean
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Fig. 12. The numerical results of (a) mean, (b) c-1st, (c) c-2nd, and (d) a-1st terms in the PCE for Example 4 with various levels of noise in
the data.
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of the numerical Robin coefficient is in good agreement with the exact solution for all four noise levels con-
sidered, and their accuracy is comparable with that of Example 3. The numerical estimates of c-first order PCE
coefficient also represent reasonable approximations to the exact one. The magnitude of other PCE terms are
all maintained below the noise level, see Figs. 12(c) and (d) for the c-second and a-first PCE coefficients,
respectively. Note that the number of iterations necessary for achieving the convergence of the numerical
results is observed to be comparable with that of Example 3, see Table 1. Therefore, the convergence of
the algorithm is only mildly dependent of the stochastic dimension N for the Robin inverse problem. However,
it still takes much longer computational time as the forward solver this time is computationally more expen-
sive. Recent algorithm innovations of the SFEM, e.g. the sparse grid technique [28,37], model reduction
[29,38] and the adaptive multi-element technique [39], may provide viable means for accelerating the
algorithm.

Many other numerical experiments have been performed, and the numerical results obtained are similar to
those presented above. The forgoing numerical verifications indicate that the proposed algorithm is efficient,
stable and accurate for the reconstruction of smooth Robin coefficients, and also yields acceptable results for
non-smooth solutions.

6. Conclusions

This paper investigates a variational approach to the stochastic Robin inverse problem. Mathematical
properties relevant to its numerical computations of the optimization problem are investigated, and the con-
vergence of the spectral stochastic finite element approximation is established. Numerical results by a precon-
ditioned conjugate gradient method for several two-dimensional inverse problems are presented, and the
results indicate that the algorithm is convergent with respect to refining the mesh size and decreasing the
amount of data noise, reasonably accurate and computationally efficient.

This study presents only a first step into the fascinating field of numerical methods for stochastic inverse
problems, and there are several avenues for further extensions, which are currently under investigation.
Firstly, more works is required concerning the theoretical analysis of the numerical algorithm, e.g. the conver-
gence of the SSFEM approximation for general probability distributions, and also compact embedding and
density results for weighted Sobolev spaces. Secondly, the algorithm extends straightforwardly to other inverse
problems, such as parameter identification and boundary identification problems. Thirdly, stochastic model-
ing can affect significantly the inverse solution. Therefore, the related model selection, verification and valida-
tion issues are imperative, and novel computing machineries from statistics may be necessary. Finally,
alternative formulations of the problem based on physically more relevant statistical quantities, e.g. moments
or probability distribution functions, that derive readily from experimental data, are also of practical interest.
This is particularly relevant in the limited experimental data case that does not allow a complete probabilistic
calibration.
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