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Abstract

Output least-squares formulation with Tikhonov regularization is one of the
most frequently used and reliable methods for parameter identification in PDEs.
As the discretized optimization system of the formulation is nonlinear, ill-
conditioned, and constrained with some PDEs, its numerical solution is very
time-consuming and often unstable. In this paper, we present a multilevel model
correction method, which aims at solving the general nonlinear output least-
squares optimization system in an efficient and robust manner. The multilevel
method is conducted iteratively so that larger part of its computations is done on
a sequence of nested coarse meshes defined on the concerned physical domain.
The key ingredient of the method is to update the output least-squares objective
functional on each coarse mesh by using the most updated information of the
identifying parameter from a finer mesh. Numerical experiments are provided
to demonstrate the robustness and efficiency of the method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Parameter identification in PDEs arises widely in scientific and engineering applications. For
example, in a heat conductive system, it may be necessary to reconstruct different model
parameters, such as diffusivity, radiativity, source term, heat flux and initial temperature, from
the measurement of temperature in a subregion of the physical domain within a certain time
interval. For more details about the physical background of parameter identification problems,
we refer to [3, 6, 8, 9, 12, 20, 25] and the references therein.

Due to the nonlinear and ill-posed nature of parameter identification problems, the output
least-squares formulation with Tikhonov regularization has been regarded as one of the most
effective and reliable approaches. The least-squares formulation transforms an originally
ill-posed parameter identification problem into a regularized optimization system. However,
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the resulting optimization systems are constrained with some PDEs, and are often highly
nonlinear and numerically ill-conditioned. How to solve these nonlinear optimization systems
efficiently remains challenging. Most existing algorithms involve the alternative solutions of
a direct PDE and its adjoint at each iteration, namely the direct solver computes the model
state with the current estimated parameter while the adjoint solver seeks an adjoint variable
based on the previous model state to update the identifying parameter. Thus the computational
complexity of parameter identification increases rapidly with the size of the discrete system,
and a practical numerical identification method should be able to significantly reduce the
complexity of the identification process.

Numerical solutions of the output least-squares systems with Tikhonov regularization
have drawn increasing attention in the last two decades, and various identification algorithms
have been proposed and implemented. In principle, these methods can be categorized into the
following classes:

(1) Gradient-type methods [17, 18], which solve the concerned PDE and its adjoint equation
to get the gradient direction for the identifying parameter and update the parameter
iteratively along the gradient direction.

(2) The nonlinear conjugate gradient method [8, 22, 24], which solves the concerned PDE
and its adjoint equation to get the gradient direction for the parameter, then modifies this
gradient to get its conjugate gradient by some nonlinear conjugate gradient schemes, and
updates the parameter iteratively along the conjugate gradient direction.

(3) The Newton or quasi-Newton method, such as the L-BFGS method [10, 14, 23], which
approximates the Hessian of the nonlinear functional based on its gradient knowledge.

(4) The Lagrangian or augmented Lagrangian method [3, 6, 13, 18], which introduces
a Lagrangian or augmented Lagrangian functional, and then updates iteratively the
parameter, the solution of the PDE system and the Lagrangian multiplier simultaneously
or alternatively.

In spite of the rich literature on numerical methods for inverse problems in PDEs, fast
and robust solvers are rare. All the traditional methods mentioned in the four classes above
are conducted at only one level of mesh, which limits the feasibility of the methods in the
case of large-scale discrete systems. Taking into consideration just one solution for the direct
and adjoint PDE at each iteration, the computational cost of the entire identifying process can
already be formidable in large-scale applications.

In this paper, we propose a multilevel model correction (MMC) method for solving the
output least-squares Tikhonov regularized optimization systems based on the finite element
discretization. As will be seen, the MMC method is efficient and robust in terms of
computational complexity for numerical identification of model parameters in PDEs; see
some typical model problems in section 3. MMC is a nonlinear multigrid-type algorithm, and
it aims at reducing the computational cost greatly by taking advantage of solving the concerned
PDE and its adjoint on a sequence of nested coarser meshes, and ensures convergence in the
finite element framework by updating the model functional on each coarse mesh by adding a
model correction term, using the most updated information of the identifying parameter from a
finer mesh. For updating the current estimated parameter on each coarse mesh, a gradient-type
method with inexact line search using a simple backtracking rule is used, which will be shown
numerically to have a good smoothing property in section 5.

Given a nested sequence of finite element spaces associated with a sequence of nested
meshes on the physical domain, we can formulate an output least-squares minimization
model on each mesh. It must be emphasized that directly applying the multigrid idea
to these models may not lead to the convergence of the resulting method since different
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regularization parameters are required on different levels of meshes in order to achieve
reasonable approximation of the parameter, but the choice of regularization parameters is
difficult itself. To avoid choosing regularization parameters at different levels of meshes, a
crucial model correction term is constructed at each level, recursively from the finest mesh to
the coarsest. The main idea behind this correction term is to implicitly adjust the regularization
term in the cost functional at each coarse mesh such that the restriction of the exact parameter
at the finer mesh onto the current coarse one is just the exact parameter of the cost functional
on the coarse grid. Then we employ the nonlinear multigrid idea to accelerate the identifying
process by computing corrections to the parameter through solving those modified coarse grid
models. In this manner, most computations of the MMC method are done on coarser meshes,
where the PDE-constrained minimization problem can be solved more efficiently because the
computational cost for the solution of the direct and adjoint PDEs is much cheaper than that at
the finest mesh. Through the information exchange between the coarse and fine meshes, the
convergence of the algorithm speeds up tremendously. As one will see, the MMC algorithm
can be applied to various identification problems defined on general physical domains. In fact,
MMC can be viewed as a general framework to construct fast solvers for general parameter
identifications.

Nonlinear multigrid methods originate from the full approximation scheme (FAS) method,
which was initiated by Brandt from his ingenious dual viewpoint in his seminal paper [5]
and used to solve efficiently some forward well-posed problems such as nonlinear elliptic
equations. The main idea of multigrid methods is to accelerate the convergence speed of the
basic relaxation iteration by computing corrections to the solution on coarser grids, which
speeds up the computation significantly. In the last three decades, motivated by the need for
fast and efficient algorithms for large-scale problems, nonlinear multigrid methods have been
widely used for the numerical solution of nonlinear PDEs.

Owing to the computational advantages of multigrid methods, a lot of efforts have been
made in recent years to apply multigrid methods for solving inverse problems in one way or
another; see, e.g., [1, 2, 4, 15, 16, 19, 21, 26]. One popular way was to first derive the KKT
optimal condition for the constrained minimization problem, then apply the multigrid methods
to the KKT optimality system or its linearized system. But for the optimality system, it is
hard to construct effective smoothing algorithms as well as to select reasonable regularization
parameters on all the coarse grids [1, 2, 4, 15, 16, 19]. An effective smoother was proposed
in [19] for some linear inverse problems, then extended to some nonlinear inverse problems
in [15, 16]. Elegant convergence and regularization theories were also established for such
smoothers [15, 16, 19]. But in order to achieve good smoothing effects, one may have to
do some careful estimates and tunings on certain parameters, which can be very hard in
applications. Different from this approach, Yamamoto and Zou [26] were the first to propose
a multilevel type method using multigrid ideas to solve the least-squares Tikhonov regularized
minimization system directly, for which the classical gradient or nonlinear conjugate gradient
method turns out to be effective smoothers. More recently, Lewis and Nash [21] extended
Brandt’s FAS method in the optimization setting and proposed an optimization-based multigrid
method for solving optimal control problems associated with PDEs.

Motivated by the dual viewpoint from [5], the idea of multigrid methods for parameter
identifications based on the finite element discretization in [26], and the optimization-based
multigrid approach in [21], we shall propose a nonlinear multigrid-like method for solving the
output least-squares Tikhonov regularized minimization systems directly in this paper, namely
the MMC method introduced earlier. We will formulate the method in a general and systematic
manner so that readers can easily apply it to many other inverse problems. Compared with
[26], a main difference is to incorporate some appropriate model correction terms into the cost
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functionals at different levels of grids based on the finite element discretization. We point out
that it is much more tricky and technical to formulate appropriate model correction terms in
the finite element spaces than in the ordinary Euclidean spaces [21].

The rest of the paper is organized as follows. In section 2 we first give an abstract
formulation for general parameter identification problems, then introduce an abstract MMC
algorithm and prove an important property for the algorithm. In section 3 some typical model
problems will be presented. In section 4, we will formulate the PDE-constrained minimization
systems, describe the finite element discretization, and derive the gradient formulae for the
cost functionals for some typical parameter identifications in elliptic and parabolic systems.
Numerical experiments are presented to illustrate the efficiency and robustness of the new
approach in section 5.

2. General framework of the MMC method

2.1. Abstract framework of parameter identifications

Consider a general parameter identification problem which is described by the relation, often
a partial differential equation,

L(g,u) =0 (2.1)
where L is a partial differential operator, depending on a parameter ¢ from a parameter space Q
and the solution u in a state space V; see section 4 for some typical models. We will consider
both V and Q to be Hilbert spaces with inner products (-, -)y and (-, )¢, respectively. Let
K C Q be aclosed convex subset of Q and play the role of an admissible parameter set. The
parameter identification problem can be both space- and time-dependent.

The objective of a parameter identification procedure is to choose a parameter g* € K
such that the solution u of (2.1) associated with g* well matches the measured state. In general,
the measured data for the state # may be corrupted by measurement errors. The noisy data
with noise level § will be denoted by z°. In practice, we may only measure the state u or its
gradient in a small observable subregion w of €2. For the time-dependent model, measurement
may be further restricted within a certain time period /, say I = [t,%,]. Let Z,, Z,; be
the measurement sets for the time-independent and -dependent models, or more precisely the
restrictions of some Hilbert spaces on w and w x I, respectively. When no confusion is caused,
we shall drop the subscript and simply write Z, instead of Z,, or Z,, ;. Then we see that z° € Z.

Parameter identifications are in general an ill-posed problem. It might have no solutions
or have multiple solutions. Even if existence and uniqueness are assured, the parameter might
not depend continuously on the measured data, i.e., slight changes in the observed data may
lead to significant changes in the parameter. Considering the inherent measurement errors in
the observation process, this absence of continuous dependence is quite undesirable from a
practical point of view.

To transform the ill-posed parameter identification problem into a nearby stabilized one
and make a numerical solution feasible, we shall consider the most frequently used and most
reliable methodology which formulates the parameter identification problem into the output
least-squares system along with some Tikhonov regularization:

min J(q) = 3u(q) = 2’llz + ¥ N (@), 2.2)

where u = u(q) : K — V solves equation (2.1), N(q) : @ — R!is aregularization term and
y is a regularization parameter. For later use, we introduce another Hilbert space O, Q C Q,
which has a similar algebraic structure to that of O except for a weaker norm and will be used
in the model correction step.
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Assume that u(g) and N(q) are Gateaux differentiable, and u'(g)p and N'(g) p are the
derivatives of u(g) and N (¢) at g indirection p € Q, respectively. Then the Gateaux derivative
of J at ¢ in direction p can be written as

J(@p =@ —2,u(@pz+yN(@p Vp e Q. (2.3)

Then a solution ¢ to the minimization problem (2.2) can be characterized as a solution to the
first-order variational problem:

J(@)p=0 Vpe Q. 24

To numerically solve the optimization problem (2.2) with constraint (2.1), discretizations
of both the state space and the parameter space should be made first. We shall make use of a
sequence of nested finite-dimensional spaces to construct an efficient algorithm.
N ~ N N N o .
Assume that {Qhk }k=0’ {Qhk }k=0’ {th }k=0 and {th }k=0 are nested finite dimensional

subspaces of Q, O, Z and V, respectively, such that

Ony C Oy -+- C Ony = O, Ony C Oy -+ C Oy = O,

(2.5)
Zyy CZy, - CZpy =2y, Vie C Vi - C Vi = Vi,

and Q;, C Qhk (0 <k < N),and L, and N, are some approximations of operators L and
N based on the spaces O, and Vj, .

Then we can approximate the problem (2.2) and (2.1) at the kth level (0 < k < N) as
follows:

min J, (q"k) = %”th (qhk) -2 ||22;,k + ¥ Niy (qhk)= (2.6)

Gy €Kiy

where K, = K N Qy,, and uy, € Vj, solves
Ly, (qnes un,) = 0. 2.7

Similarly to (2.3), we can obtain the Gateaux derivative of J,, at g;, in direction p;, € Qy, as
follows:

Iy an) pine = (un,(an,) — Z, uy, (‘]hk)Phk)th +y N, (qn) Pi VYpu, € On,- (2.8)

Let qb;lk € Opn, (1 <1 < My) be a set of basis functions of @, (1 < k < N), where My is
the dimension of Qj,. For convenience, starting from now on, for any Gateaux differentiable
functional F (qhk) on Qj,, we may often denote by F /(q;,k) a function in Qj,, which is a linear
combination of the basis functions ¢;lk with its coefficients being F /(qhk)d);lk’ namely

My

F’(C]hk) 2 Z (F/(Qhk)(ﬁ;',k)(bflk.

i=1
Next, we introduce two related but different restriction operators. For any two neighboring

subspaces Qj, and Qy, ,, the first restriction operator I,f' k‘;l : Qp, —> Qp,, should have the
ability of approximating the fine resolution parameter well at the coarse level and satisfies

I:kk_ll(hk C Ky, ,, (2.9)

which prevents the restricted fine resolution parameter from going beyond the admissible
parameter set at the coarse level. The second restriction operator / Zi_] :0p —> Op, 152
projection operator satisfying for any g, € Qy,:

o
(T ), = @ du)g, . Ybu € Qnr 2.10)

k
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The operator is well defined since Q;, C o .- Finally, we introduce a prolongation operator

I ::_l’ which will be a natural injection operator from Qj, , to Qj, by using their nestedness
and has the following property:

(T e dn) g, = (B B '0n)g,  Yons € Qi On, € On. (2.11)

These loosely defined operators give us the freedom to devise a number of variants under the
MMC framework. Some concrete examples will be given in section 4.

The discretizations in (2.6) and (2.7) usually have a certain stabilizing effect. However,
to obtain high quality reconstruction of the model parameter at the finest level (k = N), the
dimension of the discretized state and parameter spaces grows quickly from coarse to fine
grids; thus the discrete problem inherits more and more instability properties from the original
infinite dimensional ill-posed problems. These phenomena make the corresponding discrete
problem still nonlinear and numerically ill-conditioned and thus involve more computational
complexity for solving the problem at the finest level.

To escape the dilemma of either sacrificing the accuracy of the parameter or introducing
more computations, we shall solve the discrete problems at different levels in an appropriate
way. The crux of the matter is to solve the coarse level problems to recover quickly the
profile of the parameter and to leave the details of the parameter to be achieved by the
fine level solvers. This is the original idea of [26]. In [26], however, the fixed constant
regularization parameters y at all levels may lead to poor performance in some cases. One
should choose different regularization parameters y; in (2.6) to obtain a numerically reasonable
approximation to the true parameter at different levels, but that is very hard. A more convenient
approach is to keep the regularization parameter from the finest level to be used at all other
levels, but update the cost functionals at coarser levels by adding an appropriate model
correction term such that the restriction of the exact fine grid parameter onto the coarse
one is still optimal at that grid. Therefore we can recover the parameter from coarse to
fine levels with better and finer resolution while still ensuring the convergence of the algorithm.
This is exactly what we are going to do next.

2.2. Dual viewpoint and model correction

Traditional linear multigrid methods, which deal with linear systems of equations, are hard
to naturally generalize to nonlinear settings. Brandt’s full approximation scheme (FAS) [5]
originating from a dual viewpoint is an alternative approach to directly apply the multigrid
idea for solving nonlinear PDEs.

In the design of nonlinear multigrid algorithms for optimization systems, apart from the
common ingredients of most multigrid algorithms, two crucial variations are to find a suitable
nonlinear smoothing method to smooth the errors and to devise a procedure for approximating
correction terms on coarser grids. Comparatively, the latter plays a more fundamental role.
The model correction step in our MMC algorithm is devised in light of Brandt’s dual viewpoint.

Now suppose that g;; is a minimizer at the Nth level and y is used as the regularization
parameter at all levels; then from (2.8) we have

Iy (ar,)oh, =0 forall ¢} € Qu, (1 <i<My). (2.12)

Consider the relative truncation error 7, , which is a residual function at the coarse level Qj,,
relative to the fine level Q. The coefficient of 7; with respect to py, , € Oy, , is defined
as follows:

‘C;lkN (thfl) = Jh/N—l (I/’]l/lli/v—lq;N)th*I - (izxq Jf;N (qilkN)’ thfl)QhN_] : (213)
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From (2.12), it shows that J; (q,;k ) vanishes, then together with the definition of 7 Z” we
N N N-1
see that the last term in (2.13) is zero. If it is required that the restricted parameter I}f’]’vvflq;f[v

is a minimizer at the coarse level, the first-order variational problem J; (th_]) Py, =0
should be modified on the coarse space Oy, , as
Ji;N,] (th—l)th—l - I/TN (th—l) =0 Vth—l € Qth . (214)

In other words, 7, can be regarded as the correction to the first-order variational problem for
the original cost functional J;, , on the coarse grid so that the solution of the coarse level

model will be the fine resolution restricted onto the coarse level, i.e., [ :A’,V_lq,fN =4,
Clearly one cannot compute 7 without knowledge of g; ., but we do have an
approximation to g, , namely the current estimated parameter g,,. Using this in

equation (2.13), we get an approximation of 7 (ps,_,):

Thy (th—l) = Jéwfl(ll:l:qq’w)th—l - (izx—l‘]/’iN (th)’ ph”")Qth' (2.15)

Now we are on a crucial step toward our goal. We can construct a modified cost functional
Jny_, at the coarse level by replacing 7,7 with 7, in equation (2.14) such that

Tnv(@ny) Py = Tny (@i Pry_y — Thw (Phy_) VDhy ., € Oy - (2.16)
From relations (2.15) and (2.16), we see that once we obtain the exact solution q,fN at the
fine level, then J;;N (q;fN) will vanish; thus the solution for the modified coarse level model

functional J}, , is just the restriction of the fine solution on the coarse grid, or /, :I(/V—lq;;N'

To derive the explicit formula of 7j,,_, from (2.16), the reverse process of differentiation
indicates 7, should be the sum of J,, , and a linear functional of g, , on Q;, ,. By the
Riesz representation theorem, the functional can be written as

—(Whyis i) g, (2.17)
where wy,,,_, € Op,_, is determined in such a way that
(whN’l’ th’l)leN,l = ThN (thfl) Vth—l € QhN—l' (218)

Functional (2.17) is just what we called the model correction term. Therefore, we can write
Jhy_, in the following form:

th—I (th—I) = %”uth (th—l) - Za ”2th7I + yNhN—I (th—I) - (whN—l s q/’lel)QhNil . (219)

For uniform notation, we introduce a dummy function w,, = 0 € Qj, and rewrite J;,,
the same as 7, , as follows:

Tin (@ny) = iy (any) = 3|ty (gny) — 2° ||2th Y Niy (@) = (Wnys dy) g, (2.20)
then the functional 7, , (Qthu) in (2.19) changes to
T @ny-) = 5[ (@ny-) = 2° ||22,le1 + ¥ Ny (@y-1)

— (T W+ Wh i) g, - (2.21)

The rest of the work is to generalize the idea to even coarser levels and construct the
modified cost functionals 7, , (qh,H), vy Ty (qho). The derivations are almost the same
as for deriving (2.21). Suppose we have already obtained the modified cost functional Jj, ,
which can be written as follows:

N/ (qhk) = Jn, (qhk) = % ” Uy (qhk) -7 sz’u +y Ny, (q/’lk) - (whk g qhk)QhA ’ (2.22)
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Then its natural restriction at the next coarser mesh takes the form
~ 1 S112 5h
N/ (qhk—]) =3 ||uhk—] (qhk—]) -2 ||th—l + YN, (qhk—]) - (Ihi,l Why qhk—])Qhk71 > (2.23)

while the final corrected cost functional at the coarse mesh is

jhk—l (qhk—]) = % ”uhkq (qhk—]) - Zé ”22,%71 + yNhk—l (qhk—]) - (722_1 Why + Wiy, qhk—l)Qhk71 ’
(2.24)

where wy, | is determined in the same way as for wy, , in (2.18) using t5,. Therefore, the
model correction terms will be constructed in such a way recursively for each cost functional
at each coarse grid.

2.3. Abstract multilevel model correction algorithm

With the above preparations, we are now ready to propose the multilevel model correction
method. The main concern of the MMC algorithm is to solve the discrete minimization system
(2.6) at the finest space O, by making use of solvers on the auxiliary coarser spaces Qj, for
0<k<N.

First, we consider a crucial ingredient of the MMC method, its smoothing step. The
smoothing should be able to dampen the high frequency components in the error function
very fast. We propose a gradient-based optimization method using inexact line search for the
discrete smoother. Other types of smoothing methods may also be used, such as nonlinear
conjugate gradient methods.

Smoothing algorithm

Procedure : Smooth(Jy,, qn, . nk)
for i =1tony
Solve (2.7) for up, := uy, (qhk);
Compute the functional value Jy, (g, );
Compute the gradient direction J; (gy, );
Set initial step length, o := «p;
Loop:
an, = qn, — T, (qn,):
Solve (2.7) for fip, := up, (E]hk);
Compute the functional value Jy, (G, );
if T, (Gn) < T (an.)
update g;, := Gn,; break;
else
o=/
end if
end loop
end for
return updated g, ;
end Procedure.
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This smoothing procedure can be explained as follows. We first solve the direct PDE (2.7)
to obtain the state variable uy, (qhk). With knowledge of the state variable, measured data and
current iterate of parameter, we can obtain the gradient direction 7, (qhk) by computing the
Gateaux gradients of the cost functional along all directions through some explicit formulae,
which will depend on different inverse problems. The step size of line search is determined
by a simple backtracking criterion, i.e., reducing the step size by a half if the cost functional is
not sufficiently decreased or the step size is overemphasized. The initial step size « is chosen
such that the magnitude of o || j;:k (q;,k) || o is of the same order as that of ||qhk || o This is to
make the magnitude of modification of the parameter comparable to that of the current iterate.

Now, we present the abstract multi-level model correction MMC algorithm as follows:

MMC algorithm

. (0)
Procedure : MMC (7, n, )
ifk =0,
1. Coarse solver:
1 0
q,(m) = Smooth(jho, q}(lo), no);
else
2. Pre-smoothing:
1 . _ S (0) .
qp, = mooth((]hk, G, ,nk),
3. Compute the model correction term:
Solve (2.7) for uy) := uy, (q;):
Compute the gradient direction 7 (q,ii));

W gD,
Gny =T 4,

Solve (2.7) for u;llk)_l =Up,_, (qéiil);
Compute 1, (4}, ,) = 7, (" )0%, . — (T2, 75, (ai?). 4, ).
as in (2.15);

Construct Jj, , by computing wy, , from 7, as in (2.18);

1

4. Recursive iteration:
2) . 1) .
e, = MMC(jhk—l ’ qhk—l)’

5. Coarse grid correction:

) h (ON
Chy =y, — Ihkkflqhk ?

6. Line search:

2 . (1) hi— .
Qhk = Qhk +a1h: lehk—l’

7. Post-smoothing (optional):
3 ._ S h 2 . 3).
g, = Smooth(Jk, ;. my); return g,”;

End Procedure.

Note that the above MMC algorithm works in a recursive way due to the recursive
definition of the model correction term. The MMC algorithm can be described in detail as
follows.
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(1) Coarsest grid approximate solver. If it is on the coarsest grid, i.e., k = 0, approximately
solve the coarsest grid problem

min jh(] (qho) S.t. »Cho (qhm th) =0. (2.25)

g €Kng

directly with initial guess ‘1/52) to get q}(,(l)) and return.
(2) Pre-smoothing. If it is not on the coarsest grid, i.e., k # 0, apply the smoothing algorithm
to the optimization system on the grid with the initial guess q,(l(k)) to get q,(,i in ny iterations.
(3) Model correction. First, we compute the gradient directions 7, (¢;’) and J;,_ (q5.’,) at
fine and coarse levels, respectively. We have introduced the general principle to recover
wp, , in the previous subsection. Now let us explain in detail the computational aspect.
If we expand

M- )
whk—l = Z cj(’bi’ik,l
j=1
in Qj,_,, we need to find a way to determine the coefficients ¢; (1 < i < My_;). From
(2.18) and (2.15), we have for each ¢, € Q,_, that

M-
j i 7 1 i 7h (1 i
( Z de)ljqu ’ ¢]l’lkl> ) - ﬂk—l (Qhk—l)d);lk—l - (Ih:—l‘7h/l< (qhk )’ ¢;lk71)éhk71
hi—1

j=1
or in matrix form
We=5>b (2.26)

where W is an My_; x My_; matrix and ¢, b € RM1 with their entries given by
; . T
Wij = (¢hk—l ) ¢;1k*1)lek,l ) c= (clv C2yenny ch—l) )
_ A () \ i 7h ;o () i
b; = ‘7’11{71 (qhk—l)¢;lk—] - (Ih:qjhk (qhk ), ¢}llk—l)Qhk_l .

Note that there are some techniques for evaluation of these terms. First, the matrix W are
symmetric and we can further reduce it into a diagonal matrix by using the mass lumping
scheme in the finite element setting. Next, we can compute jl’:k—l (q,ﬁlil)qﬁj‘lkil through
some existing formula because the gradient formulae for Jj, , and J,, are similar in
structure, and the formula of 7j,, are supposed to be able to be derived explicitly. From
the definition of 7 Ziil in (2.10), we see that

(izt—] jl’:k (q;l/{))’ ¢2k—l)Qhk71 = (‘7h/k (qlgi))’ d)}l:lk—l)éhk71 ‘

Since Qj, , C Qy,, we know ¢;zk,, € Qp,_, is a linear combination of the basis functions

of Qy,. Hence the computation for (7, (). ¢}, ) 5, s trivial for we have obtained
- k—1

j};k (q,(li) )‘b;u (1 <i < My) beforehand, which facilitates the computation of the second
termin b;.
4) M ull'ilevel recursio.n. Apply the MMC algorithm recursively with initial guess q,iiil to the
modified coarse grid problem,
min g7hk7] (qhk—l) S.t. ﬁhk—l (Qhk,l N thil) =0, (2.27)
Gy €Ky

to obtain q,(zle. Here 7, , (qhH) acts as the role played on the kth level of grid by

\7hk (Qhk ) M
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(5) Coarse level error correction. Compute
Ty (2 1
en, = Ih: ](qh(k: — q,(lk:). (2.28)
(6) Line search. Perform a line search to obtain
ay) = qi) +aey,. (2.29)

We use the simple backtracking criterion to determine the step size as defined by the
previous smoothing procedure. There are chances that the updated parameter jumps
outside the admissible parameter set, but we can use some safeguard schemes as penalty
or barrier to pull back the parameter.

(7) Post-smoothing (optional). Apply m; iterations of the smoothing algorithm to the k-level
problem with the current guess q,(lf) to get q,S).

Due to the general setting of the above MMC method, we can see that it can be applied
to solve general inverse problems. First, one may formulate the concerned inverse problem
into a constrained minimization problem as (2.2). Then applying some discretization scheme
to the original problem yields basic fine and coarse level models as (2.7) and (2.6). With
some explicit gradient formulae of the fine and coarse grid cost functionals, we obtain the
modified cost functional on each coarse grid. Therefore, our approach provides a systematic
way to fit many existing inverse problems into the multilevel model correction algorithm. We
will show in section 4 by some examples to describe how to apply our approach to general
parameter identification problems in elliptic and parabolic systems when the measurement of
state variable or its gradient is available.

Next, we present an important property of the MMC algorithm.

Theorem 2.1. [f the current estimated parameter qLN is a critical point of the functional J,

over Qp,, then q}f;}l, generated by one cycle of the MMC algorithm, is still a critical point.

Proof. Suppose that g, = q}lN is a critical point of the functional Jj, over the finest space

Qh,; thus jéN (th) = 0. Then at the next coarse level, by the definition of the MMC
algorithm and a simple calculation, we have

‘-7}:1\/,1 (I:,C/_]th)th4 = j}:N,l (I:,i,v_,th)Pthl - (whN—l ’ thil)Q"N—l

= j]’:N—l ([f}llz\}/\,f]th)thfl - ‘7/1//\/71 (I/”IlllNN—lth)th*I + (izxq‘ﬂN (QhN)’ thfl)QhN
=0

for all pn,_, € Qn,_,. This indicates that I:;C/qth is a critical point for Jj,_, (th_l) on the
coarser space (O, ,. Hence from the error correction step (2.28) in the MMC algorithm, there
is no extra error correction introduced, i.e., ¢;, = 0. By the recursive definition of MMC
iterations, MMC will keep ¢;,,, unchanged after one cycle. (]

3. Some typical parameter identification problems

In this section we present some typical examples of parameter identification problems in
elliptic and parabolic systems. The weak forms of these PDEs will be given, which are
needed later in deriving the explicit formulae for evaluating the Gateaux derivatives of the
corresponding output least-squares functionals. All of these identification problems can be
solved within the framework of the proposed MMC algorithm.

Our aim is to identify the general parameters by observing the state u(x) or u(x, t), in a
subregion or within a certain time interval, of a physical process governed by the following
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elliptic or parabolic PDEs:
=V - (a@ax)Vux)) +b(x)u(x) = f(x) in 3.1)

%u(x, t)— V- -(ax)Vu(x,t)) +b(x,tH)u(x,t) = f(x,1) in Qx(0,7), (3.2)

with the homogeneous Dirichlet boundary condition (assumed for the sake of exposition) and
the initial value condition u(x, 0) = up(x) given. Here Q2 is an open bounded domain in
R (d = 1,2 or 3) with a boundary I' consisting of two parts ['; and I',, and @, b and f in
(3.1)—(3.2) are assumed to ensure that the forward problem is well-posed, e.g., a, b € L*™°(2)
and a(x) > ap > 0,b(x) > by > 0 for x € Q. We shall use ¢g(x) or g(x, t) to denote the
parameter which is to be identified. Below are some typical parameter identification problems:

(1) Identify the diffusivity g(x) = a(x) in (3.1);

(2) Identify the radiativity g(x) = b(x) in (3.1);

(3) Identify the source term g(x) = f(x) in (3.1);

(4) Identify the diffusivity ¢(x) = a(x) in (3.2);

(5) Identify the radiativity g (x, t) = b(x, t) in (3.2);

(6) Identify the source term ¢ (x,t) = f(x, ) in (3.2);

(7) Identify the flux g(x) = a(x)g—‘rt(x) onI';in(3.1), withu = 0on I'y;

(8) Identify the coefficient ¢(x) in the Robin boundary condition a(x)g—fl(x) +gXu(x) =
g(x)onTin (3.1);

(9) Identify the initial temperature g (x) = uo(x) in (3.2).

To derive the variational forms associated with (3.1)—(3.2), we use (-, -), (-, -)r and (-, ),
to denote the scalar product of space L*($2), L>(I") and L?(I'y) respectively, and Hrlz(Q) to
be the subspace of H'(2) with functions vanishing on I';. Then the weak formulation for
(3.1) reads as Find u € V such that

A(q;u, ¢) = F(q; ¢) Vg eV, (3.3)
while the weak form for (3.2) is Find u(-, t) € V such that u(-, 0) = uq in 2 and
(ur, §) + Alq; u, ) = F(q; ¢) VopeV 3.4

fora.e. t € (0, T), where A(g; u, v) is a bilinear form with respect to # and v, while F(g; v)
is a linear functional of v, and V' is an appropriate test space; see table 1 for the detailed forms
of A, F and V. If we use u'(g) p to denote the Gateaux derivative of u(g) for direction ¢, then
Gateaux derivatives of A and F for any direction p can be computed as follows:

A(qg;u,v)p = A/q(p;u,v)+A(q;u/(q)p, V), (3.5)
F'(g;v)p = Fy(p;v), 3.6)

where A/q (p;u,¢)and F, q/ (p; ¢) have explicit forms in terms p since g appears either linearly
in A and F or does not appear at all. For example, with problem 1 we have

A'(g;u, v)p = (pVu, Vv) + (qVu'(q)p, Vv) + (bu'(q) p, v), F'(g;v)p =0.

For all these identification problems, one can work out some explicit formulae to evaluate
the Gateaux derivatives of the output least-squares Tikhonov regularized functional (see
section 4).
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Table 1. Bilinear forms, right-hand functionals and test spaces for problems 1-9.

A(q: u,v) F(q;v) 14
1 (qVu, Vo) + (bu, v) (fv) Hy ()
2 (aVu, Vv) + (qu,v) (fiv) HO] ()
3 (aVu, Vo) + (bu, v) (q,v) Hy ()
4 (qVu, Vv) + (bu, v) (f,v) HO1 (£2)
5  (aVu, Vv) + (qu, v) (fiv) Hj ()
6 (aVu,Vv)+ (bu,v) (4. v) Hy ()
7 (@Vu, Vo) + (bu, v) (o) +(g,v)r,  HL(Q)
8 (aVu,Vv)+ (bu,v) + (qu,v)r (f,v)+ (g, v)r H'(Q)
9  (aVu,v)+ (bu,v) (fiv) HO] ()

4. MMC algorithm for parameter identifications

We will discuss in this section how to apply the proposed MMC method to the first four
parameter identification problems discussed in section 3. The emphasis will be on how to
formulate the inverse problems as nonlinear constrained minimization problems, how to yield
discretized problems based on finite element discritizations and how to derive the explicit
formulae for the Gateaux derivatives of the discrete cost functionals on finite element spaces.
All the rest of the work will follow the standard procedure as the abstract MMC algorithm.
As for the theoretical details behind this formulation, including the continuity of the discrete
cost functional, existence of minimizers and convergence analysis etc, we refer to [6, 17, 24]
and the references therein.

4.1. Notation

For the continuous problems, we define the following spaces corresponding to the abstract
ones in section 2.1:

V = Hj (), 0 =H'(Q), 0 =L*Q), Z, = L*(w), 4.1

where € is a polyhedral domain in R¢ and w is a subregion of Q.

Assume that we are given a nested set of shape regular triangulations {7 },’:':0 of domain
Q of simplicial elements [7], with T hiens being a refinement of T (0 <k < N—1)and
o is always assumed to be a union of some elements of 7° h (0 < k < N), denoted as Taf’k

N . . . .
O <k <<N). {H;,k } 4—o are continuous piecewise linear finite element spaces defined on
{T"}N_,, respectively, such that

Hho C th e C HhN = H,
and the corresponding restriction on w is denoted by
H(/),I’lg C Hw,h| - C Ha),hN = Hyph-

Let qb,‘;k, i =1,2,..., M be the basis functions on Hj, fork =0,1,..., N. We denote by
Ungy, the restriction of v, € Hj, onto H, p,, and define the discrete L? norm on Hy, or Hy p,
(0 <k < N)by

lonlo =", . @ PITI You, € H, 42)
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[onc o0 = 22 s [@ )T Vou, € Ho, (4.3)

where vy, | is the average of v over the element T and |T'| stands for the volume of 7.
Next, four discrete spaces corresponding to (2.5) are defined as follows:

Ve = Hp, OV, On, = Hp,, N O, On, = H,, N O, Zon, = Hopn N Zg,.
4.4)

To fully discretize the parabolic systems below, we also need the time discretization. To
do so, we divide the time interval (0, T') into M equally-spaced subintervals by using nodal
points

0="<t'<...<cM=7T

with t" = nt,7 = T/M. For a continuous mapping u : [0, 7] — L?*(Q2), we define
u" = u(-,nt) for 0 < n < M. For a given sequence {u"}ﬁ,”=O C L*(Q) we define the
difference quotient and the averaging function

- n
u — oy 1 t

ou" = ——, " = l/ u(t)de. 4.5)
T T Jone
The admissible parameter set is given by
K ={q€0;llqgllp <ocand 0 < a; < g(x) < ap a.e. in 2}, (4.6)
while the discrete counterpart for K is given by
Ky ={qn € On;0 < a1 < gi(x) Sar Vx € Q}. 4.7)

The regularization term can be taken as one of the following terms,
N(g) = / g% dx, /qu|2dx, or /\/|Vq|2+8dx(8 > 0), (4.8)
Q Q Q

which correspond to L2, H' or BV regularization and have the associated Gateaux derivatives
in direction p € Q as follows:

N/ _ Vq-Vp
(@p=2| gpdx, 2| Vqg-Vpdx or
Q Q

—dx.
Q+/IVql*+e

With the above preparations, we are now ready to present the formulations of the general
parameter identification problems in elliptic and parabolic systems and derive the explicit
formulae for the Gateaux derivatives to be used for the MMC method.

(4.9)

4.2. General parameter identification in elliptic systems

Let 7% be the observed data in w, then we can reformulate the first three parameter identification
problems (problems 1-3) in section 3 into the following form:

min J(q) = 3lluq) = 2’I7, + yN(@) (4.10)

subjectto g € K and u = u(g) € V satisfying

A(g; u,v) = F(q;v) YveV. 4.11)

We remark that the parameter identifications in problems 7 and 8 can be done basically in a
similar manner by replacing the two spaces Q and Q in (4.1) by some other Sobolev spaces
defined on the boundary or part of the boundary of €.
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Let A, and Fj, be some approximations of A and F, then the finite element discretized
optimization system can be stated as follows:

min Jy(g1) = Sluntan) = 2’117, , + v Nalan) 4.12)
h h

subject to g, € K, and uj, = uy(qy) € V, satisfying

An(gn; un, vi) = Fi(qn; vi) Vv, € V. (4.13)
The Gateaux gradient J; (¢x) pi of J;(gs) with respect to p;, € Q), has the form

Ji(qn) pr = (un(qn) — 2°, wy (@) p)z,, + v N (qn) pa- (4.14)

Note that we can compute N, (gx) pi according to (4.9) but the computation of u),(g;) py is
not that easy for the derivative along one direction amounts to one solution of the direct PDE.
In order to reduce the cost of evaluating J; (¢5) p», we now introduce an adjoint equation to
derive an explicit formula for J; (g;) pp.

Find w;,, € V}, such that

Anlan; vn, wi) = (i(qn) — 2°, vn)z,, Vo, € V. (4.15)
From (4.13), the Gateaux gradient u),(g;) pj of u,(gs) with respect to p;, satisfies
(An)y, (Pis uns vn) + Ap(qn; wy(qn) s vi) = (Fi)y, (Prs va) Yo, € Vi (4.16)

With the aid of (4.16) and (4.15), we derive the following explicit formula to evaluate the
Gateaux gradient J, (i) pi of Ju(q,) with respect to py:

Ji(qn) pn = (un(qn) — 2°, uy(qn) p)z,, + v Nj(qn) pa
= Au(qn; uy,(q) pu, wi) + ¥ N, (qn) ph
= —(An),, (pu: tn, wp) + (Fu),, (pa: wi) + v Ny (qn) pi- (4.17)

4.3. General parameter identification in parabolic systems

For the parabolic case, let 7% be the observed data in w x (t1, 12), and ¢ (x) be the parameter to
be identified; then the identification problems can be reformulated as

. L ("
min J(q) = —/ lu(q) — zsl13, dt + ¥ N(q) (4.18)
qgek 2 f
subjectto g € Kand u(-,t) = u(q)(-, t) € V satisfying u(-,0) = ug and for a.e. r € (0, T),
(us, v) + A(g; u,v) = F(gq; v) YveV. (4.19)

We remark that when the parameter ¢ is both space- and time-dependent, such as b(x, t)
and f(x, t) in problems 5 and 6 of section 3, the formulation is basically the same, with only
some natural modifications as done in, e.g., [24].

Now using the trapezoidal rule for the time integration and finite element method for
space discretization, we obtain the discretized optimization system from (4.18)—(4.19):

ny

min Ju(gn) = = 3 alluf — 25+ v Natan) (4.20)
qn€Ky 2 h SN Zo
n=n;
subject to g, € Kj and uj, = u}(qy) € V), satisfying u2 = Pyugand forn =1,2,..., M,

(0cudly, vn) + An(qn; un, vi) = Fu(qn; vn) Yo, €V, (4.21)
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where 1| = m7,tp = naT, fhy, = Mn, = 1/2, 0y, = 1 forny < n < ny, and P, is the
L?-projection from L?(Q2) onto V,, (see [17]).
The Gateaux gradient J; (¢5) pi of J;(g;) with respect to pj, has the form

n
Tn@)pn =1 Y waun(gn) — 2w, (@) pi)z,,, + v Ni(qn) p. (4.22)

Similarly to the elliptic case, we introduce an adjoint equation to reduce the cost of evaluating
J; (qn) pi: Find {wZ} such that w}f’ =0, w; € V4(0 < n < M) satisfying
— (0w}, va) + An(gn: vi. ) ") = Oupnunan) — 2°, vi)z,, Yoy, € Vj (4.23)

where 6, = 1 forny < n < n, and 6, = 0 otherwise.
Let ( ) (qn) pn be the Gateaux gradient of uj, at g, in a direction pj,; then we know from

(4.21) that ( h) (gn)pn € Vh satisfies
(3 [(ur) @) on]. va) + (An), (Pas uf va) + An(qn: () (@n) pas vr)
= (Fu),, (pn; v) Yo € V. (4.24)

With the aid of (4.24) and (4.23), we can derive an explicit formula for the Gateaux
gradient J; (¢;) pi of Ji,(gs) in direction py:

TiGapn =t ) (i (gn) = 22, (h) @pn),  + v Niy(@)pa

n=ni
M M

=7y —(cwy. () (@) pa) + 7> Anlgns (uh) (@) pus w) ")) + v Ni(gn) pa
n=1 n=1
M M

=7y (0[(u) (g pa]. wy ") Z (gn: () (@) prs wi™")) + ¥ N (@) P
n=1

=7 Z(Ah);,, (P wy ™) + 2 Z(Fh)q, priwy”") +y NG p. (425

n=1 n=1
Finally, we remark that the formulations and derivations above are almost the same for the
general parameter identification problem when the measured data Vz° are available, except
that the least-squares term in the cost functionals will be replaced by ||Vu(g) — Vz? ||22w in the

elliptic case and by fl? Vu(q) — Vz° ”2Zw dr in the parabolic case.

5. Numerical experiments

We implement the MMC algorithm using Matlab and test it with a number of parameter
identification problems such as the identification of diffusivity, radiativity or source term in
Linux Cluster Organon of ITSC at CUHK.

Consider the following elliptic and parabolic equations:

d d
—d—<61(X)—u(X)) = f(x), x € (0, D), (5.1)
X dx
] 0 ]
—u(x, 1) — —(q(X)—u(x, t)) = f(x,1), (x,1) €(0,1) x (0, 1) (5.2)
ot 0x dax

=V (qlx, y)Vux, y)) = f(x,y), (x,y) € (0, 1) x (0, 1), (5.3)
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d d

—d—< (x)—u(x)) =q(x), x € (0, 1), 5.4)
X dx

=V (a(x, y)Vu(x, y)) +q(x, yulx,y) = f(x,y), (x,y) €(0,1) x (0,1). (5.5)

We are interested in numerical identification of the parameter ¢ (x) or ¢ (x, y) in each equation
above. Without loss of generality, the boundary conditions are always assumed to be of
homogeneous Dirichlet type and the initial condition will be specified later.

The parameters involved in the MMC algorithm are chosen as follows: the lower and
upper bounds «; and «; in the constraint set K, are taken to be 0.5 and 20 in (5.1)—(5.3) and
(5.5), or —500 and 500 for the source term identification in equation (5.4). The initial guesses
qﬁ for all the test problems are taken to be identically equal to some constant in the entire
domain €2, which is certainly not a good initial guess. We add uniform random noise to the
observed data, and the random noise level § is taken to be 0.01, 0.05 or 0.1. For parabolic
cases, the measured data are only given at the terminal time. In the MMC algorithm, we apply
two pre-smoothing steps and no post-smoothing steps at each level, and ten optimization steps
at the coarsest level. A simple backtracking rule is used for the line search as described in
section 2. The errors shown will be the relative L?-norm error |lg; — qllo/|I¢llo, compared
with the exact parameter g.

For one-dimensional problems such as (5.1), (5.2) and (5.4), we divide the entire interval
(0, 1) into 160, 80, 40, 20, 10 and 5 equal subintervals respectively, which consist of six
levels of nested meshes, with the finest mesh size being 1/160 while the coarsest mesh size
is 1/5.

For two-dimensional problems such as (5.3) and (5.5), we divide the domain (0, 1) x (0, 1)
into 64 x 64,32 x 32,16 x 16,8 x 8 and 4 x 4 equal squares and then further divide each
square through its diagonal into two triangles, This leads to five levels of nested meshes over
the domain €.

The restriction and prolongation operators I/Z,k,] : Op, — Ohp,, and I,f:“ 20, — On
are taken to be the usual nine-point scheme in two dimensions or the standard three-point
weighting schemes in one dimension, and natural prolongation, respectively (see [11]). One
can check that 7, 1?:71 defined this way satisfies condition (2.9) and that [ Z:—l and / :kk" are adjoint
to each other and satisfy (2.11).

5.1. Smoothing property of gradient methods

Before we carry out our numerical experiments, we first demonstrate how good the smoothing
algorithm proposed in section 2.3 is as a smoother.

We show two examples with diffusion parameter identification problems: one is to recover
the exact parameter ¢ (x) = 7+ 2x2+2sin(27rx) in (5.1), the other is to identify the parameter
g3(x,y) = 7+6x2y(1 — y) in (5.3), using the L? observation data without noise. So the cost
functional we take is of the form

1
J(q) = 5/9(u(q)—z>2dx+y/9|w|2dx.

The smoothing performance is basically the same for the other examples.
We deliberately add some high frequency noise to the exact parameters, and then take
them as the initial guesses:

7% (x) = g1 (x) + 2sin(2'x),
a3 (x, y) = g3(x, y) +25in(2/x) sin(2"y).
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Figure 1. Illustration of the smoothing property of the gradient method in one dimension. From
left to right: the initial guess and the first two iterates of the gradient method. The exact parameter
is denoted by the smooth red line and the current iterate of the parameter by the background blue
line.
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Figure 2. Tllustration of the smoothing property of the gradient method in two dimensions. From
left to right: the initial guess and the first two iterates of the gradient method.

We take i = 9, j = 8,k = 8, and the regularization parameters in the two examples to be
y =2x 103 and y = 5 x 1079, respectively. Figures 1 and 2 give the initial guess, first
and second iterations of the damping process of the high frequency modes respectively by
using the smoothing procedure in section 2.3. From the plots, one can observe that the high
frequency components can be removed very efficiently by the smoothing algorithm, basically
in two iterations.

5.2. Numerical examples and discussions

Example 1. We take the diffusivity ¢ (x, y) and state variable u(x, y) in (5.3) and the observed
data Vz° as follows,

g(x,y) =3+6x>y(1—y), u(x,y) =sin(2rx) sin(2rwy),
V2 (x, y) = 1 +8R(x, ) Vu(x, y),

and the function f(x, y) is computed through (5.3) using u(x, y) and ¢(x, y). Throughout
this section, R(x) or R(x,y) will denote a uniform random function varying in the range
[—1, 1]. Figure 3 gives the exact parameter gexacr and the numerically recovered parameter
qn(x), when the observation noise levels § are 0.01, 0.05 and 0.10 respectively, and a very bad
initial guess q}(lo), constant 10 at all mesh points, is used. We can see that the MMC method
converges quite fast and satisfactorily even when the random noise is 10%, and the relative
error is always less than 5% for all the cases. The profile of the parameter is well approximated
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(@ (b)
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Figure 3. Identification of diffusivity in example 1: (a) exact solution; (b) q2 =10, =001,y =
5 x 1074, iter = 6, err = 0.0132; (c) q,? =10, =0.05,y =1 x 1073, iter = 6, err = 0.0195;
(d) g = 10,8 =0.10, y =2 x 1073, iter = 6, err = 0.0320.

in six iterations, except for those singular points on the boundary or at those points inside the
domain where the gradient of u is zero. In fact, these reconstruction results have achieved the
best approximation of the output least-squares formulation with Tikhonov regularization, so
further iterations cannot improve the reconstruction. This is also true for all the remaining
examples presented in this section.

Example 2. We take the discontinuous diffusivity ¢ (x, y) and state variable u(x, y) in (5.3)
and the observed data z° as follows,

. y) = 4, x €(0,0.5], ye(0,1);
TEY =13 xc©05,1), ye, 1)

u(x, y) = sin(mwrx) sin(mwy), 22(x) = (1 +8R(xX)u(x, y),

and the function f(x,y) is computed through (5.3) using u(x,y) and g(x,y). In
figure 4, the exact parameter gexao; and the identified parameter g;, (x, y) are plotted where the
observation noise levels are 0.01, 0.05 and 0.10, respectively. One can see that the numerical
reconstruction seems also very satisfactory for this case with discontinuous diffusivity, except
that the interface is approximated by a smooth surface with a steep slope, which is natural as
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Figure 4. Identification of diffusivity in example 2: (a) exact solution; (b) q,? =10,§ =0.01,y =

1 x 1078, iter = 19, err = 0.064; (c) ¢) = 10,8 = 0.05,y =5 x 1075, iter = 18, err = 0.087;
(d) g =10,8 =0.10,y = 1 x 107, iter = 15, err = 0.132.

the H' semi-norm is used as the regularization term. Again the numerical reconstruction is
still fast and stable for this tough identification of diffusivity.

Example 3. We take the diffusivity ¢ (x) and state variable u(x, t) in (5.2) and the observed
data VZ° at the terminal time as follows,
g(x) =3 +2x%+2sin(27x),

u(x,t) = exp(sinmt) sin(2wx),
V2 (x) = (1 +8R(x))Vu(x, 1),

the function f(x, ¢) is computed through (5.2) using u(x, ¢) and g (x), and the initial boundary
condition is given by u(x, 0) = sin(2wx). For this time-dependent problem, the ill-posedness
is much more severe. In figure 5, we see that the method converges quite fast and stable for
different levels of noises. The profile of the parameter seems to be well approximated in just

8 iterations. Without the speed-up by the MMC scheme, it is extremely hard to achieve
similar profiles as in figure 5, even after hundreds of iterations by the standard gradient-type
methods.



A multilevel model correction method for parameter identification 1779

5.5 T T T T T T T T T 5.5
5} 5}
4.5¢ 45}
4r 4+
3.5¢ 351
3 3
25} 25}
20 0:1 012 0:3 0:4 0:5 0:6 017 0:8 0:9 1 20 0:1 0:2 0:3 014 0:5 0:6 017 0:8 0:9 1
(@) (b)

0 01 02 0.3 04 05 06 07 08 09 1
(©)

Figure 5. Identification of diffusivity in example 3: (a) ‘12 = 10,6 = 0.0l,y = 8 x
1077, iter = 8, err = 0.015; (b) gf = 10,8 = 0.05,y = 3 x 1075, iter = 5, err = 0.053;
(©)g) =10,6 =0.10,y =5 x 107, iter = 5, err = 0.087.

Example 4. We take the diffusivity g (x, y) and state variable u(x, y) in (5.3) and the observed
data z° as follows,

q(x,y) =3+32x(1 —x)y(l — y) +sin(zrx) sin(wy),

u(x, y) = sin(rx) sin(ry), z°(x,y) = (1 +3R(x, y)u(x,y),
and the function f(x,y) is computed through (5.3) using u(x, y) and ¢g(x, y). Figure 6
presents the exact parameter gexar and the identified parameter gy (x), with the observation
noise levels being 0.01, 0.05 and 0.10, respectively. Although the case with the L? observed
data is much harder than the case with gradient observation data, the identifying process is
still very stable and effective. Hundreds of iterations are needed to achieve similar profiles as
in figure 6 if one uses the standard gradient-type methods, as their convergences are extremely
slow near the singularities.

Example 5. We take the diffusivity a(x) and state variable u(x) in (5.4) and the observed data
VZz% as follows,

a(x) =7+2x2+2sin(2rx), u(x)=sinrx), Vz*(x) = (1+8R(x))2r cos(2rx),
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(a) (b)

(d)

Figure 6. Identification of diffusivity in example 4: (a) exact solution; (b) qg =10,§ =0.01,y =
7 x 1077, iter = 17, err = 0.011; (c) q,? =10, =0.05,y =1 x 10*6, iter = 16, err = 0.014;
(d) g =10,8 =0.10, y =2 x 1075, iter = 12, err = 0.018.

and the exact identifying source term ¢ (x) is computed through (5.4) using u(x) and a(x). In
figure 7, the exact parameter gexar (the red solid line) and the identified parameter g (x)
(the blue dashed line) are plotted when the observation noise levels are 0.01, 0.05 and
0.10, respectively. We note that the identifying source term g (x) is several orders higher
in magnitude (O (10%)) than the state variable (O(1)): the source term varies between —300
to 400 on a unit interval. It is amazing that the MMC method performs quite well and gives a
nice reconstruction in just four iterations.

Example 6. We take the diffusivity a(x) and state variable u (x) in (5.4) and the observed data
Z%(x) as follows,

alx) =7+ 2x% + 2sin(2rx), u(x) = sin(2wx), z5(x) = (1+8R(x))sin(2mwx),

and the source term g (x) is computed through (5.4) using u(x) and a(x). In figure 8, the
exact parameter gexacr (the red solid line) and the identified parameter g, (x) (the blue dashed
line) are plotted when the error levels are 0.01, 0.05 and 0.10, respectively. We observe that
the estimated parameter is still quite satisfactory for the current case with only the pointwise
observation data.
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Figure 7. Identification of source term in example 5: (a) q2 = 0,6 =001,y =5x
10711 iter = 4, err = 0.0051; (b) q,? =0, =005y =5x 1078 iter = 3, err = 0.0074;
(©) g) =0,6 =0.10,y =7 x 1075, iter = 3, err = 0.0089.

Example 7. We take the diffusivity a(x, y), radiativity g (x, y), state variable u(x, y) in (5.5)
and the observed data Vz° as follows,

a(x,y)=~1 +x2+ yx)/1000,

q(x,y) =4 +cos(mxy),

u(x, y) = sin(mwx) sin(mwy),

V2 (x,y) = (1 +8R(x, y)) Vulx, y),
and the function f(x,y) is computed through (5.5) using u(x,y),a(x,y) and g(x,y).
Figure 9 presents the exact parameter gexaer and the identified parameter g, (x) when the

noise levels are 0.01, 0.05 and 0.10, respectively. We observe that ¢ is well identified, and the
profile of the radiativity can be tracked by MMC in an efficient and stable way.

Example 8. We take the diffusivity a(x, y), radiativity ¢ (x, y), state variable u(x, y) in (5.5)
and the observed data z°(x, y) as follows,

a(x,y)=(1 +x2+ yx)/1000,
q(x,y) =4 +cos(mxy),
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Figure 8. Identification of source term in example 6: (a) q}? = 0,6 = 001,y = 1x
10712 iter = 13,err = 0.01; (b) ¢) = 0,8 = 0.05,y = 5 x 1071 iter = 17, err = 0.012;
(©) g =0,8=0.10,y = 1 x 107'% iter = 18, err = 0.016.

u(x, y) = sin(mwx) sin(mwy),
2(x, y) = (1+8R(x, y)u(x, ),

and the function f(x,y) is computed through (5.5) using u(x,y),a(x,y) and g(x,y).
Figure 10 presents the exact parameter gexacr and the identified parameter g;(x) when the
error levels are 0.01, 0.05 and 0.10, respectively. The identification process for the current
case with L? observation data is much more ill-posed than the case with gradient data. But
the profile of the radiativity can still be approximated well as in the previous example.

5.3. Some numerical observations

The numerical examples shown in section 5 have indicated that the proposed MMC algorithm
is applicable to quite a number of parameter identification problems and the algorithm is
robust with respect to the noise and initial guesses. In this section we shall report some further
observations about the efficiency and behaviour of the MMC method.

First we plot the histories of the L?-norm errors || — gexact|| between the current iterate
of the MMC method and the exact solution, as well as the errors ||gx — gx—1 || between two
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Figure 9. Identification of radiativity in example 7: (a) exact solution; (b) q,? =10,§ =0.01,y =
2 x 107 iter = 6, err = 0.022; (c) ¢ = 10,8 = 0.05,y = 3 x 107°, iter = 6, err = 0.031;
(d) g =10,8 =0.10, y = 4 x 1075, iter = 6, err = 0.035.

consecutive iterates (with g_; = 0) for examples 1 and 4. Similar phenomena are observed
for other examples. From the semilog plot in figure 11, one can clearly see that the MMC
converges fast and steadily to its best approximate solution, that is, the errors drop linearly
on average till it reaches some critical point; then no further improvement on the numerical
reconstruction can be achieved due to the discretization error and the noise in the observation
data, although the MMC does not yet converge to its final solution.

We remark that the lower or upper bounds in the admissible sets, e.g., a; or o in (4.6)
and (4.7), should not be too close to the true solution, otherwise it may cause the algorithm to
halt at the local extremes at the boundary of an admissible set. When this happens, one should
relax the admissible sets with larger upper bounds or smaller lower bounds.

Next, we compare the CPU time (in seconds) of the MMC algorithm with the standard
Armijo algorithm (cf [17]) for all the examples in section 5.2, see table 2. Armijo algorithms
are stopped when the same L?-norm errors are reached as indicated in the figures of
section 5.2. As one can see from the statistics in table 2, significant speedups are achieved
using the MMC algorithm; example 4 of identifying the diffusivity with L2-data is the most
difficult and time-consuming one; the time-stepping process of example 3 makes it very time-
consuming even though the problem is one dimension in space. When the noise level is small
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Figure 10. Identification of radiativity in example 8: (a) exact solution; (b) q,? =10,§ =0.01,y =
5 x 107, iter = 10, err = 0.021; (c) g) = 10,8 = 0.05,y = 6 x 107°, iter = 8, err = 0.025;
(d) g =10,8 =0.10, y =9 x 1079, iter = 6, err = 0.032.
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Figure 11. L?-norm errors ||g; — gexact|| (blue star line) and [|gx — gx—1 || (red circle line) versus
the number of iterations: (a) example 1 with § = 0.05; (b) example 4 with § = 0.10.

(6 = 0.01), we can achieve a better approximation with extra work, which explains why the
CPU times are relatively smaller with large noise than with small noise.
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Table 2. CPU time (in seconds) comparison between the MMC and Armijo algorithms.

Exampleno 1 2 3 4 5 6 7 8
5§ =0.01
MMC 28.97 75.34 19.55 6526 058 216 2149 4092
Armijo 423.04 203471 1407.82 1691.20 17.39 64.10 398.19 516.25
8§ =10.05
MMC 26.72 72.65 15.81 59.40 055 247 2085 3397
Armijo 38531 194210 1052.19 1546.16 17.12 72.38 36530 485.62
8§ =0.10
MMC 25.88 59.80 15.04 5458 052 259  20.12  28.90
Armijo 374.69 1750.63 1034.38 1436.62 1648 77.59 358.02 395.40

6. Concluding remarks

Output least-squares formulation with Tikhonov regularization is one of the most frequently
used and reliable methods for parameter identifications in PDEs. This work proposes a
multilevel model correction method, which aims at solving the general nonlinear output least-
squares optimization system in an efficient and robust manner. Different from the usual
numerical identification methods, the MMC method does not carry out the identification
process on one mesh; instead it makes full use of a sequence of nested coarser meshes.
It updates the output least-squares optimization functional and then solves the resulting
optimization system at each level of mesh, recursively from fine to coarse meshes. This leads
to a fast convergence of the reconstruction algorithm and satisfactory numerical identifications,
even with high level of random noise in the observation data. The MMC method converges
very fast, usually in a few iterations as illustrated in the numerical examples, to the best
profile of the identifying parameters defined by the output least-squares formulation with
Tikhonov regularization. We observe that the method is insensitive to the initial guesses, and
it still converges very stably, even with bad initial guesses. Moreover, the MMC method is
formulated in a very general and systematic manner so that it can be easily applied to many
other inverse problems.
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