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Abstract. We shall derive and propose several efficient overlapping domain

decomposition methods for solving some typical linear inverse problems, includ-
ing the identification of the flux, the source strength and the initial temperature

in second order elliptic and parabolic systems. The methods are iterative, and

computationally very efficient: only local forward and adjoint problems need
to be solved in each subdomain, and the local minimizations have explicit solu-

tions. Numerical experiments are provided to demonstrate the robustness and

efficiency of the methods: the algorithms converge globally, even with rather
poor initial guesses; and their convergences do not deteriorate or deteriorate

only slightly when the meshes are refined.

1. Introduction. Domain decomposition methods (DDMs) have been developed
and proved to be one of the most successful methodologies in the construction of
efficient numerical solvers for solving many boundary value and initial-boundary
value problems, the so-called direct problems; see [14] [17] [18] and the references
therein. DDMs usually possess two important features for solving a wide class of
large-scale direct problems: first, they are natural parallel solvers and can be easily
implemented in parallel computers; second, their convergence may be made nearly
optimal in the sense that the resulting convergence rate is nearly independent of
the mesh size.

However, no much progress has been made in the construction of efficient DDMs
for solving mathematically ill-posed inverse problems, although the inverse problems
are usually much more challenging and time consuming than their corresponding
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direct problems. In [5] [13], DDMs were applied indirectly for an elliptic identifica-
tion problem, where classical iterative optimization algorithms were first adopted
for solving the stabilized minimization system of the identification problem, then
the existing DDMs were introduced for solving the direct problems and their adjoint
systems involved at each iteration. This approach shares the standard convergence
behaviours of the traditional iterative methods, that is, with the refinement of the
mesh, the discretised minimization system becomes more ill-conditioned, and the
number of iterations required for a given accuracy increases rapidly and can not be
reduced no matter how the direct problem and its adjoint system involved are solved.
Newton’s method was used in [3] for solving the optimality system of the stabilized
minimization of an elliptic identification problem, then an additive Schwarz type
preconditioned algorithm was applied to solve the linear system involved at each
Newton’s iteration. As Newton’s method requires the evaluations of the Hessian of
the corresponding objective functional, the approach of [3] is applicable only to a
very special formulation of the parameter identification problem, and as usual, the
initial guesses are difficult to achieve for Newton’s method. There are also efforts
by DDMs for solving nonlinear optimizations arising, e.g., from optimal control
problems with PDEs [6] [9] [10]. But these problems are quite different in nature
from inverse problems, e.g., optimal control problems are usually well-posed and the
(target) data is specified, mostly without any noise. In this work we shall develop
some DDMs for directly solving the stabilized minimization systems of some typical
linear inverse problems so that their convergences do not deteriorate or deteriorate
only mildly as the entire degrees of freedom of the optimization system grow, and
only subdomains are solved at each iteration and all subdomains are solved in par-
allel. Next, we shall briefly address some major difficulties in the construction of
DDMs for inverse problems directly, then point out the new contributions of this
work.

We shall use q and u(q) to represent respectively the parameter function to
be identified and the solution to the forward model system associated with the
parameter q, then one may formulate a general inverse problem formally as the
following forward operator equation

u(q) = zδ

where zδ is the measured data of the exact solution u in some subregion inside the
physical domain or on part of the boundary, or at the terminal time t = T when
the problem is time-dependent. And the parameter δ is used here to emphasize the
existence of the noise in the measured data.

Inverse problems are usually ill-posed as at least one of the following three condi-
tions is violated: the existence, uniqueness and stability of solutions [1][2][8]. Of the
three conditions stability is the most frequently encountered difficulty in numerical
solutions of inverse problems. One of the most stable and effective approaches to
solve general ill-posed inverse problems is to transform them into stabilized output
least-squares minimizations with some appropriately selected Tikhonov regulariza-
tions, namely to minimize the following type of functionals over some constrained
set K:

(1.1) J(q) = ‖u(q)− zδ‖2V + βN(q)

where V is a Hilbert or Banach space over the measurement subregion and is deter-
mined based on the type of measurement data available, N(q) is the regularization

Inverse Problems and Imaging Volume 9, No. 1 (2015), 163–188



Overlapping Domain Decomposition Methods 165

term and β is a regularization parameter to balance between the data fitting and
regularization.

One of the major difficulties in the construction of DDMs for solving a nonlin-
ear minimization problem associated with J(q) lies in the global dependence of the
forward operator u(q) on the parameter q: a change of q in a small subregion of the
global domain Ω causes the change of u in the entire Ω. This is generally true no
matter if u(q) is linear or nonlinear. Due to this global dependence, a direct appli-
cation of the DDM principle to solve the nonlinear minimization problem of J(q)
may not work. To illustrate this point more clearly, we consider a decomposition of
the global minimization of J(q) over the entire domain Ω into a set of subproblems
that involve only all sub-minimizations of functionals Ji(qi + q̃) on the subdomains
Ωi, where qi has support only in Ωi, and q̃ is the known contribution from other
subdomains, then Ji(qi + q̃) should be of the form

(1.2) Ji(qi + q̃) = ‖u(qi + q̃)− zδ‖2Vi
+ βN(qi + q̃).

Clearly the sub-minimization of functional Ji in (1.2) involves the solution u(qi+ q̃),
which still needs to solve the forward problem in the global domain Ω even when
operator u(q) is linear and only the local quantity qi needs to be updated. Hence
the direct application of the DDMs does not really reduce the global computations
to the ones in the local subdomains.

In this study, we will derive and propose several efficient overlapping DDMs
for solving some typical linear inverse problems, including the identification of the
source strength, the initial temperature inside a physical domain, and the fluxes
on (inaccessible) part of the boundary of a physical domain in second order elliptic
and parabolic systems. These inverse problems are all ill-posed, especially unstable
with respect to the change of the noise in the data [2]. The new algorithms will
be constructed in a way that meets the true spirits of DDMs, namely only sub-
minimization problems are solved at each iteration on the subdomains of the original
global domain, and the number of the iterations required for a specified accuracy
grows nearly independent of (or very slowly on) the refinement of finite element
meshes.

The rest of the paper is arranged as follows. In Section 2, we propose the
Tikhonov regularization for identifying the source strength. In Section 2.1, the over-
lapping domain decomposition methods are first introduced and local minimizations
are studied, then the algorithms are further improved. In Sections 3 and 4, we de-
rive DDMs for the reconstruction of the fluxes on part of the boundary and the
initial temperature inside a physical domain respectively. In Section 5, numerical
experiments are presented for the identification of source strength, fluxes and initial
temperature to illustrate the efficiency and robustness of the proposed algorithms.
Some concluding remarks are given in Section 6.

Throughout the paper, C is often used for a generic constant. We shall use
the symbol 〈·, ·〉 for the general inner product, and write the norms of the spaces

Hm(Ω), L2(Ω), H
1
2 (Γ) and L2(Γ) (for some Γ ⊂ ∂Ω) respectively as ‖ · ‖m,Ω, ‖ · ‖Ω,

‖ · ‖1/2,Γ and ‖ · ‖Γ.

2. Domain decomposition algorithms for the reconstruction of source
strengths. The major task of this work is to propose some new overlapping DDMs
for solving three typical linear inverse problems, including the identification of the
source strength, the flux and the initial temperature. For ease of exposition, we shall
take the inverse problem of identifying the source strength in a diffusion system as
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an example to derive and discuss the new DDMs in more detail in this section,
and address the other two inverse problems in sections 3 and 4. Let Ω be an open
bounded and connected domain in Rd (d ≥ 1), with a boundary ∂Ω. Then we
consider the following diffusion system

(2.1)

{
−∇ · (a(x)∇u) + c(x)u = f(x) in Ω,

u(x) = g(x) on ∂Ω

where a(x), c(x) and g(x) are all given functions, and a(x) ≥ a1 > 0, c(x) ≥ c1 > 0
in Ω. Suppose that the source strength f(x) of the model system is unknown in Ω.
Our inverse problem is to recover the source strength distribution f(x) in Ω when

the measurement data of u, denoted by zδ, is available in Ω, or in a subregion Ω̃ of
Ω. For convenience, we shall write the solution of system (2.1) as u(f) to emphasize
its dependence on the source strength f(x). This is a well-known ill-posed problem.
As in (1.1), we formulate it in a mathematically stabilized minimization system of
the form

min
f∈L2(Ω)

J(f) = ‖u(f)− zδ‖2Ω + β‖f‖2Ω .(2.2)

One can show that the minimizer of the system is stable in the sense that it depends
continuously on the change of the noise in the data zδ [11] [16].

Linearity of the forward solutions. The forward solution u(f) of the system
(2.1) is basically linear in terms of f . It is easy to check directly that

u(λ1f1 + λ2f2) = λ1u(f1) + λ2u(f2) ∀ f1, f2 ∈ L2(Ω) and λ1, λ2 ∈ R
if and only if g(x) = 0. This leads us to consider the solution U to the following
system:

(2.3)

{
−∇ · (a(x)∇U) + c(x)U = f(x) in Ω,

U = 0 on ∂Ω .

We can verify that u(f1)−u(f2) = U(f1−f2) for any f1, f2 ∈ L2(Ω), or equivalently
we have

(2.4) u(f) = U(f) + u(0).

From now on we shall view the solution U(f) to (2.3) as a mapping from L2(Ω) to
L2(Ω).

Adjoint operator. It is easy to verify that operator U(f) is self-adjoint. In
fact, we have by integration by parts for any ω ∈ L2(Ω) that

〈f, U(ω)〉L2(Ω) = 〈−∇ · (a(x)∇U(f)) + c(x)U(f), U(ω)〉L2(Ω)

= 〈U(f), −∇ · (a(x)∇U(ω)) + c(x)U(ω)〉L2(Ω)

= 〈U(f), ω〉L2(Ω).(2.5)

2.1. Overlapping DDMs with explicit local solvers. Using the relation (2.4)
we can rewrite the minimization (2.2) as

(2.6) min
f∈L2(Ω)

J(f) = ‖U(f)− zδ0‖2Ω + β‖f‖2Ω ,

with zδ0 = zδ − u(0). As U(f) is linear, J(f) is convex with respect to f . And the
minimizers of (2.6) exist and are unique.

Next, we shall derive some effective DDMs to solve the optimization system (2.6).
We shall not intend to solve this optimization system on the global domain Ω, as
most existing numerical solvers do. Instead we plan to construct some DDMs so that
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the nonlinear system (2.6) can be effectively solved on local subdomains. To do so,
we divide the global domain Ω into a finite number of overlapping subdomains Ω1,
Ω2, ... , Ωl, where l is a positive integer. Though our new DDMs work for a general
number of subdomains, we shall focus all our discussions only on 4 subdomains with
a cross-point for ease of exposition; see Figure 2.1. It is well-known that the case of
4 subdomains with a cross-point is the most representative case of general multiple
subdomains [14] [18].

Ω
1

Ω
2

Ω
3

Ω
4

Figure 2.1. Domain Ω with its 4 overlapping subdomains Ω1,Ω2,Ω3,Ω4

Based on the partition of Ω into 4 overlapping subdomains, we shall often need
a local subspace of L2(Ω) on each subdomain Ωi:

Vi =
{
f ∈ L2(Ω); supp(f) ⊂ Ωi

}
, i = 1, 2, 3, 4.

Next we start to derive some new DD algorithms for solving the optimization
system (2.6). The algorithms are based on the local optimizations on the subspaces
Vi associated with subdomain Ωi. For some given fj ∈ Vj (j = 1, 2, 3, 4), let us
consider the following local minimization over Ωi:

min
vi∈Vi

J
(
vi +

∑
j 6=i

fj

)
.(2.7)

Here and in the sequel, we often write
∑4
j=1,j 6=i as

∑
j 6=i for simplicity. By the

definition of J in (2.6) we know that each local update vi in Ωi still needs to compute
the quantity U(vi+

∑
j 6=i fj), which involves the solution of the forward system (2.3)

in the entire domain Ω. To avoid this, we construct an auxiliary functional J̃si of J ,
called the surrogate functional in [7], by introducing an auxiliary variable a. For a
given a ∈ Vi and fj ∈ Vj (j = 1, 2, 3, 4), we define

(2.8) J̃si (

4∑
j=1

fj , a) = J(

4∑
j=1

fj) +A ‖fi − a‖2Ω − ‖U(fi − a)‖2Ω

where A is a positive constant to be selected such that

(2.9) A‖fi − a‖2Ω − ‖U(fi − a)‖2Ω ≥ (A− ‖U‖2)‖fi − a‖2Ω ≥ 0 .
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This implies for any f =
∑4
j=1 fj that J̃si (f, a) = J(f) when a = fi, and

(2.10) J(f) = J̃si (f, fi) ≤ J̃si (f, a) = J(f) +A‖fi− a‖2Ω−‖U(fi− a)‖2Ω ∀ a ∈ Vi .

So J̃si (f, a) can be viewed as a small perturbation of J(f) when a is close to fi.

In order to justify the surrogate functional, we can naturally extend the argu-
ments in [7] to prove the following convergence of the iteration suggested by the
surrogate functional.

Lemma 2.1. Suppose A is a constant such that A‖f‖2Ω ≥ ‖U(f)‖2Ω for f ∈ Vi, then
the following sequence produced by the surrogate functional (2.8) for any f0

i ∈ Vi
and n = 1, 2, · · · ,

fni = argminfi∈Vi
J
(
fi +

∑
j 6=i

fj

)
+A‖fi − fn−1

i ‖2Ω − ‖U(fi − fn−1
i )‖2Ω

converges strongly to the minimizer of system (2.7).

Now we shall convert (2.8) into a more explicit representation. Using (2.6), (2.8)

and the adjoint relation (2.5) we can rewrite J̃si as follows:

J̃si (

4∑
j=1

fj , a)

= ‖U(fi)‖2Ω − 2〈fi, U(zδ0 − U(
∑
j 6=i

fj)〉Ω + ‖zδ0 − U(
∑
j 6=i

fj)‖2Ω + β‖
4∑
j=1

fj‖2Ω

+A〈fi, fi − 2a〉Ω +A‖a‖2Ω − ‖U(fi)‖2Ω + 2〈fi, U(U(a))〉Ω − ‖U(a)‖2Ω

= A
〈
fi, fi − 2

{
a+

1

A
U
(
zδ0 − U(

∑
j 6=i

fj)− U(a)
)}〉

Ωi

+β‖
4∑
j=1

fj‖2Ω + ‖zδ0 − U(
∑
j 6=i

fj)‖2Ω +A‖a‖2Ω − ‖U(a)‖2Ω

= A‖fi −
{
a+

1

A
U
(
zδ0 − U(

∑
j 6=i

fj + a)
)}
‖2Ωi

+ β‖
4∑
j=1

fj‖2Ω

+
{
‖zδ0 − U(

∑
j 6=i

fj)‖2Ω +A‖a‖2Ω − ‖U(a)‖2Ω

−A‖a+
1

A
U
(
zδ0 − U(

∑
j 6=i

fj + a)
)
‖2Ωi

}
.(2.11)

We can see that the last term in (2.11) does not depend on fi, so it will not affect

the local minimization over Ωi if we drop it in the functional J̃si . This leads us to
consider the following functional for a given a ∈ Vi:

(2.12) min
fi∈Vi

J̃si (fi +
∑
j 6=i

fj , a) = min
fi∈Vi

A‖fi − z̃i‖2Ωi
+ β‖

4∑
j=1

fj‖2Ω

where z̃i is given by

(2.13) z̃i = a+
1

A
U(zδ0 − U(

∑
j 6=i

fj + a)).
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Noting that (2.12) is a simple quadratic minimization, we can find its exact mini-
mizer f∗i :

f∗i =
1

A+ β

(
Az̃i − β

∑
j 6=i

fj

)
|Ωi
.(2.14)

Clearly, the new functional J̃si in (2.12) has an obvious advantage over the func-
tional J in (2.6) or (2.7): it is completely local, and the minimization can be solved
explicitly within the subdomain Ωi. However, for the solution of the local mini-
mization (2.12) we need the data z̃i from (2.13), which involves the evaluations of
U(
∑
j 6=i fj + a) and U(zδ0 − U(

∑
j 6=i fj + a)). Unfortunately, these two evaluations

are both global, and require the solutions of the forward system (2.3) in the entire
domain Ω. This is surely not expected in an efficient DD algorithm.

Next, we shall propose some techniques to get rid of the aforementioned two
global evaluations so that the resulting DD algorithm involves only local minimiza-
tions over the local subdomains. For convenience, we write the boundary of Ωi
inside Ω by Γ̃i, i.e., Γ̃i = ∂Ωi ∩ Ω for i = 1, 2, 3, 4. Then we introduce a local
forward operator Ui(f, p) associated with the forward problem (2.3):

−∇ · (a(x)∇Ui(f, p)) + c(x)Ui(f, p) = f in Ωi,
Ui(f, p) = 0 on ∂Ω ∩ ∂Ωi
Ui(f, p) = p on Γ̃i.

(2.15)

Clearly we can split Ui(f, p) as Ui(f, p) = Ui(f, 0) + Ui(0, p), and Ui(f, 0) is self-
adjoint, i.e.,

〈Ui(f, 0), ω〉Ωi
= 〈f, Ui(ω, 0)〉Ωi

∀ω ∈ L2(Ωi).(2.16)

Using the local operators Ui(f, p) in (2.15), we introduce the following local
functional for fj ∈ Vj , j = 1, 2, 3, 4:

Ji(

4∑
j=1

fj , p) = ‖Ui(
4∑
j=1

fj , p)− zδ0‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi
,

and its surrogate functional Jsi for any given a ∈ Vi:

Jsi (

4∑
j=1

fj , p, a) = Ji(

4∑
j=1

fj , p) +A‖fi − a‖2Ωi
− ‖Ui(fi − a, 0)‖2Ωi

.

Using the important fact that Ui(
∑4
j=1 fj , p) = Ui(

∑
j 6=i fj , p) + Ui(fi, 0) and the

adjoint relation (2.16), we can write

Jsi (

4∑
j=1

fj , p, a)

= ‖Ui(fi, 0)‖2Ωi
− 2〈fi, Ui

(
zδ0 − Ui(

∑
j 6=i

fj , p), 0
)
〉Ωi

+‖zδ0 − Ui(
∑
j 6=i

fj , p)‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi
+A〈fi, fi − 2a〉Ωi

+A‖a‖2Ωi

−‖Ui(fi, 0)‖2Ωi
+ 2〈fi, Ui(Ui(a, 0), 0)〉Ωi

− ‖Ui(a, 0)‖2Ωi
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= A〈fi, fi − 2
{
a+

1

A
Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)}
〉Ωi + β‖

4∑
j=1

fj‖2Ωi

+‖zδ0 − Ui(
∑
j 6=i

fj , p)‖2Ωi
+A‖a‖2Ωi

− ‖Ui(a, 0)‖2Ωi

= A‖fi −
{
a+

1

A
Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)}
‖2Ωi

+ β‖
4∑
j=1

fj‖2Ωi

+
{
‖zδ0 − Ui(

∑
j 6=i

fj , p)‖2Ωi
+A‖a‖2Ωi

− ‖Ui(a, 0)‖2Ωi

−A‖a+
1

A
Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)
‖2Ωi

}
.(2.17)

We can easily see that the last term above does not depend on fi, so it will not
affect the local minimization over Ωi if we drop it in the functional Jsi . This leads
us to consider the following functional for a given a ∈ Vi:

min
fi∈Vi

Jsi (

4∑
j=1

fj , p, a) = min
fi∈Vi

A‖fi − zi‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi
,(2.18)

where zi = a + 1
AUi

(
zδ0 − Ui(

∑
j 6=i fj + a, p), 0

)
. (2.18) is a simple quadratic

minimization, and we can find its exact minimizer f∗i :

f∗i =
1

A+ β

{
Aa+ Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)
− β

∑
j 6=i

fj |Ωi

}
.(2.19)

We can see from this expression that as long as the inner boundary value p is
available, the minimization (2.18) does not involve any global data and is com-
pletely local. Noting that U(f)|Ωi = Ui(f, U(f)) and the definitions of Ji(f, p) and
Jsi (f, p, a), we can connect Ji(f, p) and Jsi (f, p, a) with functional J(f) (cf. (2.6))
restricted in Ωi:

‖U(

4∑
j=1

fj)− zδ0‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi

= ‖Ui(
4∑
j=1

fj , U(

4∑
j=1

fj))− zδ0‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi

= Ji(

4∑
j=1

fj , U(

4∑
j=1

fj)) = Jsi (

4∑
j=1

fj , U(

4∑
j=1

fj), fi).(2.20)

So using (2.18), we are now ready to apply the multiplicative or additive Schwarz
principle [14] [18] to establish two DD algorithms for solving the optimization system
(2.6). For the description of the algorithms, we introduce an index function for any
point x ∈ Ω:
(2.21)

n(x) =
{
i; x ∈ Ωi, i ∈ {1, 2, 3, 4}

}
; |n(x)| = number of elements in n(x) .
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Algorithm 2.1 (Multiplicative Schwarz Algorithm (MSA)). Choose a tolerance

parameter ε1 > 0, an initial value f (0) =
∑4
i=1 f

(0)
i with f

(0)
i ∈ Vi (i = 1, 2, 3, 4),

and solve (2.3) for U(f (0)); set p
(0)
i := U(f (0))|Γ̃i

and n := 0.

1. Compute f
(n+1)
i ∈ Vi sequentially for i = 1 to 4 by

f
(n+1)
i = argminvi∈Vi

Jsi (
∑
j<i

f
(n+1)
j + vi +

∑
j>i

f
(n)
j , p

(n)
i , f

(n)
i );(2.22)

update Ui in Ωi:

U
(n)
i = Ui(

∑
j≤i

f
(n+1)
j +

∑
j>i

f
(n)
j , p

(n)
i );

update the inner boundary values on Γ̃j for j > i if Γ̃j ∈ Ωi:

p
(n)
j = U

(n)
i |Γ̃j

.

2. Compute f (n+1) =
∑4
i=1 f

(n+1)
i .

3. If ‖f (n+1) − f (n)‖Ω ≤ ε1, stop the iteration;
otherwise update Ui in subdomain Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(f

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑

j∈n(x)

U
(n+1)
j (x), ∀x ∈ Γ̃i.

set n := n+ 1, go to Step 1.

We can easily see that Algorithm 2.1 is sequential or multiplicative. The next
algorithm proposes a parallel version of Algorithm 2.1. For this purpose, we in-
troduce a bounded uniform partition of unity {χi}4i=1 such that

∑4
i=1 χi = 1 and

‖χi‖∞ ≤ 1 and supp(χi) ⊂ Ωi.

Algorithm 2.2 (Additive Schwarz Algorithm (ASA)). Choose a tolerance param-

eter ε1 > 0, a relaxation parameter λ ∈ (0, 1), an initial value f (0) =
∑4
i=1 f

(0)
i

with f
(0)
i ∈ Vi (i = 1, 2, 3, 4), and solve (2.3) for U(f (0)); set p

(0)
i := U(f (0))|Γ̃i

and
n := 0.

1. Compute f
(n+1)
i ∈ Vi in parallel for i = 1, 2, 3, 4 by

f
(n+1)
i = argminvi∈Vi

Jsi (
∑
j 6=i

f
(n)
j + vi, p

(n)
i , f

(n)
i ).(2.23)

2. Compute f (n+1) = λ
∑4
i=1 f

(n+1)
i + (1− λ)f (n).

3. If ‖f (n+1) − f (n)‖Ω ≤ ε1, stop the iteration;
otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(f

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑

j∈n(x)

U
(n+1)
j (x) ∀x ∈ Γ̃i.

set f
(n+1)
i := χif

(n+1), and n := n+ 1, go to Step 1.
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Remark 2.1. The same as for (2.19), we have explicit expressions for the minimiz-

ers f
(n+1)
i in (2.22) and (2.23). In our numerical implementations, we will simply

take the partition of unity {χi}4i=1 used in Algorithm 2.2 as follows:

χi(x) = 1/|n(x)| for x ∈ Ωi ; χi(x) = 0 for x ∈ Ω\Ω̄i.

3. Domain decomposition algorithms for flux reconstruction. In this sec-
tion, we propose a DD algorithm to solve the inverse problem of identifying fluxes
on part of the boundary. Let Ω ⊂ Rd (d ≥ 1) be an open bounded and connected
domain, with a boundary ∂Ω, which is split into two parts, i.e., ∂Ω = Γ0∪Γ1. Then
we consider the following elliptic system

(3.1)


−∇ · (a(x)∇u) + c(x)u = f(x) in Ω ,

a(x) ∂u∂n = g(x) on Γ0 ,
a(x) ∂u∂n = h(x) on Γ1 ,

where a(x), c(x), f(x), g(x) are all given functions, and a(x) ≥ a1 > 0, c(x) ≥
c1 > 0 in Ω. Suppose that the flux h(x) of the model system is unknown on the
inaccessible part Γ1 of ∂Ω, our inverse problem is to recover the flux distribution
on Γ1 when some measurement data uδ of u is available on the accessible part Γ0 of
∂Ω. We shall write the solution of system (3.1) as u(h) to emphasize its dependence
on the flux h(x).

As discussed in section 2, we formulate the ill-posed inverse problem of recovering
the flux into a mathematically stabilized minimization system of the form

min
h∈L2(Γ1)

J(h) = ‖u(h)− zδ‖2Γ0
+ β‖h‖2Γ1

.(3.2)

This formulation is stable in the sense that the minimizer h to (3.2) depends con-
tinuously on the change of the noise in the data uδ [16].

Similarly to the discussions in Section 2, we can write the solution u(h) to (3.1)
as

(3.3) u(h) = U(h) + u(0) ,

where U(h) is the solution to the following system:

(3.4)


−∇ · (a(x)∇U) + c(x)U = 0 in Ω,

a(x)∂U∂n = 0 on Γ0,
a(x)∂U∂n = h on Γ1 .

Adjoint operator of U(h). For any ω ∈ L2(Γ0), consider the solution U∗(ω) ∈
H1(Ω) to the following system:

(3.5)


−∇ · (a(x)∇U∗(ω)) + c(x)U∗(ω) = 0 in Ω,

a(x)∂U
∗(ω)
∂n = ω on Γ0,

a(x)∂U
∗(ω)
∂n = 0 on Γ1.

This mapping U∗ : L2(Γ0)→ L2(Γ1) is the adjoint operator of U , namely, it holds
that

(3.6) 〈U(h), ω〉Γ0 = 〈h, U∗(ω)〉Γ1 ∀ω ∈ L2(Γ0).
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This relation follows directly from (3.4), (3.5) and an application of integration by
parts:

〈U(h), ω〉Γ0
= 〈U(h), a(x)

∂U∗(ω)

∂n
〉Γ0

= 〈U(h), a(x)
∂U∗(ω)

∂n
〉∂Ω +

∫
Ω

U(h)(−∇ · (a(x)∇U∗(ω)) + c(x)U∗(ω))dx

=

∫
Ω

(−∇ · (a(x)∇U(h)) + c(x)U(h))U∗(ω)dx + 〈a(x)
∂U(h)

∂n
, U∗(ω)〉∂Ω

= 〈a(x)
∂U(h)

∂n
, U∗(ω)〉Γ1

= 〈h, U∗(ω)〉Γ1
.

3.1. Overlapping DDMs with explicit local solvers. In this subsection, we
follow section 2.1 to derive some overlapping domain decomposition method for
solving the minimization in (3.2). As in section 2.1, Ω is divided into the overlapping
subdomains Ωi (i = 1, 2, 3, 4), accordingly the feasible constraint space L2(Γ1) can
be decomposed into the subspaces

Vi =
{
h ∈ L2(Γ1); supp(h) ⊂ ∂Ωi ∩ Γ1

}
, i = 1, 2, 3, 4.

Next we introduce an auxiliary surrogate functional J̃si of J(h) in (3.2) for any
given a ∈ Vi and hj ∈ Vj (j = 1, 2, 3, 4):

(3.7) J̃si (

4∑
j=1

hj , a) = J(

4∑
j=1

hj) +A‖hi − a‖2Γ1
− ‖U(hi − a)‖2Γ0

.

We note that the same justification as it was stated in Lemma 2.1 is true here for
the surrogate functional (3.7). Now by similar derivations to (2.11) but using the

adjoint relation (3.6), we can rewrite J̃si as

J̃si (

4∑
j=1

hj , a)

= A‖hi −
{
a+

1

A
U∗
(
zδ0 − U(

∑
j 6=i

hj + a)
)}
‖2∂Ωi∩Γ1

+ β‖
4∑
j=1

hj‖2Γ1

+
{
‖zδ0 − U(

∑
j 6=i

hj)‖2Γ0
+A‖a‖2Γ1

− ‖U(a)‖2Γ0

−A‖a+
1

A
U∗
(
zδ0 − U(

∑
j 6=i

hj + a)
)
‖2∂Ωi∩Γ1

}
,(3.8)

where zδ0 = zδ−u(0). We can see that the last term in (3.8) does not depend on hi,

so we can drop it in the minimization of functional J̃si . This suggests us to consider
the following local minimization for any a ∈ Vi:

min
hi∈Vi

J̃si (hi +
∑
j 6=i

hj , a) = min
hi∈Vi

A‖hi − z̃i‖2∂Ωi∩Γ1
+ β‖

4∑
j=1

hj‖2Γ1
(3.9)

where z̃i is given by

(3.10) z̃i = a+
1

A
U∗(zδ0 − U(

∑
j 6=i

hj + a)).
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This is a quadratic minimization, so we can find its exact minimizer h∗i :

h∗i =
1

A+ β

(
Az̃i − β

∑
j 6=i

hj

)∣∣∣
∂Ωi∩Γ1

.(3.11)

We observe that the minimization (3.9) is completely local, and its solution can
be achieved explicitly within the subdomain Ωi. However, its solution h∗i needs the
data z̃i from (3.10), which involves two global solutions of the forward and adjoint
systems (3.4) and (3.5), and is clearly not expected in an efficient DD algorithm.
Next, we propose some techniques to avoid these two global evaluations so that the
resulting DD algorithm involves only local minimizations over the local subdomains.
To do so, we introduce two local forward and adjoint operators Ui(h, p) and U∗i (ω, q)
associated with the global forward and adjoint systems (3.4) and (3.5):

(3.12)


−∇ · (a(x)∇Ui(h, p)) + c(x)Ui(h, p) = 0 in Ωi,

a(x)∂Ui(h,p)
∂n = 0 on Γ0 ∩ ∂Ωi,

a(x)∂Ui(h,p)
∂n = h on Γ1 ∩ ∂Ωi,

Ui(h, p) = p on Γ̃i

and

(3.13)


−∇ · (a(x)∇U∗i (ω, q)) + c(x)U∗i (ω, q) = 0 in Ωi,

a(x)
∂U∗

i (ω,q)
∂n = ω on Γ0 ∩ ∂Ωi,

a(x)
∂U∗

i (ω,q)
∂n = 0 on Γ1 ∩ ∂Ωi,

U∗i (ω, q) = q on Γ̃i.

Using the systems (3.12), (3.13) and the integration by parts formula, we derive
the following important relation that will be needed later on:

〈Ui(h, 0), ω〉Γ0∩∂Ωi
= 〈h, U∗i (ω, 0)〉Γ1∩∂Ωi

∀ω ∈ L2(Γ0 ∩ ∂Ωi).(3.14)

By means of the local operators Ui(h, p) in (3.12), we introduce the local func-

tional Ji(
∑4
j=1 hj , p) for hj ∈ Vj (j = 1, 2, 3, 4):

Ji(

4∑
j=1

hj , p) = ‖Ui(
4∑
j=1

hj , p)− zδ0‖2Γ0∩∂Ωi
+ β‖

4∑
j=1

hj‖2Γ1∩∂Ωi
,

and a surrogate functional Jsi for a given a ∈ Vi:

Jsi (

4∑
j=1

hj , p, a) = Ji(

4∑
j=1

hj , p) +A‖hi − a‖2Γ1∩∂Ωi

−‖Ui(hi − a, 0)‖2Γ0∩∂Ωi
.(3.15)

Using the important fact that Ui(
∑4
j=1 hj , p) = Ui(

∑
j 6=i hj , p) + Ui(hi, 0) and the

adjoint relation (3.14), we can rewrite Jsi (
∑4
j=1 hj , p, a) as

Jsi (

4∑
j=1

hj , p, a)
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= A‖hi −
{
a+

1

A
U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)}
‖2Γ1∩∂Ωi

+ β‖
4∑
j=1

hj‖2Γ1∩∂Ωi

+
{
‖zδ0 − Ui(

∑
j 6=i

hj , p)‖2Γ0∩∂Ωi
+A‖a‖2Γ1∩∂Ωi

− ‖Ui(a, 0)‖2Γ0∩∂Ωi

−A‖a+
1

A
U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)
‖2Γ1∩∂Ωi

}
.(3.16)

As the last term does not depend on hi, we are led to the following quadratic
minimization:

min
hi∈Vi

Jsi (

4∑
j=1

hj , p, a) = min
hi∈Vi

A‖hi − zi‖2Γ1∩∂Ωi
+ β‖

4∑
j=1

hj‖2Γ1∩∂Ωi
(3.17)

where zi is given by

zi = a+
1

A
U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)
.

We can easily find the minimizer to the quadratic optimization (3.17) in explicit
form:

h∗i =
1

A+ β

{
Aa+ U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)

−β
∑
j 6=i

hj |Γ1∩∂Ωi

}
.(3.18)

As in Section 2.1, we are now ready to formulate two new DD algorithms for the
minimization system (3.2) for identifying the heat flux. For the description of the
DD algorithms, the same index function n(x) as in (2.21) is used below for any
x ∈ Ω and we also introduce an index function for any point x ∈ Γ1:

n̄(x) =
{
i; x ∈ ∂Ωi ∩ Γ1, i ∈ {1, 2, 3, 4}

}
; |n̄(x)| = number of elements in n̄(x) .

Algorithm 3.1 (Multiplicative Schwarz Algorithm (MSA)). Choose a tolerance

parameter ε1 > 0, an initial value h(0) =
∑4
i=1 h

(0)
i with h

(0)
i ∈ Vi (i = 1, 2, 3, 4),

and solve (3.4) for U(h(0)); set p
(0)
i := U(h(0))|Γ̃i

and n := 0.

1. Compute h
(n+1)
i ∈ Vi sequentially for i = 1 to 4 by

h
(n+1)
i = argminvi∈Vi

Jsi (
∑
j<i

h
(n+1)
j + vi +

∑
j>i

h
(n)
j , p

(n)
i , h

(n)
i );(3.19)

update Ui in Ωi:

U
(n)
i = Ui(

∑
j≤i

h
(n+1)
j +

∑
j>i

h
(n)
j , p

(n)
i );

update the inner boundary values on Γ̃j for j > i if Γ̃j ∈ Ωi:

p
(n)
j = U

(n)
i |Γ̃j

.

2. Compute h(n+1) =
∑4
i=1 h

(n+1)
i .
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3. If ‖h(n+1) − h(n)‖Γ1 ≤ ε1, stop the iteration;
otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(h

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑

j∈n(x)

U
(n+1)
j (x), ∀x ∈ Γ̃i.

set n := n+ 1, go to Step 1.

The next algorithm proposes a parallel version of Algorithm 3.1. For this purpose,
we introduce a uniform partition of unity {χi}4i=1 such that

∑4
i=1 χi = 1 and

‖χi‖∞ ≤ 1 and supp(χi) ⊂ ∂Ωi ∩ Γ1.

Algorithm 3.2 (Additive Schwarz Algorithm (ASA)). Choose a tolerance param-

eter ε1 > 0, a relaxation parameter λ ∈ (0, 1), an initial value h(0) =
∑4
i=1 h

(0)
i

with h
(0)
i ∈ Vi (i = 1, 2, 3, 4), and solve (3.4) for U(h(0)); set p

(0)
i := U(h(0))|Γ̃i

and
n := 0.

1. Compute h
(n+1)
i ∈ Vi in parallel for i = 1, 2, 3, 4 by

h
(n+1)
i = argminvi∈Vi

Jsi (
∑
j 6=i

h
(n)
j + vi, p

(n)
i , h

(n)
i ).(3.20)

2. Compute h(n+1) = λ
∑4
i=1 h

(n+1)
i + (1− λ)h(n).

3. If ‖h(n+1) − h(n)‖Γ1 ≤ ε1, stop the iteration;
otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(h

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑

j∈n(x)

U
(n+1)
j (x) ∀x ∈ Γ̃i.

set h
(n+1)
i := χih

(n+1), and n := n+ 1, go to Step 1.

Remark 3.1. The same as for (3.18), we have explicit expressions for the minimiz-

ers h
(n+1)
i in (3.19) and (3.20). In our numerical implementations, we will simply

take the partition of unity {χi}4i=1 used in Algorithm 3.2 as follows:

χi(x) = 1/|n̄(x)| for x ∈ ∂Ωi ∩ Γ1; and χi(x) = 0 for x ∈ Γ1\∂Ωi.

4. Domain decomposition algorithms for the reconstruction of initial
temperature. In this section, we are interested in extending the DD algorithms
proposed in sections 2 and 3 for solving the stationary inverse source and flux prob-
lems to a time-dependent inverse problem, the identification of the initial temper-
ature in the heat conduction system:

(4.1)

 ut −∇ · (a(x)∇u) = f(x, t) in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),

u(x, 0) = ϕ(x) in Ω.

We assume that some observation data zδ of the temperature u(x, t) are available in
Ω or in some small subregion ω ⊂ Ω, but with a time history in the range [T −σ, T ].
The inverse problem of our interest is to recover the initial temperature distribution
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ϕ(x), using the observation data zδ. We shall write the solution of system (4.1) as
u(ϕ) to emphasize its dependence on the initial temperature ϕ(x).

As described in Section 2, it is easy to verify that u(ϕ) = U(ϕ) + u(0), where
U(ϕ) is linear with respect to ϕ and satisfies the following system

(4.2)

 Ut −∇ · (a(x)∇U) = 0 in Ω× (0, T ),
U = 0 on ∂Ω× (0, T ),

U(x, 0) = ϕ(x) in Ω,

whose variational formulation is given by∫ T

0

∫
Ω

Utψdxdt+

∫ T

0

∫
Ω

a∇U · ∇ψdxdt = 0 ∀ ψ ∈ L2(0, T ;H1
0 (Ω)) .(4.3)

Let zδ0 = zδ − u(0), then we can formulate our inverse problem as the following
regularized output least-squares minimization:

min
ϕ∈L2(Ω)

J(ϕ) = min
ϕ∈L2(Ω)

∫ T

T−σ
‖U(ϕ)− zδ0‖2L2(Ω)dt+ β‖ϕ‖2L2(Ω).(4.4)

Now we introduce the adjoint system of the forward problem (4.2):

(4.5)

 U∗t +∇ · (a(x)∇U∗) = 0 in Ω× (0, T ),
U∗ = 0 on ∂Ω× (0, T ),

U∗(x, T ) = ω in Ω,

which is linear with respect to ω. Next we derive a very useful relation:

(4.6) 〈U(ϕ)(·, t), ω〉L2(Ω) = 〈ϕ, U∗(ω)(·, T − t)〉L2(Ω) ∀ t ∈ [0, T ] .

Clearly, this is true for t = 0 by the initial and terminal conditions in (4.2) and
(4.5). To verify it for t ∈ (0, T ], we define U∗,s(ω) for s ∈ (0, T ]:

(4.7)

 U∗,st +∇ · (a(x)∇U∗,s) = 0 in Ω× (0, s),
U∗,s = 0 on ∂Ω× (0, s),

U∗,s(x, s) = ω in Ω.

It is easy to find the following relation,

(4.8) U∗(ω)(x, T − s) = U∗,s(ω)(x, 0),

and the variational formulation of (4.7),

−
∫ s

0

∫
Ω

U∗,st ψdxdt+

∫ s

0

∫
Ω

a∇U∗,s · ∇ψdxdt = 0 ∀ψ ∈ L2(0, s;H1
0 (Ω)).

(4.9)

Using U∗,s in (4.7) and its property (4.8), we see (4.6) immediately from the fol-
lowing relation

〈U(ϕ)(·, s), ω〉L2(Ω) = 〈ϕ, U∗,s(ω)(·, 0)〉L2(Ω) .(4.10)

To check this relation, we use (4.3) with the terminal time T replaced by s, then
take ψ = U∗,s and integrate by parts with respect to t to obtain∫

Ω

U(x, s)U∗,s(x, s)dx−
∫

Ω

U(x, 0)U∗,s(x, 0)dx−
∫ s

0

∫
Ω

UU∗,st dxdt

+

∫ s

0

∫
Ω

a(x)∇U · ∇U∗,sdxdt = 0.(4.11)

Now the desired relation (4.10) follows readily from the initial and terminal condi-
tions in (4.2) and (4.7) and equation (4.9) with ψ = U .
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Next we shall follow sections 2 and 3 to derive some overlapping domain decom-
position method for solving the time-dependent minimization (4.4). As in section
2.1, Ω is divided into the overlapping subdomains Ωi (i = 1, 2, 3, 4), and the feasible
constraint space L2(Ω) can be decomposed accordingly into the following subspaces:

Vi =
{
ϕ ∈ L2(Ω); supp(ϕ) ⊂ Ωi

}
, i = 1, 2, 3, 4.

In order to avoid any global solution of the forward and adjoint systems (4.2) and
(4.5) in our DD algorithms, we introduce their local variants, namely, the solutions
Ui(ϕ, p) and U∗i (ω, p) to the following systems:

Ui(ϕ, p)(x, t)t −∇ · (a∇Ui(ϕ, p)(x, t)) = 0 in Ωi × (0, T ),
Ui(ϕ, p)(x, t) = 0 on (∂Ω ∩ ∂Ωi)× (0, T ),

Ui(ϕ, p)(x, t) = p on Γ̃i × (0, T ),
Ui(ϕ, p)(x, 0) = ϕ in Ωi

and
U∗i (ω, p)(x, t)t +∇ · (a∇U∗i (ω, p)(x, t)) = 0 in Ωi × (0, T ),

U∗i (ω, p)(x, t) = 0 on (∂Ω ∩ ∂Ωi)× (0, T ),

U∗i (ω, p)(x, t) = p on Γ̃i × (0, T ),
U∗i (ω, p)(x, T ) = ω in Ωi.

Noting that Ui(ϕ, 0) = U∗i (ω, 0) = 0 on ∂Ωi, we can derive as we did for (4.6) that

(4.12) 〈Ui(ϕ, 0)(·, t), ω〉L2(Ωi) = 〈ϕ, U∗i (ω, 0)(·, T − t)〉L2(Ωi) .

Now we can define a local functional Ji(
∑4
j=1 ϕj , p) for ϕj ∈ Vj (j = 1, 2, 3, 4):

Ji(

4∑
j=1

ϕj , p) =

∫ T

T−σ
‖Ui(

4∑
j=1

ϕj , p)(·, t)− zδ0‖2L2(Ωi)
dt+ β‖

4∑
j=1

ϕj‖2L2(Ωi)

and introduce a surrogate functional Jsi for any a ∈ Vi:

Jsi (

4∑
j=1

ϕj , p, a) = Ji(

4∑
j=1

ϕj , p) +Aσ‖ϕi − a‖2L2(Ωi)

−
∫ T

T−σ
‖Ui(ϕi − a, 0)(·, t)‖2L2(Ωi)

dt.

We note that the same justification as it was stated in Lemma 2.1 is true here
for the above surrogate functional. Now using the fact that Ui(

∑4
j=1 ϕj , p) =

Ui(
∑
j 6=i ϕj , p) + Ui(ϕi, 0) and the adjoint relation (4.12), we can rewrite

Jsi (

4∑
j=1

ϕj , p, a)

=

∫ T

T−σ
{‖Ui(ϕi, 0)(·, t)‖2Ωi

− 2〈Ui(ϕi, 0)(·, t), zδ0 − Ui(
∑
j 6=i

ϕj , p)(·, t)〉Ωi

+‖zδ0 − Ui(
∑
j 6=i

ϕj , p)(·, t)‖2Ωi
}dt+ β‖

4∑
j=1

ϕj‖2Ωi
+Aσ〈ϕi, ϕi − 2a〉Ωi
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+Aσ‖a‖2Ωi
−
∫ T

T−σ
{‖Ui(ϕi, 0)(·, t)‖2Ωi

− 2〈Ui(ϕi, 0)(·, t), Ui(a, 0)(·, t)〉Ωi

+‖Ui(a, 0)(·, t)‖2Ωi
}dt

= Aσ〈ϕi, ϕi − 2{a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt}〉Ωi

+β‖
4∑
j=1

ϕj‖2Ωi
+

∫ T

T−σ
{‖zδ0 − Ui(

∑
j 6=i

ϕj , p)(·, t)‖2Ωi
− ‖Ui(a, 0)(·, t)‖2Ωi

}dt

+Aσ‖a‖2Ωi

= Aσ‖ϕi − {a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt}‖2Ωi

+β‖
4∑
j=1

ϕj‖2Ωi
+
{∫ T

T−σ
{‖zδ0 − Ui(

∑
j 6=i

ϕj , p)(·, t)‖2Ωi
− ‖Ui(a, 0)(·, t)‖2Ωi

}dt

−Aσ‖a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt‖2Ωi

+Aσ‖a‖2Ωi

}
.(4.13)

We can easily see that the last term above does not depend on ϕi, so it will not
affect the local minimization over Ωi if we drop the term in the functional Jsi . This
leads us to consider the following functional for a given a ∈ Vi:

min
ϕi∈Vi

Jsi (

4∑
j=1

ϕj , p, a) = min
ϕi∈Vi

Aσ‖ϕi − zi‖2Ωi
+ β‖

4∑
j=1

ϕj‖2Ωi
,(4.14)

where zi is given by

zi = a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt.

Clearly the minimization (4.14) is quadratic, so we can find its exact minimizer ϕ∗i :

ϕ∗i =
1

Aσ + β

{
Aσa+

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt

−β
∑
j 6=i

ϕj |Ωi

}
.(4.15)

By means of the local minimizations (4.14), we are now ready to formulate two
new DD algorithms for solving the minimization (4.4) for the reconstruction of the
initial temperature. The same index function n(x) as in (2.21) is used below for
any x ∈ Ω.

Algorithm 4.1 (Multiplicative Schwarz Algorithm (MSA)). Choose a tolerance

parameter ε1 > 0, an initial value ϕ(0) =
∑4
i=1 ϕ

(0)
i with ϕ

(0)
i ∈ Vi (i = 1, 2, 3, 4),

and solve (4.2) for U(ϕ(0)); set p
(0)
i := U(ϕ(0))|Γ̃i

and n := 0.
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1. Compute ϕ
(n+1)
i ∈ Vi sequentially for i = 1 to 4 by

ϕ
(n+1)
i = argminvi∈Vi

Jsi (
∑
j<i

ϕ
(n+1)
j + vi +

∑
j>i

ϕ
(n)
j , p

(n)
i , ϕ

(n)
i );(4.16)

update Ui in Ωi:

U
(n)
i = Ui(

∑
j≤i

ϕ
(n+1)
j +

∑
j>i

ϕ
(n)
j , p

(n)
i );

update the inner boundary values on Γ̃j for j > i if Γ̃j ∈ Ωi:

p
(n)
j = U

(n)
i |Γ̃j

.

2. Compute ϕ(n+1) =
∑4
i=1 ϕ

(n+1)
i .

3. If ‖ϕ(n+1) − ϕ(n)‖Ω ≤ ε1, stop the iteration;
otherwise update Ui in subdomain Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(ϕ

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑

j∈n(x)

U
(n+1)
j (x), ∀x ∈ Γ̃i.

set n := n+ 1, go to Step 1.

The next algorithm is a parallel version of Algorithm 4.1.

Algorithm 4.2 (Additive Schwarz Algorithm (ASA)). Choose a tolerance param-

eter ε1 > 0, a relaxation parameter λ ∈ (0, 1), an initial value ϕ(0) =
∑4
i=1 ϕ

(0)
i

with ϕ
(0)
i ∈ Vi (i = 1, 2, 3, 4), and solve (4.2) for U(ϕ(0)); set p

(0)
i := U(ϕ(0))|Γ̃i

and
n := 0.

1. Compute ϕ
(n+1)
i ∈ Vi in parallel for i = 1, 2, 3, 4 by

ϕ
(n+1)
i = argminvi∈Vi

Jsi (
∑
j 6=i

ϕ
(n)
j + vi, p

(n)
i , ϕ

(n)
i ).(4.17)

2. Compute ϕ(n+1) = λ
∑4
i=1 ϕ

(n+1)
i + (1− λ)ϕ(n).

3. If ‖ϕ(n+1) − ϕ(n)‖Ω ≤ ε1, stop the iteration;
otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(ϕ

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑

j∈n(x)

U
(n+1)
j (x) ∀x ∈ Γ̃i.

set ϕ
(n+1)
i := χiϕ

(n+1), and n := n+ 1, go to Step 1.

Remark 4.1. The same as for (4.15), we have explicit expressions for the minimiz-

ers ϕ
(n+1)
i in (4.16) and (4.17).
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5. Numerical experiments. In this section, we shall apply the DD algorithms
that were proposed in the previous Sections 2-4 to identify the source strength in the
elliptic system (2.1), the heat flux in the system (3.1) and the initial temperature
in the parabolic system (4.1) respectively.

We choose the domain Ω = (0, 1)× (0, 2) and decompose it into four overlapping
subdomains: Ω1 = (0, 4/7) × (6/7, 2), Ω2 = (3/7, 1) × (6/7, 2), Ω3 = (0, 4/7) ×
(0, 8/7), Ω4 = (3/7, 1) × (0, 8/7). Then we triangulate domain Ω into N × M
small squares of equal size and further divide each square through its diagonal into
two triangles. This results in a finite element triangulation of domain Ω, which is
done in such a way that it is consistent with the subdomain decompositions. All
the elliptic problems involved in DD algorithms are solved by the continuous linear
finite element method, while all the parabolic problems are solved by the continuous
linear finite element method in space and the Crank-Nicolson scheme in time.

The parameters involved in the DD algorithms are chosen as follows. The initial
guesses are set to be identically equal to some constants, which as we see are rather
poor initial guesses for all our testing inverse problems. We take the relaxation
parameter λ = 1/2 in all the numerical experiments. The noisy data zδ is obtained
by adding some uniform random noise to the exact data, i.e., zδ = u+ δRu, where
R is a uniform random function varying in the range [-1,1].

Next, we discuss about some appropriate tools we should use to better measure
the convergence of the DDMs. We take the first inverse problem of recovering the
source strength in the elliptic system (2.1) as an example. The exact source strength
f in (2.1) is approximated through the minimisation problem (2.6), which is solved
by the new DDMs, namely Algorithms 2.1 and 2.2. We solve the finite element
discretised system of the minimisation problem (2.6) by the regularized Landweber
iteration, and write by f∗i the finite element minimiser corresponding to a mesh

Thi on domain Ω, and by f
(k)
i the approximate solution of f∗i obtained by the kth

iteration of the DDMs.
For a direct problem, the exact solution is usually obtained or approximated

using a sufficiently fine mesh. But based on the general regularisation theory [8]
and convergence of discrete solutions of inverse problems [15], an exact solution
achieved with a sufficiently fine mesh is often not the desired approximate solution
one should have in most applications, as such a solution is not the approximate
solution with the best accuracy. After many numerical tests, we find that the
finite element discrete solution f∗i with the mesh Thi

= 28 × 56 gives the “best”
approximate solution when the noise level is δ = 2%. Based on this observation, we
first apply the regularized Landweber iteration to compute the discrete minimiser
f∗i for three nested meshes Thi = (7× 2i−1)× (14× 2i−1), i = 1, 2, 3. Then in order
to test the convergence of DDMs, for each mesh Thi

we apply the newly proposed

DDMs to compute f∗i and record the approximate solution f
(k)
i of f∗i obtained by

the kth iteration of the DDMs. For the noise level δ = 2%, DDMs will be terminated

when the relative L2-norm error reaches 0.08, namely ‖f (k)
i − f∗i ‖/‖f∗i ‖ ≤ 0.08, and

the corresponding numbers of DDM iterations are then listed for each numerical
example.

In all the subsequent numerical results, the same measurements for testing the
convergence of DDMs as we have discussed above for the inverse source strength
in system (2.1) are applied for the inverse problems of recovering the heat flux in
system (3.1) and the initial temperature in the parabolic system (4.1).
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Table 5.1. Number of iterations by MSA and ASA for Example 5.1

Algorithm N M β k
MSA 7 14 10−5 10

14 28 10−5 13
28 56 10−5 16

ASA 7 14 10−5 19
14 28 10−5 26
28 56 10−5 31

We first show three numerical examples for reconstructing the source strength
f(x) in the system (2.1), with a(x) = (x + y)/100, c(x) = 1 in Ω and g(x) = 0 on
∂Ω. We take a constant initial guess f (0) = 0 in Ω and the noise level δ = 2% and
A = 1.

Example 5.1. We take the exact source strength f = sin(2πx) sin(2πy).

Figure 5.1 shows the exact and numerically recovered source strengths, while
Table 5.1 gives the number of iterations by Algorithms 2.1 and 2.2 with the relative
L2-norm error being 0.08.
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Figure 5.1. Exact and numerically recovered source strengths for
Example 5.1

Example 5.2. We take the exact source strength f = 2 sin(2πx)y(y − 1)(y − 2).

Figure 5.2 shows the exact and numerically recovered source strengths, while
Table 5.2 gives the number of iterations by Algorithms 2.1 and 2.2 with the relative
L2-norm error being 0.08.

Example 5.3. We take the exact source strength f = 10y sin(2πy)x(x−1/2)(x−1).

Figure 5.3 shows the exact and numerically recovered source strengths, while
Table 5.3 gives the number of iterations by Algorithms 2.1 and 2.2 with the relative
L2-norm error being 0.08, and Table 5.4 shows the relative L2-norm errors achieved
with different regularisation parameters β for the mesh 14× 28 by MSA and ASA
respectively.
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Table 5.2. Number of iterations by MSA and ASA for Example 5.2

Algorithm N M β k
MSA 7 14 10−5 8

14 28 10−5 13
28 56 10−5 16

ASA 7 14 10−5 13
14 28 10−5 24
28 56 10−5 30
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Figure 5.2. Exact and numerically recovered source strengths for
Example 5.2

Table 5.3. Number of iterations by MSA and ASA for Example 5.3

Algorithm N M β k
MSA 7 14 10−5 11

14 28 10−5 14
28 56 10−5 16

ASA 7 14 10−5 23
14 28 10−5 29
28 56 10−5 34

We can see from Figures 5.1-5.3 that the numerical reconstructed source strengths,
with a 2% noise in the data, appear to be quite satisfactory, in view of the severe
ill-posedness of the inverse source problem and the complicated profiles of the exact
source strengths, especially in Example 5.1, where the source strength oscillates
frequently between 8 peaks and valleys. More importantly, we observe from Ta-
bles 5.1-5.3 that the convergence of the DD algorithms are rather reasonable: the
number of iterations grows only mildly with the mesh refinement.

In addition, we observe from Table 5.4 that the DDMs are rather robust with
respect to the choice of the regularisation parameter β: the accuracy of the numer-
ical reconstruction does not change much when the parameter is taken in a specific
range of large scale.
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Table 5.4. L2-norm errors with different β by MSA & ASA for
Example 5.3

Algorithm β error k
MSA 10−3 0.0568 18

10−4 0.0590 18
10−5 0.0592 18
10−6 0.0592 18
10−7 0.0592 18

ASA 10−3 0.0570 37
10−4 0.0589 37
10−5 0.0591 37
10−6 0.0592 37
10−7 0.0592 37
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Figure 5.3. Exact and numerically recovered source strengths for
Example 5.3

Next, we demonstrate three numerical examples for the reconstructions of the
initial temperature in the heat conductive system (4.1), by two DD algorithms,
namely Algorithms 4.1 and 4.2 proposed in Section 4. In our experiments, we take
A = 1, the noise level δ = 2%, a(x) = 1, f(x, t) = 0, the terminal time T = 4, and
the constant initial guess ϕ(0) = 0.

Example 5.4. We take the exact initial temperature ϕ = sin(2πx) sin(2πy).

Figure 5.4 shows the exact and numerically recovered initial temperature, while
Table 5.5 gives the number of iterations by Algorithms 4.1 and 4.2 with the relative
L2-norm error being 0.08.

Example 5.5. We take the exact initial temperature ϕ = 2 sin(2πx)y(y−1)(y−2).

Figure 5.5 shows the exact and numerically recovered initial temperature, while
Table 5.6 gives the number of iterations by Algorithms 4.1 and 4.2 with the relative
L2-norm error being 0.08.

Example 5.6. We take the exact initial temperature ϕ = 10y sin(2πy)x(x −
1/2)(x− 1).
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Table 5.5. Number of iterations by MSA and ASA for Example 5.4
Algorithm N M β k

MSA 7 14 5 ∗ 10−5 7
14 28 5 ∗ 10−5 9
28 56 5 ∗ 10−5 9

ASA 7 14 5 ∗ 10−5 16
14 28 5 ∗ 10−5 19
28 56 5 ∗ 10−5 20
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Figure 5.4. Exact and numerically recovered initial temperatures
for Example 5.4

Table 5.6. Number of iterations by MSA and ASA for Example 5.5

Algorithm N M β k
MSA 7 14 5 ∗ 10−5 20

14 28 5 ∗ 10−5 23
28 56 5 ∗ 10−5 25

ASA 7 14 5 ∗ 10−5 41
14 28 5 ∗ 10−5 48
28 56 5 ∗ 10−5 50

Figure 5.6 shows the exact and numerically recovered initial temperature, while
Table 5.7 gives the number of iterations by Algorithms 4.1 and 4.2 with the relative
L2-norm error being 0.08.

We can see from Figures 5.4-5.6 that the numerical reconstructed initial temper-
atures, with a 2% noise in the data, appear to be quite satisfactory, in view of the
severe ill-posedness of the inverse initial temperature problem and the complicated
profiles of the exact initial temperatures, especially in Example 5.4 where the initial
temperature oscillates frequently between 8 peaks and valleys. More importantly,
we observe from Tables 5.5-5.7 that the convergence of the DD algorithms are rather
reasonable: the number of iterations grows still mildly with the mesh refinement.
These important features of the algorithms are also observed in other examples of
this section.
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Figure 5.5. Exact and numerically recovered initial temperatures
for Example 5.5

Table 5.7. Number of iterations by MSA and ASA for Example 5.6

Algorithm N M β k
MSA 7 14 5 ∗ 10−5 7

14 28 5 ∗ 10−5 9
28 56 5 ∗ 10−5 10

ASA 7 14 5 ∗ 10−5 17
14 28 5 ∗ 10−5 20
28 56 5 ∗ 10−5 21
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Figure 5.6. Exact and numerically recovered initial temperatures
for Example 5.6

Finally, We present a numerical test for the reconstruction of fluxes on the partial
boundary Γ1 = {(x, y); x = 1, 0 ≤ y ≤ 2} in the system (3.1), where we take
g(x) = 0 on Γ0, f(x) = 0 and a(x) = c(x) = 1 in Ω.
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Table 5.8. Number of iterations by MSA and ASA for Example 5.7

Algorithm N M β k
MSA 7 14 10−5 27

14 28 10−5 19
28 56 10−5 18

ASA 7 14 10−5 52
14 28 10−5 42
28 56 10−5 41

Example 5.7. We take the exact flux h(x, y) = (y− 1)2 + 1 on Γ1 with a constant
initial guess h(0) = 1, δ = 2% and A = 5.

Figure 5.7 shows the exact and numerically recovered heat flux, while Table 5.8
gives the number of iterations by Algorithms 3.1 and 3.2 with the relative L2-norm
error being 0.08.
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Figure 5.7. Exact and numerically recovered fluxes for Example 5.7

We can see from Figure 5.7 that the numerical reconstructed fluxes, with a 2%
noise in the data, appear to be quite satisfactory, in view of the severe ill-posedness
of the inverse flux problem. More importantly, we observe that the algorithms
converge globally, starting with a rather poor initial guess, and its convergence
behaves very well (see Table 5.8): the number of iterations grows mildly with the
mesh refinement except when the mesh is too coarse.

6. Concluding remarks. We have proposed in this work several overlapping do-
main decomposition algorithms for solving some representative linear inverse prob-
lems, including the identification of the fluxes, the source intensity and the initial
temperature in second order elliptic and parabolic systems. The algorithms are con-
structed in a way that only small sub-minimizations are needed to solve on the sub-
domains of the original global domain at each iteration. The algorithms can be re-
alised easily and very efficiently, with explicit solutions for all the sub-minimizations
involved. And we have observed from many numerical examples that the algorithms
converge globally, and converge with rather poor initial guesses. More importantly,
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the convergences of these algorithms do not deteriorate or deteriorate only mildly
with the refinement of finite element mesh.

Our future work includes the extension of the proposed overlapping domain de-
composition algorithms to nonlinear inverse problems, such as the constructions of
the diffusivity coefficient, the radiative coefficient and Robin coefficient in elliptic
and parabolic systems.
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