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Abstract. We investigate possibilities of choosing reasonable regularization parameters for the
output least squares formulation of linear inverse problems. Based on the Morozov and damped
Morozov discrepancy principles, we propose two iterative methods, a quasi-Newton method and
a two-parameter model function method, for finding some reasonable regularization parameters
in an efficient manner. These discrepancy principles require knowledge of the error level in the
data of the considered inverse problems, which is often inaccessible or very expensive to achieve
in real applications. We therefore propose an iterative algorithm to estimate the observation
errors for linear inverse problems. Numerical experiments for one- and two-dimensional elliptic
boundary value problems and an integral equation are presented to illustrate the efficiency of
the proposed algorithms.

1. Introduction

Inverse problems are encountered in many industrial and engineering applications. As
the problems are often ill-posed, small perturbations in the observation data can have
large effects on the considered solutions. To make a numerical resolution feasible some
type of regularization has to be introduced, which entails the necessity of choosing
an appropriate regularization parameter. In fact, the effectiveness and success of a
regularization method depends strongly on the choice of a good regularization parameter.
In practice the regularization parameters are still most frequently chosen heuristically. This
is unsatisfactory, both from the practical as well as conceptual points of view. The choice
of reasonably good regularization parameters by deterministic numerical methods is one of
the most important issues in solving inverse problems.

There exists a significant amount of research in the literature on the development
of appropriate strategies for selecting regularization parameters. We refer the readers to
[1, 5,9, 10, 4] and references therein. Much less work has been carried out on the numerical
realization of such strategies, and in fact it appears that very few of the strategies are utilized
for practical applications. One of the causes may be related to the fact that these methods
require knowledge of the noise level of the data which is frequently unavailable in practice.

It is one of the goals of this paper to make a contribution to the subject of practical
parameter choice strategies. We will investigate possibilities of choosing reasonable
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regularization parameters for one of the most frequently used regularization methods, i.e.
the output least squares formulation for linear inverse problems. Our basic tool is the well
known Morozov discrepancy principle [9, 10, 4] and the damped Morozov discrepancy
principle [8]. In [8] the asymptotic behaviour of the damped Morozov principle as the error
level in the observation data tends to zero was studied. In this paper, we will propose two
iterative methods, a quasi-Newton method and a two-parameter model function method, for
finding practically reasonable regularization parameters in an efficient manner. The model
function (four-parameter) approach was earlier used in [7] for solving a nonlinear parameter
identification problem.

Most parameter-choice strategies and discrepancy principles require knowledge of the
observation error of the considered inverse problem, which are often inaccessible or very
expensive to achieve in real applications. A second goal of this paper is to estimate the
observation error from the available data by an iterative method. The estimated observation
error can subsequently be used as a basis for the choice of the regularization parameter.
Many numerical experiments for one- and two-dimensional elliptic boundary value problems
and an integral equation will be presented to illustrate the efficiency of the proposed
algorithms.

Let us now formulate the problem to be discussed in the paper. We consider inverse
problems of the form

Tf=z (1.1)

whereT is a bounded operator mapping the parameter spageo the observation space
Y. Herez € Y are the observation data which may be corrupted by error. The noisy data
with noise levels are denoted by?’.

The above problem is often ill-posed due to lack of a continuous inverge saf that
small perturbations in the data can result in large changes of the solfitmin(1.1). To
transform the problem into a well-posed problem and make a numerical resolution feasible,
we formulate the inverse problem as the following output least squares problem

B
2
where 8 > 0 is the regularization parameter, afid ||y and || - ||x denote the norms in
the Hilbert space¥ and X respectively. The corresponding inner products are denoted by
¢,y and(-, -)x.

We end this section with a well known existence result for (1.2). As u§ual,y — X
denotes the adjoint operator ©f In some situations, we shall express the solution of (1.2)
as f(B) to emphasize its dependence #n

. 1
minJ (f, ) = SITf =215 + S1f1% (2.2)

Lemma 1.1. For any > Othere exists a unique solutiof(8) to the minimization problem
(1.2). It is characterized as the solution to the system

T*Tf +pf =T°2
or in variational form
(TF. TRy +B(f.)x = (. Ty forall g € X. (1.3)

2. Differentiability of f(3)

In this section we discuss the differentiability of the functien— f(8). We first verify
the following lemma.
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Lemma 2.1. The functionf (8) is infinitely differentiable at everg > 0 and its derivative
f™(B) € X, for eachn > 1, is the unique solutiom to the following equation:

(Tw, TRy + B (w, gx =—n(f" VB, &x forall ge X.  (2.1)

Proof. For everyr we have by (1.3),
(TFB+0.Ty+B+DFB+D.8)x =, Ty for all g € X. (2.2)
Choosingg = f(B + t) the Cauchy—Schwarz inequality implies that

176+ DI < 55 11 (2.3)
for all ¢ with |¢| sufficiently small. Subtracting (1.3) from (2.2) yields
(T(fB+D)—fBN. Ty +BUB+1)— f(B),8x=—1(f(B+1),8x

for all g € X. (2.4)
Takingg = f(B+1) — f(B) in (2.4), we obtain
ITfB A1) = FBDIF+BIfB+D = FBIF < —t(f(B+0), fF(B+1) = fB)x.
Applying Young’s inequality leads to

2
ﬂHﬂﬁ+0—f@M§<%ﬁﬂﬁ+ﬂﬁ

which, together with the bound (2.3), proves thifap) is Lipschitz continuous as.
We next show the differentiability off (8). For this purpose, we divide (2.4) by
subtract (2.1) withh = 1 from the resulting equation and obtain
ITg@IIF + Blg@IF = (f(B) = f(B+1), g0))x
whereg(t) =t~ 1(f(B + 1) — f(B)) — w. Applying Young's inequality to the right-hand
side implies

1
Ble®Ik < Ellf(ﬂ) —- fB+DI%

which together with the continuity of (8) shows thatg(r) — 0 ast — 0. Thus, the first
derivative f’(8) exists and is equal to the solutianm of (2.1).
The proof of (2.1) follows by induction on. O

Let F(B) denote the minimal value function, i.e.

1
FB)=J(fB). )= SITS(B) - 215+
for 8 > 0. We have the following.

B

SIFBI% (2.5)

Lemma 2.2. The first and second derivatives Bf8) are given by
F'(B) = %Ilf(ﬁ)llf( and F'(B) = (fB), f'(B)x for all g > 0. (2.6)

Proof. The differentiability of F(8) follows immediately from its definition and lemma 2.1.
To derive the formulae in (2.6), we differentiate both sides of (2.5) with respegtand
obtain

F'(B) = (Tf(B) —2°, T By + BU (B, [/ B)x + 31 F B3

The desired relation foF’(8) follows immediately from (1.3) withg = f'(8). The
remaining formula forF’(g8) can be derived directly from the one fér (8). O

The functionF(8) has some additional nice properties stated in the following lemma.
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Lemma 2.3. Assume that® ¢ kerT*. Then the non-negative functiaR(8) is strictly
monotonically increasing and strictly concave.

Proof. From (2.1) withn = 1 andg = f/(8) we deduce that

(Tf'B). T BNy +BU B f(B)x =—(f(B), f'(B)x.

Using lemma 2.2, we obtain

F'(B) = (f(B), f'B)x = =T B — BILf B <0 forall g > 0.

In fact, F”(B) < 0O for everyp > 0. Otherwise ifF”(8) = 0 for somep, then we have
f'(B) = 0. By lemma 2.1 this implieg (8) = 0 which by lemma 1.1 contradic®&*z® # 0.
Thus we haveF’(8) > 0 and F”(B) < 0 for every positive8. This implies thatF(B) is
strictly monotonically increasing and strictly concave. |

3. Iterative realization of parameter choice strategies

In this section we investigate numerical realizations of some parameter choice strategies.
We shall repeatedly use the expressions for the first and second derivatives of the minimal
value functionF (8) given in lemma 2.2 and the fact that these derivatives can be computed
in a stable manner iB is sufficiently large. For the most part, our analysis will focus on
the Morozov principle.

We first derive an important identity which will be used later. Lf&pB) be the unique
minimizer to problem (1.2) fop > 0. Then we have by lemma 1.1

T*Tf(B) + Bf(B) =T*2 (3.1)
and upon differentiating with respect
T*Tf'(B) + f(B) + Bf'(B) = 0. (3.2)

Taking the inner product withf (8) we obtain
(Tf'B), TfB)y +(f(B), fFBNx + B (B), f(B)x =0

which by lemma 2.2 can be written as

1d
2F'(B)+ B F"(B) + Eﬁ(”(ﬂ)’ Tf(B)y =0

or equivalently

d
@{ﬂF’(ﬂ) + F(B)+ 3(TfB). Tf(B)y}=0.

Integrating with respect t@ we find
2BF'(B) + 2F (B) + (Tf(B). Tf(B)y = 2Co (3.3)

whereCy is an integration constant.
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3.1. Morozov’s principle

The well known Morozov principle has received a considerable amount of attention in linear
inverse problems (cf [1, 5, 9, 10]). The principle states that the regularization pargneter
should be chosen such that the error due to the regularization is equal to the error due to
the observation data. That i8,is chosen according to

ITF(B) — 2115 = 6° (3.4)
wheres is the observation error defined by
8 =llz=2"lly.

Throughout this section we assume thag ker7*. We observe that equation (3.4) can be
expressed in terms af (8) as

F(B) — BF'(B) = 36 (3.5)

In some applications, the Morozov principle may not be so satisfactory. We therefore
consider a more general class of damped Morozov principles [8, 10] given by

ITFB) =215 + B I FBIE = 8°
wherey € [1, o], or equivalently,
F(B)+ (B — B)F'(B) = 36 (3.6)

Note that the exact Morozov principle (3.5) is a special case of the damped case with
y = 0.

We now discuss the existence and uniqueness of the solutions to the exact Morozov and
the damped Morozov equation. We shall make the assumptionFtiiat< 62/2 < F(1),
where

FO = inf SITf =217 = 31 = P23 (3.7)
with P being the orthorgonal projection ef onto the closure of the range &f The proof
of the following lemma will reveal that the upper bound &ian be replaced by

382 < F(oo) = 312°15
for y = oo. This is justified by the fact that fop — oo™ we have f(8) — 0 and hence
F(B) — |1z°|12 /2. For practical purposes it suffices certainly to restfi¢ob (0, 1].

Lemma 3.1. If F(0) < %52 < F(1), then there exists a unique solutign € (0, 1] to the
Morozov equation (3.6).

Proof. Let us define

G(B) = F(B) + (B” — B)F'(B) — 38 (3.8)
Due to lemma 2.2 we have
G'(B) =yB"*F'(B) + (B — BYF"(B). (3.9)

Lemma 2.3 implies that”(8) < 0 and henceG’'(8) > 0 for every8 € (0,1]. (In the
case wherer = co we haveG’'(8) = —B F"(B8) > 0 for everyp € (0, o0).) Therefore the
function G is strictly increasing or{0, 1]. Continuity of G together with

G(0) = F(0) — 36° G() = F(1) — 36°
implies the result. O
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3.2. Newton’s and quasi-Newton’s method

We now propose using Newton’s method or a quasi-Newton’s method to solve the damped
nonlinear Morozov equation (3.6), that is,

G(B) = F(B) + (B — B)F'(B) — 38° = 0.
We know from (3.9) that
G'(B)=yB *F'(B)+ (B — BYF"(B)
= %Vﬂyfl(f(ﬂ), FBNx + B = BB, f(B)x-
Thus computingG’(8) involves the evaluation of’(8) that solves the equation
T*Tw + Bw = — f(B). (3.10)
Newton’s method for solving equation (3.6) is formulated as follows.

Newton’s method. Given an initial gues®,, generate the Newton's sequenge 8o, .. .,
according to

2G (Br)

yBU I (BONG + 2BY — BO(F(Bo). £/(B)x

where f’(B;) is obtained from (3.10). As usual, this Newton's method converges
guadratically. But at each iteration we need to solve for bp{g) and f'(8) and this
seems to be a bit too expensive.

To avoid solving equation (3.10) fof'(8), we propose replacing’(8;) in the Newton’s
method by the finite difference quotient

B — Bi-1

Br+1 = Pr — (3.11)

Jie(Br, Br-1) =

This leads to the following.

Quasi-Newton’s method. Given initial guesse®, and 8;. Generate the quasi-Newton’s
sequencess,, Bs, ..., according to

2G(Br)
B I BONZ + 2(8Y — B (B fielBes Be-1))x

Br+1= Br — (3.12)

This quasi-Newton’s method has the following convergence property.

Theorem 3.1. Assume tha#'(0) < %82 < F(1) and letg, € (0, 1] be the unique solution
of the Morozov equation (3.6). Then there exists a positive constanth that whenever
the initial guessegy and g; belong to the interval = [8, — ¢, B, + ¢], the whole sequence
{Br)2, generated by the quasi-Newton’s method is contained and converges tg,
superlinearly.

Proof. We give the proof foy = co. The casey € [1, co) can be carried out analogously.
By lemma 2.1 the following constam is finite:

V2

3 M= ﬂ*/zgﬁéﬁ*/z{”ﬂﬁ)”"’ ILF B x ILf B)lx}-

Together with (3.9) fory = oo this implies
IG"(B) < M?  for 1B, < B < 3B.. (3.13)
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By continuity of G'(8) at B, there exists a constante (0, 8,/2) such that
IG'(B) = 51G' (Bl for f—e < B < Bute
We can assume that
31G' ()]
< - .
VA VE
Next we show that each iteraf@ generated by the quasi-Newton’s method is contained
in I and thatp, converges t@, superlinearly provided that the start-up valygs 8, are
chosen inl.
For 82 we have by the mean-value theorem

i G(B1) — G(B.)
PomPe= i PO 5 b, Fathr pox
B1(f (B1), f1(B1, o)) x + G'(n1)
B1(f (B1), f1(B1, Bo))x

B
= (81 — ,3*);1 (3.14)
1
wheren; lies betweerns; andg,. We now boundA; and B;. By Taylor expansion we have

f1(Br. Bo) = f'(BV) + 3 £" (D) (Bo — Bu)
with & € (B1, Bo). Hence we obtain

Ay = Bu(f (B, f1(Br. Bo) — f'(B)x — G'(B)

= %(ﬁo — BO(f (B, f"ED)x — G'(B). (3.15)

We can boundA; as follows
|A1l = 31G' (B — 5B.M% > 31G' (B,
To estimateB;, we use (3.15) to obtain

By = %(ﬂo = BO(f (B, " (E)x + (G'(n) — G'(Bo).

Thus B; can be bounded by using (3.13),
|B1| < 2B.MP%e + M% < 3M>e.
Combining the bounds foA; and By, we obtain from (3.14)
2

Bo— Bul < 11— Bl < Lig g
2 x| X 1 % |G/(,3*)| \2 1 %

which impliesg; € [B. — ¢, B« + ¢].
By induction one can show th# € [B. — ¢, B« + ¢] and
1Bc — Bl < 31Bi-1 — Bil fork=23,....
Therefore we havgs, — B, ask — oo.
Finally in the same way as (3.14), we have

s , Pr— G’
Bt — B = (B — poy P PO i Pra)x + Gme),

Br(f (Bi) fie(Be, Bi-1))x
Taking the limit ask — oo, we obtain
lim 1Berr = Bl _ |B+(f (B), f'(B:))x + G'(B)| _ 0

k=00 | Bk — Bl 1B« (f (Be), [/ (B:))x]
and superlinear convergence of the sequdgBgg follows. O

= (B1—B»)
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3.3. Two-parameter model functions

In this section we discuss a model function approach for solving the general Morozov
equation (3.6) approximately. By a model function we mean a parametrized function which
preserves the major properties of the non-negative fundiigs) and which approximates
or interpolatesF'(8) in a manner to be specified below. Some results for nonlinear inverse
problems using model function approaches can be found in [7], where a four-parameter
model function approach was investigated. We are now going to derive a two-parameter
model function approach which will be seen to perform well for linear inverse problems.
Moreover, we shall demonstrate in section 4 that a hybrid scheme based on model functions
during the start-up phase and on the quasi-Newton method locally provides a very efficient
method to solve the Morozov equation.

To derive the model function, we make the following approximation in the equation
(3.3):

(TfB), Tf(B)y = Ta(f(B), f(B)x

whereT; is a positive constant to be determined. Then equation (3.3) reduces to

Bm'(B) +m(B) + Tim'(B) = Co. (3.16)
Solving the ordinary differential equation (3.16) we obtain
C1
=G 3.17
P ot L+ .17

where C; is an integration constant. We know th&{g) is an increasing and concave
function, and obviously the model functiom(B) preserves these properties whén< 0,
and is non-negative i€y + C1/T1 > 0.

Note that when the linear operat®rhas a dense range ¥ (2), then we have

it ITf = 2"1If =0
and therefore
F(0) = 0.
So to further simplifiy the model functiom(8) in (3.17), we requiren(0) = 0. Then we
can write the model function as
T
m@):C{L—T+ﬁ} (3.18)

which has only two parameters involved, and we refer to it astweparameter model
function

To update the two paramete¢€sand T in the above model function and so solve the
general Morozov equation (3.6) approximately, we suggest the following algorithm.

Two-parameter algorithm. Setk = 0 and choosg, > 0.
(1) ComputeF’(8x) and F(B;) using (2.6). Comput&, and C; from

Ty
Ti + B

= F'(B). (3.20)

m(Br) = Cy {1 - } = F () (3.19)

Ci Ty

m (B = (Tx + Br)?
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(2) Set
T;
=Cr{l1- .
=i
(3) Solve forp,.1 the approximate Morozov’'s equation

m(B)+ (B — pym' () = 382, (3.21)
(4) If |Brrr — Brl < tolerance, STOP; otherwise sdt:=k + 1, GOTO (1).

In step (1) of the above two-parameter algorithm, one needs to corfipated C; from
(3.19) and (3.20). Combining (3.19) and (3.20), we can easily find the following direct
formulae for computindgl}, and Cy:

_ BEF'BY c o B

O F(B) — BF (B £ F(Bi) — B F (B
Note that by (2.5) and lemma 2.2 the two-parameter model function in step (2) can be
determined from one evaluation of (1.2) &t The denominators in (3.22) do not vanish

as we always have

F(B) — BF'(Bo) = SITF (B — 2’15 > 0

if 2% ¢ kerT*.

Numerically we use the Newton’s method to solve the approximate Morozov equation
(3.21) forB if y # oo. But for y = oo equation (3.21) is quadratic i and can be solved
directly.

Note that equation (3.21) always has a solutionjfoe (2, o), while the existence is
guaranteed foyp € [1,2] andy = oo if 0 = m(0) < 62/2 < m(c0) = Cy. If 2m(1) > 82
then (3.21) has a unique solution (@, 1].

As a safeguard we had used in our implementation of the algorithm the additional
stopping criterion ‘ifm(B) + (B; — B)m’(B) < %82, STOP'. In our examples it was never
activated.

(3.22)

k

3.4. Predictions of observation errors

Most parameter-choice strategies, including in particular the Morozov principle, require
knowledge of the observation error levl In practice,s is often inaccessible, expensive
to achieve or itself error-prone. In such situations it can be helpful to utilize some heuristic
approach to estimatg

In this section, we propose to use the model functigqi$) to obtain an estimate fa¥.
If the unperturbed data are attainable by somg* € X, then

FO) <3ITf* =215 = 36°

and thus,/2F (0) gives a lower bound for the err@dr In numerical implementations, we
will enlarge this lower bound/2F (0) and use 2/m(0) to predict the observation error.
We propose the following algorithm.

Observation error prediction algorithm. Given a ratioo € [0.5, 1] and 8y > O,
(1) computeF(Bo) and F’(Bo). Then updateC; and 7y in (3.18) using

m(Bo) = F (o) m'(Bo) = F'(Bo)-
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Find yp, the y-intercept of the tangent to the curye= m(8) at (8o, m(Bo)), and 81
satisfying

m(B1) = o yo.

(2) ComputeF (81), F'(B1), andCq (use (3.3)). Then updat€; andT; in (3.17) using
m(B1) = F(B1) m'(B1) = F'(Bo).

Return 2/m(0) as the observation errér

Remark 3.1. The parameter can always be taken to be 1. But one may obtain better
results when it varies in the interval.[) 1).

In the first step, we need to compuge and 8;. Both yo and B; exist uniquely and
are positive as the two-parameter model functiofB) in (3.18) is a concave and strictly
non-decreasing function and(0) = 0.

The first step can be run a few times, that is, wigerns found, sety = 1 and re-run
the step. But in all our numerical implementations, at most two iterations of step (1) gave
good results. In any casgy is chosen significantly larger than the expected optithab
that the corresponding evaluation of (1.2) is numerically stable. The reductinfriom
Bo to B1 depends primarily on the concavity af(8) and thus on the produdt;7;.

The informationF (8p) and F’(8p) can be saved for use in the two-parameter algorithm
or the quasi-Newton’s algorithm for solving the damped Morozov equation.

4. Numerical results for solving the Morozov equation

We now present some numerical experiments to show the effectiveness of the quasi-
Newton’s method, the two-parameter model function approach (two-parameter algorithm)
and the resulting hybrid method.

In all tables of this sectiongyp Stands for the optimaB value which achieves the
minimum for || f(8) — f*ll.2«), it is computed as follows. We first compute thie-
norm error for 200 uniformly distribute@-values in the interval [10/, 10-3] to find an
approximate optimap, denoted by3, then a much smaller interval includinfis chosen
to compute an accurai,,. Su stands for the solution of the general Morozov equation
(3.6). It can be determined by means of a bisection algorithm, for example. In the tables
Iter denotes the required number of iterations of the specified algorithm to achieve the listed
B values.

Example 1. Consider the following two point boundary value problem

— gy = f(x) in (0, 1) with 1(0) = u(1) = 0. (4.1)
We take the coefficient functiom(x) and the observation dataof u as

g(x) = e’ z = u(f*) = e sin(rx)

and then the source terrfi(x) which is to be recovered can be obtained from the above
differential equation,

f* = —q.e " {mcodnx) —sin(zx)} + g {27 cogmwx) + (r? — 1) sin(z x)}.

We assume that the available observed data are the superposition of the error free data
and the sinusoidal noise:

2(x) = z(x) + § sin(L.57 (2x — 1)).



Iterative choices of regularization parameters 1257

Table 1. Optimal 8 values and thg8’s obtained by Morozov principle.

$ 0.01 0.03 0.05 0.07 0.1

Bopt 0.277x 107> 0.990x 1075 0.172x 10% 0.260x 104  0.434x 10°*
Bu  0.362x10° 0125x 10% 0.223x10% 0.324x10% 0474x 10°*

Table 2. Convergence of the quasi-Newton’s method with= 10-3.

$ 0.01 0.03 0.05 0.07 0.1

Bi 0.362x 10° 0.125x 104 0223x10% 0.324x10* 0474x 104
lter 7 7 6 5 7

Table 3. Convergence of the two-parameter algorithm with= 0.1.

s 0.01 0.03 0.05 0.07 0.1

Iter(2) 0575x10°° 0206x 10% 0.365x10°* 0.527x 104 0.773x10°*
Bi 0.362x 107° 0125x 10% 0.223x10% 0.324x 104 0474x 1074
Iter 9 11 14 15 16

Table 4. Quasi-Newton’s convergence with initial guesses from the two-parameter algorithm.

H 0.01 0.03 0.05 0.07 0.1

Bi 0.362x 10°° 0.125x 104 0.223x 104 0324x 104 0474x10°*
Iter 2 2 3 3 3

In our implementations, we use piecewise-linear finite element method to solve the
elliptic problem (4.1) and the variational equation (1.3) satisfied by the optfiga). For
this purpose, we first partition the doman= (0, 1) into N equally distributed subintervals
and then defind’” to be the continuous piecewise-linear finite element space associated
with the partition, andh = 1/N. Let V' be a subspace df” with functions vanishing at
two endpointst = 0, 1. Then the finite element approximatigin(g) of f(B8) is formulated
as follows. Findf,(B8) € V" such that

wn(fu(B), un(9)) + B(fu(B), 8) = (&, un(g)) forall g € V"

whereu;, = u, (f,(B)) € V' satisfies

(q () (up)x, vx) = (fu(B), v) for all v € Vg

In tables 1-4, we present some of the numerical results with different noise parameters
§ andN = 20.

Table 1 gives the optima values as well as thg values computed from the exact
Morozov equation¥ = co):

F(B) — BF'(B) = 36

We can see that the Morozov principle gives very accurate approximations to the optimal
B values for the considered example.
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Table 2 shows the numbers of iterations of the quasi-Newton’s method with the initial
guessfy = 1073, It takes about 5-7 iterations for the method to converge to the exact
solution of the Morozov equation. The stopping criterion for the quasi-Newton iteration
and also for the two-parameter iteration is chosefgas, — Bx|/Br+1 < 1072, If the initial
guesspy is too rough, say Q, the iteration may diverge. This is consistent with the local
convergence of the quasi-Newton’s method.

Table 3 shows the convergence of the two-parameter algorithm discussed in section 3.3,
with a very rough initial guesg, = 0.1. The second row contains tifevalues obtained at
the second iterations. We observe that the algorithm gives very good approximations to the
solutions of the Morozov equation after only two iterations. But afterwards the convergence
of the algorithm becomes much slower. The last two rows of table 3 give the numbers of
iterations required for the algorithm to converge to the exact solutions of the Morozov
equation. The correspondirgyvalues are shown in the third row.

Many additional numerical experiments have confirmed the convergence phenomena we
have seen above about the quasi-Newton’s algorithm and the two-parameter model function
algorithm. The former converges faster than the latter but only locally, i.e. one has to
start at a very good initial guess. The two-parameter model function algorithm converges
very fast during the first few iterations and then it slows down. How about combining the
advantages of these two algorithms? What will happen if we take the approxgwatees
obtained from the first or second iterations of the two-parameter algorithm as the initial
guesses of the quasi-Newton’s method? The results are very positive. Table 4 gives the
numbers of iterations for the quasi-Newton’s algorithm to converge to the exact solutions
of the Morozov equation, when the second iterates from the two-parameter algorithm have
been taken as initial guesses. One can see that it then needs only two or three iterations.

Example 2. We consider the following two-dimensional elliptic problem

=V (@&, »YVu) +cx,yu= f(x,y) in Q (4.2)
u =0 onoQ. (4.3)
on

We use the piecewise-linear finite element method to discretize the Neumann boundary
value problem (4.2), (4.3) with triangular elements of uniform mesh kize %). Let v/
be the piecewise-linear finite element space with the standard nodal basis fur{|¢;i}ﬁls
N = 21 x 21 being the number of nodal points. The finite element problem approximating
(4.2), (4.3) is: findu,(f) € V" such that

(qVun(f), vi) + (cun(f), va) = (f, va) for all v, € V". (4.4)

The integrals involved on each element for computing the coefficient matrix were done by
the quadrature rule which takes the average of three midpoint values on three sides of the
element. The resulting stiffness matrix is denotedhas

To approximate the optimat(8) which minimizes the real functio(8) defined in
(2.5) for a fixedg we use

un(f), un(@)) + B(fn &) = (2, un()) for all g € V" (4.5)

where f, = f,(B). Let M be theN by N mass matrix, i.eM = (m;;), m;; = (¢, ¢;).
Then equations (4.4) and (4.5) can be written algebraically as follows

u(g) "Mu(f) + Bg"Mf = u(g) "'Mz° Au(g) = Mg forall g € RY (4.6)

where f and u(f) are vectors consisting of the nodal values f£f(8) and u,(f3)
respectively. Similarlyz®, g and u(g) represent the nodal values of, ¢ and u(g).
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Table 5. Optimal 8 values and thg8’s obtained by Morozov principle.

$ 0.01 0.03 0.05 0.07 0.1

Bopt 0.121x 107> 0.381x 107> 0.685x 10> 0983x 107> 0.139x 10°*
Bu  0103x10° 0328x10° 0556x10° 0.782x10° 0.110x 10~*

Table 6. Convergence of the quasi-Newton’s method with= 104,

H 0.01 0.03 0.05 0.07 0.1

Bi 0.103x 10°° 0.328x10° 0556x 10°> 0.782x 107> 0.111x 10°*
ter 5 6 6 7 6

By substituting the second relation into (4.6) into the first one and making some simple
re-arrangements, we arrive at

(MA~IM + BA) f = MZ°.

Solving this equation is usually very expensive as it involves the invers& which is
ill-conditioned. Instead we multiply both sides of the equationAdy—* and obtain another
equivalent form:

M+ BAM™IA) f = AZ°. 4.7

This equation is easier to solve than the previous one as one can shottha well-
conditioned. However, it is still expensive to obtain this inverse. To make the computation
more efficient while keeping the same finite element accuracy, we compute the mass matrix
using the lumped mass approximation, namely its entrigsare evaluated as follows

mij = ;/Km dx dy ~ ZKj/K I, (¢i ;) dx dy

whereTl, is the standard finite element interpolant associated Witand the summation

is done over at most two elememSs on which the product,;¢; does not vanish. This
results in a diagonal mass mattik so that solving equation (4.7) becomes much cheaper.

In real implementations, the algebraic system (4.7) can be solved very efficiently by using
domain-decomposition-based or multilevel-method-based preconditioned iterative methods
(cf [3, 2]). In our computations we solved the algebraic system by the conjugate gradient
method. Tables 5-8 show the numerical experiments related to example 2, where we have
taken the coefficint functiong(x, y), c(x, y) and the unperturbed observation data as

g(x,y) =¢€" c(x,y) = gty u(f*) = cogmx)cogwy).
The noisy data were assumed to be of the form
2(x,y) = u(x, y) + 8 sin(L.57 (2x — 1)) sin(1.57(2y — 1)).

The exact source termy(x,y) to be recovered is the right-hand side function of
equation (4.2) using the given coefficiegts:, y), c(x, y) and the exact observatiofix, y).

Table 5 gives the optimat values and thg values computed from the exact Morozov
equation { = oo):

F(B) — BF'(B) = 1%
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Table 7. Convergence of the two-parameter algorithm with= 0.1.

H 0.01 0.03 0.05 0.07 0.1

lter(2) 0122x 107> 0428x10° 0.776x10° 0.115x10* 0.176x 104
Bi 0.103x 107°> 0.328x 10™° 0556x 10> 0782x 10> 0.111x 10*
Iter 5 6 7 8 8

Table 8. Quasi-Newton’s convergence with initial guesses from the two-parameter algorithm.

H 0.01 0.03 0.05 0.07 0.1

Bi 0.103x 105 0.328x 10°> 0.556x 10> 0.783x 10> 0.111x 10°*
lter 3 3 4 3 3

We see that the Morozov principle again gives very accurate approximations to the optimal
B values for the considered example. Table 6 gives the number of iterations of the quasi-
Newton’s method with a very close initial guegg= 10~ when it converges to the given
B values. For this example the quasi-Newton algorithm still converges gyita 0.1 but
the number of iterations is more than doubled compared @4t 1074,

Table 7 gives the convergence of the two-parameter algorithm discussed in section 3.3,
with a very rough initial guesgy = 0.1. The second row contains tifevalues obtained at
the second iteration. We observe that the algorithm gives already very good approximations
to the solutions of the Morozov equation after only two iterations. However, then the
convergence slows down during the subsequent iterations. The last two rows of table 7
give the convergeg-values and the number of iterations that are required to reach them.

Just as in example 1, the current example again demonstrates the local convergence
of the quasi-Newton algorithm and the global convergence of the two-parameter model
function algorithm. When we combine the advantages of the two algorithms, we can speed
up the whole iterative process. Table 8 gives the numbers of iterations for the quasi-
Newton algorithm to converge to the exact solutions of the Morozov equation, when the
second iterates from the two-parameter algorithm were taken as initial guesses. One needs
only three or four iterations to reach the stopping criterion. In practical implementations,
we do not need such accurate results. Only one or two quasi-Newton’s iterations will give
very satisfactory results.

Example 3 (cf [6]). Traditional agricultural fields are often watered from elevated irrigation
canals by removing a solid gate from a weir notch. Suppose that the depth of water in the
canal ish and the notch is symmetric about a vertical centre line (cf figure 1).

By Torricelli's law (cf [6]), the volume of flow per unit time through the notch is

h
2/0 V2g(h —y)f(y)dy

whereg = 9.80 m s2 is the gravitaional constant and= f(y) specifies the shape of the
notch. Suppose that one wishes to design a notch so that this quantity is a given function
z(h) of the water depth in the canal (or equivalently suppose one wants to determine the
shapef from observations of the flow ratg%)). Then one is led to solve the following
integral equation

h
z(h) = 2/0 V2g(h —y) f(y)dy (4.8)

for f.
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y

*earth . . water

Figure 1. A weir notch.

Table 9. Optimal 8’s and B’s obtained by the exact Morozov principle & o).

5 0.01 0.03 0.05 0.07 0.1

Bopt 0.430x107% 0.134x10°° 0.230x 103 0333x10° 0.502x 1073
Bu  0656x107° 0317x 102 0.697x 1072 0.114x 10! 0.184x 107!

Table 10. Optimal 8’s and 8’s obtained by the Morozov’s principle with = 1.

H 0.01 0.03 0.05 0.07 0.1

Bopt 0.430x 1074 0.134x 103 0.230x 1073 0.333x10° 0502x 1073
Bu  0154x 1075 0138x 1074 0.382x10* 0748x107% 0.154x 1073

Table 11. Optimal 8’s and theL2-norm errors.

5 0.01 0.03 0.05 0.07 0.1

Bopt 0.430x 10* 0.134x 1073 0.230x 10° 0.333x 10% 0.502x 10°3
L?-norm error 0601x 1072 0.148x 107! 0.245x 10! 0.342x 107! 0.486x 10!

In our numerical implementation, we take the following true parameter function
f() = €7@ costny) + (% — D sin(ry))

and the observation functiaf(z), & € [0, 1], was computed using formula (4.8). Then we
add noise to the observation data as follows

2 (h) = z(h) + 5 sin(3rh).
To evaluate the integrals involved, we divide the intergall]0into » = 20 subintervals,
and on each subinterval the trapezoidal rule is used.
For this example, we use the damped Morozov principle:

F(B)+ (B — BF'(B) = 36°

since the exact Morozov principler (= co) behaves very disappointingly, compared with
the previous boundary value inverse problems (examples 1 and 2). It overestimates the
optimal 8 values about 15-40 times when the noise level ranges from 1% to 10%, see
table 9.

When we takey € [1, 2], all the results are acceptable, except for smaller noise level
(< 1%), see table 10 fop = 1. The optimaly seems to be around4l Table 12 gives
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Table 12. B's obtained by Morozov’s equatiory (= 1.5) and theL2-norm errors.

5 0.01 0.03 0.05 0.07 0.1

Bu 0.128x 1073 0.543x 103 0.107x 1072 0.167x 1072 0.269x 1072
L2-norm error 0676x 1072 0.227x 101 0.374x 10! 0.497x 101 0654x 101

Table 13. Optimal 8’s and 8’s obtained from Morozov's equation with = 1.3.

§ 0.01 0.03 0.05 0.07 0.1

Bopt 0.430x107% 0.134x10° 0.230x 103 0333x10° 0.502x 1073
By  0336x 104 0.181x10°3 0.395x103 0652x10°% 0.114x 102

Table 14. Convergence of the quasi-Newton’s method with= 0.01.

H 0.01 0.03 0.05 0.07 0.1

Bi 0.128x 103  0.543x 103 0.107x 102 0.167x 102 0.269x 102
Iter 5 4 4 3 3

Table 15. Iteration numbers of the two-parameter algorithm for example 3.

y\6 001 003 005 007 0.1
10 2 2 2 2 2
13 2 2 2 2 2
15 2 3 3 3 3
20 5 5 5 5 5
o 7 7 7 6 7

the B8 values obtained withy = 1.5. Compared with the optima values in table 9, they
are about 2-5 times larger than the optinga. While this is quite satisfactory, one can
achieve much more accurate results with= 1.2 or y = 1.3, see table 13 foy = 1.3.

Table 11 shows the optimgl values and the corresponding minimiur-norm distance
between f(8) and the true parametef. Table 12 contains thg values given by the
Morozov principle and their corresponding relatizé-norm errors. Comparing table 11
with table 12, we can see that tifiés obtained by the Morozov principle are about 2-5
times larger than optimal ones but the correspondifgnorm errors are quite close, just
about 1.3-1.5 times larger than optiniad-norm errors.

The convergence of the Newton’s method for finding the solutions of the Morozov
equations withy = 1.5 is shown in table 14. One can see that it takes usually just 3-5
iterations to obtain the Morozov’s solutions with very good accuracy.

Finally, table 15 shows the iteration numbers for the convergence of the two-parameter
algorithm to the solution of the corresponding damped Morozov equation for different
parametersy (cf tables 9—13), with a very rough initial guegs = 0.1. Note that the
algorithm performs very well for a very large range)of
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Table 16. Exact and predicted observation errors for example 1.

$ 0.01 0.03 0.05 0.07 0.1

) 707x10% 212x102 353x102 495x102 7.07x10°2
2/m@0) 931x10°% 276x102 455x102 634x102 9.03x 10?2

Table 17. Exact and predicted observation errors for example 2.

$ 0.01 0.03 0.05 0.07 0.1

B 050x 102 150x102 250x102 350x102 500x 102
2/m@0) 169x102 201x102 253x102 319x102 437x10?

Table 18. Exact and predicted observation errors for example 3.

H 0.01 0.03 0.05 0.07 0.1

) 071x 102 212x102 353x102 495x102 7.07x10°?2
2y/m@0 180x102 189x102 1.99x102 209x102 225x10°?2

Table 19. g-values given by Morozov equatior (= oo) with estimateds for example 1.

H 0.01 0.03 0.05 0.07 0.1

Bopt 0.277x107° 0990x 1075 0.172x 10* 0.260x 107*  0.434x107*
By  0678x10°° 0.273x10% 0501x10* 0736x10* 1120x10°*

5. Numerical predictions of observation errors

All the numerical results of the last section assumed the availability of exact observation
errorss in the exact or damped Morozov equation. However, in practical applications, the
noise level may not be accessible. We now report some numerical results on the performance
of the observation error prediction algorithm proposed in section 3.4.

The examples considered here are the same three examples as those chosen in section 4.
Tables 16—18 give the exact observation errors and the predicted ones using the observation
error prediction algorithm. The numerical methods and the quadrature rules are the same
as those used in section 4. The parameteequired in the algorithm is taken to be01
in all three examples, and the initigy is chosen to be 1G for example 1, 10* for
example 2, and .Q for example 3 respectively. For example 2, we have iterated step (1)
of the algorithm twice (see remark 3.1) while only once for examples 1 and 3. From these
three examples, we can see that our observation error prediction algorithm appears to work
well. The predicted observation errors are all of the same magnitudes as the exact ones.

One may adjust the parameterand even the factor 2 in the predicted observation error
formula 2,/m(0) to obtain much better results. However, these choices must be based on
programmers’ experience for a concrete applied problem.

Tables 19-21 give thg8-values obtained by the Morozov principle with the exact
observation erroé replaced by the estimated erroy/#:(0). We observe that the estimated
B-values are all of the same order as the optimal ones. We have also run the quasi-Newton
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Table 20. -values given by Morozov equatiorny (= oo) with estimateds for example 2.

$ 0.01 0.03 0.05 0.07 0.1

Bopt 0.121x 107> 0.381x 107> 0.685x 10> 0983x 107> 0.139x 10°*
Bu  0.250x 107° 0285x 10°° 0.335x10° 0.394x10° 0510x 10°°

Table 21. B-values given by Morozov equationy (= 1.3) with estimateds for example 3.

$ 0.01 0.03 0.05 0.07 0.1

Bopt 0.430x10™* 0134x 103 0230x 103 0.333x10° 0.502x 1073
By 1409x 104 0.151x 103 0.164x10° 0176x103 0.196x 1073

Table 22. Optimal errors and the errors obtained using estimgtedilues from Morozov
equation.

8 0.01 0.03 0.05 0.07 0.1

Optimal error  5012x 1073 1.476x 1072 2452x 1072 3422x 1072 4.864x 1072
Morozov error  7145x 1073 1.479x 1072 2.476x 1072 3.509x 1072 5.073x 1072

iteration and two-parameter algorithm whénis replaced by 2/m(0), the convergence
behaviours of the two algorithms are exactly the same as in the case with theSgsact

we do not present those numerical results here. From tables 19-21, we find that the results
seem a bit worse for example 3. However, if we compare their corresporddimgprm

errors, there are no essential differences, see table 22 fat%merm errors obtained by

using optimalg-values and the estimatgttvalues from Morozov equatiory (= 1.3) with

the exact observation errérreplaced by 2/m(0).
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