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This paper proposes a mortar finite element method for solving the two-dimensional
second-order elliptic problem with jumps in coefficients across the interface between two
subregions. Non-matching finite element grids are allowed on the interface, so independent
triangulations can be used in different subregions. Explicitly realizable mortar conditions
are introduced to couple the individual discretizations. The same optifalorm and
energy-norm error estimates as for regular problems are achieved when the interface is of
arbitrary shape but smooth, though the regularity of the true solution is low in the whole
physical domain.
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1. Introduction

This paper is concerned with a mortar finite element method for solving the following
two-dimensional elliptic interface problem:

-V-(BvVu =1 in £, (1.2)
u=0 on a4, (1.2)
[u=0, [Bdhu]l=g on I, (1.3)

where 2 is a convex polygon irR%. We assume that the coefficient functigix) is
discontinuous across an arbitrary f-smooth interfacd” ¢ (2. Here!" is the boundary
of an open domain?, cc . Let 2, = 2\ {2 (see Fig. 1). Equations (1.3) are
called the jump conditions on the interfaée with [v] meaning the jump of a function
v acrossl’, with n the unit outward normal to the boundairy?,. For definiteness, we let
[vI(X) = v1(X) — v2(x) for x € I', with v1 andvy being the restrictions of on 2, and
{2, respectively. Moreover, we assume that the coefficient fungioe is positive and
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FIG. 1. Domain {2, its subregiong?q, {2, and interfaced".

piecewise smooth, i.e.

X for x € (X,
B(x) = B1(X) 1
B2(X) for x € (b,
whereB1(x) € C2(f1) andBa(x) € C2(f2), and there exist two positive constagisand
B2 such that

CoB1 < B1(X) < C1B1,. VX e f2; Cofa < Pa(X) < C1B2, VX e (.

HereCp andC; are two positive constants independengofind8,. This means thas(x)
is of sizeB; in domain?; and of sizeB, in domain (2, and thatg, and 8, may differ
greatly in magnitude.

Such interface problems are often encountered in material sciences and fluid dynamics.
It is the case when two distinct materials or fluids with different conductivities or densities
or diffusions are involved. Much attention has been paid to numerical solutions of interface
problems in recent years. The conforming finite element methods (Bramble & King, 1996;
Chen & Zou, 1998; Xu, 1982) were used for such problems when the interfaces are of
arbitrary shape but smooth, while the finite element/finite difference methods with uniform
grids were also widely applied for solving such interface problems: see, for example,
LeVeque & Li (1994); Li (1998). We refer to Chen & Zou (1998) and the references therein
for more detailed elaborations on many existing finite element methods for the elliptic and
parabolic interface problems, and to Xu & Zou (1998) for a survey on non-overlapping
domain decomposition methods for elliptic interface problems.

Most existing methods are basically conforming finite element methods and require
the triangulations in different subregions to be matching on the interface. This may pose
serious restrictions when the physical solutions of the interface problems are of different
scales in different subregions. Mortar element methods seem to be a good alternative to
relax such restrictions. To our knowledge, there has been no study concerned with the
mortar element method for solving interface problems with interfaces of arbitrary shape.
The purpose of this paper is to propose a mortar finite element method for solving the
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elliptic interface problem (1.1)—(1.3). This method allows non-matching finite element
grids on the interfacd’, so independent triangulations can be used in the subredians

and (2. Explicitly realizable mortar conditions are introduced to couple the individual
discretizations in two subregions. It seems to be the first time that the same opfimal
norm and energy-norm error estimates as for regular problems are achieved with mortar
finite element methods for the interface problems with interfaces of arbitrary shape, though
the regularity of the true solution for this case is low in the whole physical domain. The
derivation of such optimal error estimates is very tricky and technical and we need many
new technical tools to manage them (see Section 3). For related work, (see Berahrdi
1990a,b) for the basic ideas of the mortar element methods, (Achdou, 1995; Belgacem,
1999; Belgacem & Maday, 1997; Du & Gunzburger, 2000; Marcinkowski, 1996) for the
recent advance on the mortar element methods for PDEs with smooth coefficients, (Cao
& Cunzburger, 1998) for the use of a least-squares finite element method for solving the
elliptic interface problems and (Chehal., 2000) for solving the Maxwell equations with
jumps in coefficients across some polyhedral interface.

An efficient numerical method for the interface problem should make full use of the
basic feature of the problem: even though the interface is sufficiently smooth, the solution
of the interface problem is only smooth in the individual subregions occupied by different
materials or fluids, but has much lower regularities in the whole domain. For example, if
f € L2(22) andg € HY2(I"), then the solutiom of the problem (1.1)—(1.3) il ?-regular
locally but only H-regular globally, namely

u e HF(2) N H2(2) NH2(2) = X. (1.4)

Here and in what follows, for each integer > 0 and realp with 1 < p < oo, we

use W™ P(£2) to denote the standard Sobolev space of real functions with their weak
derivatives of order up tmin the Lebesgue spa¢e’(£2), |- [lm, p,2 and| - |m, p, » to denote

its norm and semi-norm (Grisvard, 1985). When= 2, we writeW™2(2) = H™(£2),

and denote its norm and semi-norm|py||m  and| - |m . For a fractional numbes, the
Sobolev spacéi (£2) is defined by the standard interpolation theory (Bergh@strom,
1976). For the spac¥ defined in (1.4), we use its norm of the form

Ivlx = llvllye + vlze +lvlze, YveX.

The followinga priori estimate for the solution of (1.1)—(1.3) will be frequently used later
in our analysis (Chen & Zou, 1998):

Iullx < I llczce) + 1912y (1.5)

Here and in what follows, for any two non-negative numbeendy, x < y means that
X < Cy for some constant independent of the mesh sikheand the related parameters
(e.g. the constant in (1.5) is independentfofg andu), andx = y meansx < y and

y < X.
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2. A mortar finite element method

By integration by parts we can easily derive the weak formulation of the interface problem
(1.1)—(2.3): Findu € H (£2) such that

a(u,v) = (f,v) 4+ (g, v), Vv e HI(2). (2.1)

Here (-, -) denotes the inner product I?(£2) and (-, -) the dual form betweetd ¥/2(I")
andH~Y2(I") (or the inner product inL2(I") if functions are smooth enoughg(-, -) is
the bilinear form witha(u, v) = a;(u, v) + ax(u, v) and

a(u,v) = / Bi(X)Vu-Vudx, i=12.
£

We now derive a mortar finite element method for solving (1.1)—(1.3) or (2.1). We first
introduce two triangulationsf ', for the domainf2y andTr12 for the domainf%. To do so,
we choosen; points on the interfacé”: Pl,le, e m1= then connect all neighbouring
pairs { PL, Pil+1} to obtain a closed polygonal curve approximatiigand a polygonal

domainﬁhl approximating2;. We assume the line segmer& };™*; with & = PP,

(P41 = Pi) are of sizehy, that meansig'| < hy,i = 1,... , my. Wefurther triangulate
2n, by a finite set of open triangle®,, = {K}, which is assumed to be quasi-uniform
with mesh sizeh;. The triangulationZy, is then only the slight modification df,, by

changing those triangles with one of their edges béﬂn@or some 1< j < my) into the
curved triangles with two original edges unchanged but the third é}igeplaced by the

-

wherePlel+1 denotes the curved segment on the interface

This generates a triangulatidh, of (2, satisfying

curved segmeni1 = P1P11+1,

I with two endporntsP1 and P}, ;.
Ql = UKe’Thl

Furthermore, we choose another set of pointg'oZ,PZ, ... , P, such that the line
segment$e? ™, with & = P2P2, (P7,,, = P?) are of sizeh,. We then repeat the same
process for constructingp, to generate a triangulatiofy,, of the domainf2, satisfying
% = Uk e, K- Asbefore & = PZPIZ+1 denotes the curved segment on the interfeice
with two endpointsP? and P2 ;. We also definelh,, = {g'}{%; and I, = {€}"%, which
are two independent triangulations of the interfdteSincel” is C2-smooth, it is easy to
see that the two triangulations are quasi-uniform with respect to the mesthsiaad h,
respectively, that igai1| =hyfori=1,2,...,my, and|e,-2| =hyfori=1,2,...,my.

Since the interfacd” is of classC?, there exists a positive constdmi such that for
0 < hy < hg,onecan mtroduce alocal coordinate sys'(en{r] x2) for each curved segment
el € I'h,. We tale the x1 axis along the line segmee{ and thex2 -axis along the normal
to eJ1 (Chen & Zou, 1998). Then the curved segme}nt:an be parametrized as follows:

ejl _ {(Xi’ Xg); Xé' _ ¢j1(xi)’ xi € [0, sjhl]} (2.2)
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wheresz11 is the length of&;. We know (Chen & Zou, 1998) thap{ e C?[0, s?l] for
i=1...,myand
proxDI Sh2, vx] e 0,8, (2.3)
L) Shy vx{ € [0,8] (2.4)

whereq’b}(xi) denotes the first-order derivative of the functi¢i‘1(xi). For the curved
segment®? € I'h,, we have similar results, and the related restricted parameter is still
denoted aﬁo. From now on we assume that the mesh skzg$, € (0, hg).

We next introduce some finite element spaces associated with the triangulations
constructed above. Laty, (i = 1,2) be the piecewise linear finite element spaces on
[

Vi, = {v € Co(21); vk € Pu(K), VK eTn), (2.5)

Vi, = {v € CO%); vk € Pi(K), VK eTp, and v=0 on 302}. (2.6)
Here we adopt the convention that for any functignin Vi, (i = 1, 2), its value on any
elementK € 7y, (including the elements with a curved edge) is uniquely defined by the
linear function determined by the valuesugfat the three vertices df .

Furthermore, we defindh, andW, (i = 1, 2) to be the piecewise linear and piecewise
constant finite element spaces By respectively, i.e.

Wh, = {v € CO%); vle € Pu(e), Vee Ih), 2.7)
Wh, = {v € L%(I"); v|e = constant Ve e I} (2.8)

where P1(K) is the space of linear polynomials df and Pyi(e) is the space of linear
polynomials (according to the arc length parameter) on the curved segment
Also, we define a transfer operatly, : co2) — Wh, (i =1,2) by

(Env)(P)=v(P), j=1.2....m; VveCoD), (2.9)
and theL 2-orthogonal projection operat@, : L2(I") — Wk, (i = 1,2) by
(Qnv, w) = (v, w), YveLAI), we Wh. (2.10)
With the above preparations, we now state the mortar finite element space as
Vh = {vh = (vhy, Vhy) € Vihy X Vi, Qny Enyvn, = Qny Enyvn, ) (2.11)

The conditionQn, En,vh, = Qn, En,vn, in (2.11) is called the mortar condition, which
provides a connection betweeg andvn, to ensure that they are weakly continuous across
the interfacel". This mortar condition can be replaced by the condit@g, En,vn, =
Qn, En, vh;, without any effect on the subsequent convergence results.

Assume thah; > hy andm; is an odd number. Then thmortar finite element method
for solving (1.1)—(1.3) is formulated as follows: Fing = (un,, Un,) € Vh such that

2
a(up, vp) = ng fop dx + /F guh,ds, VYuvnh = (vh,, vh,) € Vh, (2.12)
i=1 {

wherea(un, vh) = a1(Uhy, vh,) + a2(Un,, vhy).



554 J. HUANG AND J. ZOU

REMARK 2.1 In the case thalh; < hy, the second term in the right-hand side of (2.12)
should be replaced bjj. gun, ds in order to achieve the optimé L.norm error estimate,
see Section 4.

REMARK 2.2 The mortar conditiorQn, En,vh, = Qh, En; v, in (2.11) can be described
in an explicit form. To see this, by the definitions (2.8) and (2.10), the condition can be
written as

1 .
(Enyvn)(Mj) = @ /1 En,vn,ds, i=1,2,...,my, (2.13)
il /g

whereM,; is the midpoint of the curved segmestt Noting thatEp, v, is a linear function
on eil, it follows from (2.9) that (2.13) is equivalent to

2 .
hy (PY + vny (PLy) = @fql Enyvn, ds, i =1,2,...,my, (2.14)

As mq is an odd number, for any givam, € Vh,, the mortar condition (2.14) determines
the nodal value$vhl(le)}rj";1 of vy, on I" uniquely. In fact, using (2.14) one can easily

express each valuenl(le) explicitly in terms of the average values &h,vn, on each

el,i = 1,2,...,m. So the nodal values{vhz(PjZ)}Til of v, on the interfacel” can

be chosen arbitrarily in advance (Master), then the nodal valueg @ " are uniquely
determined (Slave).

The following lemma guarantees the unisolvability of problem (2.12).
LEMMA 2.1 The mortar finite element problem (2.12) is unisolvable.

Proof. Sincem; is an odd number, it is easy to see from ( 2.14) that the mortar sgjace
is a nonempty subspace of the product spégex Vh,. Hence, the unisolvability of the
problem (2.12) follows if we can verify thai(vh, vh) = O with vh = (vh;, vh,) € Vh
impliesvy, = 01in {21 andvh, = 0in 2. This can be done easily. Froaq, (vh,, vh,) =0
andun, |3 = 0 weknow vy, = 0 in (2. Using the mortar condition (2.14) we then have
vhl(le) =0,j =1, 2,...,mg, which together withan, (vn,, vh,) = Oyieldsvy, = 0in

1 immediately. O

We end this section with a remark on a possible solver for the linear algebraic system
of equations corresponding to the mortar finite element method (2.12). Note that (2.12) is
equivalent to the following saddle-point system:

Find (Un, 7h;) € (Vh, X Vh,) X Whl such that

2
a(Un, vh) + (En;vn; — Enyvh,, 1iny) = Z(f, Uh) + (09, vhy)  Vuh € Vhy X Vh,
i—1

(Ehluhl - Ehzuhzs §h1> = 0 VZhl € V_Vhl-
There are many recent investigations on iterative methods for solving such saddle-point

systems, see, for example, the preconditioned Uzawa-type iterative methods (Elman &
Golub, 1994; Hu & Zou, 2001; Rusten & Winther, 1992).
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3. Somediscrete operatorsand their approximation properties

In this section, we introduce some discrete operators and present their approximation
properties, which will be used in the subsequent error analysis for the mortar element
method (2.12).

Before we proceed, we first give some useful estimates for the following elliptic
problem:

—Au1+ur=0 infq; ui=g9g1 onI. (3.1)
LEMMA 3.1 The followinga priori estimates hold for the solutian of (3.1):
luills e S l9linvzry,  Nullo, S 19allu-1z2 (3.2)
if g1 € HY2(I"), and
IUills/z.2 S N9illnecrys  Uilizjzre 2 S 191l H1te 1y (3.3)
if g1 € HY(I") orgy € H*<(I") forany 0< € < 1/2.

Proof. (3.3) and the first estimate of (3.2) are well known (Grisvard, 1985). The second
inequality of (3.2) can be proved by the duality argument, see Huang & Zou (2000) for
details. O

3.1 Interpolation and H*-norm projection operators

Let I, andly, be the piecewise linear nodal value interpolation operators associated with
the finite element spacé4,, andVy,. Then we have the following lemma.

LEMMA 3.2 For any mesh sizeti, hy € (0, hg) and 1< s < 2,
loi = Inviflg o + i Joi =il g Shillvillsa . Yo e H3 (@), i =1,2. (3.4)

Proof. The proof follows basically the standard techniques used forHhe and L2-

norm error estimates of finite element methods (Brenner & Scott, 1994; Ciarlet, 1978).
The crucial step here is to derive the required estimates corresponding to those curved
elements near the interface. For completeness, we give a simple proof=fod, the

case withi = 2 can be proved in the same manner. For anye HS({2;), by the
extension theorem for Sobolev spaces (Grisvard, 1985), there exists an extension operator
E1: HS(21) — HS(R?) such thatE vy = vy in £21 and

IE1vills re < llvills, ;- (3.5)

If K € 7y, is a triangle, by the standard interpolation error estimates we have (Brenner &
Scott, 1994; Ciarlet, 1978)

Jv2 = tnyva |5 + 03 o2 — Inyva |7 < D28 Ial2 . (3.6)



556 J. HUANG AND J. ZOU

Now consider a curved elemelit € Ty, with a curved segmera!ll = PlPJJrl as one of its
edges. We know from (2.3) that the largest distance betw}eendejl is of orderO(h?),

so we can construct a shape-regular triarglef sizeh; such thatK c K. Then, similar
to (3.6), we have

Jor = thyval G +0E Jor = IhyvaZ i S [ Evvr— 'hlElleﬁ,K + | Baor = Iny Eav

1% SN2 IEwI2 (3.7)

Summing all the estimates (3.6) and (3.7) oiee 7, and using (3.5), we obtain

Jor = Inyvall§ o + 3 Jor = Inyvay o, < N3 IEwI2 g < 028 0al2 -

LEMMA 3.3 Fa anyv; € H}(£21) N H2(f21), we have

2
Mhyvalizcry S hillvillz e, (3.8)

Proof. For anyej1 € I'h,, using (2.2)—(2.4), the inverse inequality (Babuska & Aziz, 1972)
and Lemma 3.2, we have

s . . . — .
Ty v1lEoqer, = /0 D (e O, g1 — (ngen) O, 00121+ God))2 o]

2 2
SHhvilf e, max g} (x])[?hy
O<x1<s

3 2 3 2
< h1||hlvl|1,|(j < h1|U1|2,K]~ + hl|Ul|1,|<j (3.9)

whereKj e 7y, is the curved triangle witbj1 being one of its edges. Summing the estimate
(3.9) overj, we obtain

Ihyvalifzgpy < h3lvaly o, +h3lvalf o, (3.10)
where2; denotes the union of all those curved elematfsnear the interfacé’. We next
estimate the terrfug|, O . Consider the neighbourhoddh, (I") of the interface” of width
hl, l.e.,

Nh, (I') = {x € {2; dist(x, I') < hy},

we see thaf, C Nh, (I"). Forany(xy, X2) € Nn, (I"), let y» be the distance from this point
to the interfacd” with the corresponding projection point dhhaving arc lengtty;. When
h1 is appropriately small, the mapping froMy, X2) to (y1, y») is a C2-diffemorphism,
we denote it by®, that is ¢(x1, X2) = (Y1, ¥2). Forany w; € HY(Nh, (I"), define
W1(y1, Yo) = wi(P~1(y1, y2)) € HY(Ry), whereRy = [0, sp] x [0, h1] with sy being the
length of the interfacé’. Therefore, by the Cauchy—Schwartz inequality we easily have

2
li1(y1, y2)I? =

Y2
d1(y1, 0) + /O B (yr. t) dt

< D2y, 0) + vz / i 2y, 1) .
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Then integrating both sides over the dom&inyields
2 2 2 ht
”ﬁ}l”o, Ry S h1”ﬁ}”L2([0,Sp]><{O}) + ||ay2UA11||o, Ry 0 Y2 dy2
A 112 2 A2
S h1”w|||_2([0,sp]><{0}) + h]_Ha)/zwl”Q Ry- (311)

Since & is a C2-diffemorphism, we also havéd |l 205 1x(0)) =
||w1||S’Nhl(]‘) = |lwillsr, for s = 0,1 (Grisvard, 1985), thus the estimate (3.11) can
be rewritten as

lwall 2y and

1/2 1/2
lwillo,ng (< Y Zlwallzgry + hallwallnng oy S 02 lwally, - (3.12)

This implies by lettingw; = 91v1 andw1 = dov1 that

1/2
lvily o, S 0% lvallz 2y, (3.13)
which together with (3.10) leads to the desired estimate. O

We next introduce two elliptic projection operatoPs, : Hi(2) — Vh, and P, :
H1(22) — Vh, with H1(22) = {v2 € HY(22); v2 = 00nd ). Foranyvy € H1(1)
andvy € H1(122), Phvi € Vi, (i = 1, 2) is defined by

(Prvi, w10 = Wi, w1 Yw e Vy (3.14)

where the scalar products -)1,p fori = 1, 2 are given by
v, w10 = f (Vv-Vw+ow)dx, Vv, we HYD).
L

LEMMA 3.4 Operatorshy,,i = 1, 2, possess the following approximation properties:

Jvi = Povi g + i i = Poui|| L SHPvillzg, Vo e HX (@), (3.15)
[vi — Phvi ||H—1/2([’) <h|villz.g. Vv € HA(2). (3.16)
Proof. (3.15) can be obtained using Lemma 3.2 and the standard finite element analysis
as used for deriving thel 1- andL2-norm error estimates (Brenner & Scott, 1994; Ciarlet,

1978). With the help of (3.15), (3.16) can be shown by the standard duality argument, see
Huang & Zou (2000) for details. O

3.2 Extension and modified H1-norm projection operators

We now construct an important extension operaar : Wh, — Vh,. Foranyan, €
Wh,, Fny,ah, € Vi, satisfies(Fhlahl)(le) = ahl(le) (j =1,2,...,mp) and solves the
discrete system

/ {V(Fh,ahy) - Vw + (Fhyon)w}dx =0, VYw e Vr?l (3.17)
0
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WhereV,?l consists of those functions W, which vanish at all interface nodal poiri??l,
j =12, ...,m.

The next lemma presents some useful propertids,pfwhose proofs are given in the
Appendix.

LEMMA 3.5 For the extension operatdt,, we have

” Fhlah]_”l,ﬂl f ”ah]_”Hl/Z([‘), ” Fhlah]_“O,.Ql 5 ”ah]_”H*l/z([')» VOlhl S Wh]_-
(3.18)

With the extension operatoFy,, we are ready to propose a modifidd-norm
projection operatoP, : X — Vy, which will play a crucial role in the subsequent error
estimates for our mortar element method.

We first construct a transfer operat@y, : L2(I") — Wh,. Foranyv; e L2(I),
Gh,v1 € Wh, is determined by

Qnh; (Ghyv1) = Qnyv1.

Noting thatm; is an odd number, we can easily find ti&{, is well defined, and using the
similar deduction for deriving the explicit mortar condition (2.13), we have

1 .
<%mmnﬂ@ﬁm®mJ=meL (3.19)
il 7€

For anyv = (v1,v2) € X, let Pyvj (i = 1, 2) be theHX-norm projections ol as
defined in (3.14). Using the following special finite element functiokq:

hy = Ghl(Ehz Ph2v2 - Eh1 Phj_vl)v

we define the modified projection operateyv as

(Phyv1)(X) + (Fhyang) (X) for x € {21,

(3.20)
(Ph,v2)(X) for x € 2.

(%mmz{

Using the fact thaEn, Fn,ah, = an,, itiseasy to see thd@hv € Vh. We are now going to

establish some error estimates of the operBtgfor which we need théd 1/2-stability of

Gp,.

LEMMA 3.6 The transfer operatd®p, : L2(I") — Wk, is stable inH/2(I"), namely
IGhvllnvacry S Wllwvey. Vv € HYAD). (3.21)

Proof. Wefirst prove fors = 0, 1 that

IGhvlinsry S Ivlluscry, Yo € H3(D). (3.22)
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By the standard scaling arguments (Brenner & Scott, 1994; Ciarlet, 1978), (3.19) and the
Cauchy-Schwartz inequality we have

my
1Gny vl ) S ha D 1(G )M

j=1
1
—1/ v(s)ds
|ej| el

my
Shiy
j=1 j

2
5 ||U|||_2(F)'

2

This proves (3.22) witls = 0. Similarly, notingH(I") ¢ C°(I"), we have

my

_ 2
1Ghy o2y St Y~ {Ghyv(M)) — Ghyv(Mj1))
j=1

cp1Nn ) L 1 2
<hg jX:;{@/e}v(s)ds— = /6}+1U(S)ds}
1 1
m[g}ﬂ v(S) dS—v(PH_l)

my
Sh' Y omaxive) — v(PL P + max [v() — v(P{, )
]:1 xeej Xee;

2 2
+

my
_ 1
< h11§ —lf v(s)ds — v(Pl,;)
iz |11 Jet

j+1
2
5 |U|H1(F)'

(3.21) then follows from (3.22) witls = 0, 1 and the interpolation theory of Sobolev
spaces (Bergh & tfstrom, 1976). d

In what follows, for any 1< s < 2 andv = (v1, v2) € HS(f21) x H3(f2%), we use the
following conventional norms and seminorms:

)2, )2,

2 2 2 2
Iolls,e = (lvtll? g, + llvall2 g, vl = (vl g, + 12l g,

LEMMA 3.7 The modified projection operatd®, : X — Vy defined by (3.20) satisfies
the following H1-norm estimate:

lv—Pholly e S hillvillz o + h2llvallz 0,, Yo = (v1,v2) € X. (3.23)

Proof. By the definition (3.20), it follows directly from Lemmata 3.4-3.6 that
2
v = Pavllze <Y llvi = Poyvillno + | FnyGhy (Eny Pryvz — Eny Pryvn)lin o
i=1

I
2
<Y hillvillz. g + 1 Eny Phyvz — Eny Phyvallgarz - (3.24)
i=1
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But noting thatvy = vo on I", we have

2
1En, Phyv2 — Eny Phyvallyyzcry S Y IEn @i — Pryvidllzcry + v — B villzcry ).
i=1

(3.25)

SinceEp, v; is the continuous and piecewise linear interpolation function @fssociated
with Wk, , we have (Babuska & Aziz, 1972; Brenner & Scott, 1994)

lvi — Emvillpyzry S hillvillgszgry S hillvillz, g - (3.26)

Furthermore, by the inverse inequality, Lemma 3.4 and error estimates of the interpolation
operatorEp, (Babuska & Aziz, 1972; Brenner & Scott, 1994) we know, for any (O, %),
that

I1En (vi = Py vi)llqvzry < hi_l/2||Ehi (Wi = Proodllzr)
-1/2
< b2 lv = Pvillzgey + 10— En) (i — Prod) iz}
Sh2 0 = Phuilliegry + hY2 4 o — Phuillpuere o)

-1/2
<Sh Y200 — PovillLacry + W llo — Poyvillige, 0

-1/2
<Sh Y2l — Pryvillecr + hillvillz o (3.27)

By the Sobolev interpolation theory (Babuska & Aziz, 1972) and Lemma 3.4 we have

1/2 1/2
i = Prvillizcry S v = Phyvi I 2y p 00 = Phovi 2
1/2 1/2
Sl = Pryvill Za o = Phivil
3/2
<P villz0 (3.28)
The desired result then follows from (3.24)—(3.28). O

To derive theL2-norm error estimate of the operatBs, we need the following result.

LEMMA 3.8 For thel? projection operatoQn, : L2(I") — W, defined by (2.10), we
have the following estimate:

lv = Qnyvllg-12(py S Mallvllgazery. Yo € HY2(D). (3.29)

Proof. By the standard technique as used for the error estimate$fojection operators
(Xu, 1989) and the Sobolev interpolation theory, we have far< 1,

lv = Qnyvll 2y S hillvlinsry, Yo € HS(D). (3.30)
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This with the duality argument yields

(v — Qnyv, w)
wenv2ry  Nwlyzr
v— v, w — w
—  sup (v—Qn, Qn,w)
weHY2(T) lwlly2r
lw— Qnwll 2

lv— Qh1U||H—1/2(F) =

Sllv—=Qnvll2ry  sup ]
weHL(I) WIHY2(1)

S hallvligz .-
O

LEMMA 3.9 The modified projection operatd®, : X — V, defined by (3.20) satisfies
the following L2-norm error estimate:

v — Phollo.g < h3llvillz.o + (hiha +h3)lvallz g, Yo = (vi,v2) € X (3.31)

Proof. By the definition of (3.20) and Lemmata 3.4-3.5, we have

2
lv = Pavllo.e £ Y llvi = Poyvillo. + | Fnyeny llo,o;
i=1

2
<D W2 lillz.g + llen -1z (3.32)
i=1

On the other hand, it follows from the identi@n, an, = Qn, (En, Ph,v2 — En; Ph,v1) and
(3.29) that

llohy T -1/2y < lleeny — Qnyathy lly-1/2¢p) + 11Qhy (Eny Phyv2 — Eny Phyv)llg-12r
< hallen vz ry + 11Qhy (Eny Pryv2 — Eny Phyvd) Iy -121)
S hallang lIqyzcry + 100 = Qny) (Eny Pryvz — By Phyvi)llg-12(r)
+1Enh, Phyv2 — Eny Phyvilly-12¢y
S hallany iz ry + hall Eny Phpv2 — Eng Poyvallguz
+I1Ehy Pryv2 — Eny Phyvally-12.1)- (3.33)

By Lemma 3.6 and (3.25) we see

lethy a2y S I1Bhy Phyvz — Eny Phyvillgaz gy S hallvillz o + hallvallz o, (3.34)

while by the triangle inequality, Lemma 3.4 and the fact that v, on I", we obtain

” Eh2 H‘leZ - Ehl Phlvl” Hfl/Z(I")

2
<Y U Phyvi = Py vill-172ry + 106 = Py vill-a72y)
—

I
2
<Y IEn Povi = Poyvilly-vzry + Y b llvillz - (3.35)
i i=1

2
i=1
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It remains to estimat@Ep, P vi — Ph villy-12(p)- It suffices to give the estimate for

the case withi = 1. Fa anyel ¢ I'h,, let K be the curved element witl as one of
its edges. Noting tha([quvl)|Kj e Pu(Kj) (thus the second-order derivatives e, v,
vanish onKj) andEn, Py, v1 is the continuous and piecewise linear interpolatio®qfv1,
and using the inverse inequality we have

5/2
||Eh1 Phlvl - Ph1U1|||_2(eﬁjl) 5 h%| Ph1Ul|H2(ejl) 5 h]_/ [ Phlvl||2,oo,Kj

2 2
= 2 Phyvillnoek; S 0Y2IPhyvilink,.  (3.36)

Squaring both sides of (3.36) and summing them over all curved elerkgntear the
interface, we derive

| Eny Pryva = Phyualifz py < h3lIPhyvall? o, (3.37)

where (2, is defined as that introduced in the proof of Lemma 3.3. Similar to the proof of
(3.13), we can show that

loall} 5, < hallvall} g Vo1 € H2(2),
which, together with Lemma 3.4 yields

2 2 2 2
IPhvill] & S llve = Pryvill g + llvall] o S allvalz - (3.38)

Now it follows from (3.37)—(3.38) that

” Ehl H11Ul - Phll)1|| Hfl/Z(F) 5 || Ehl Phll)]_ — Phll)l” LZ(F)
< h2juillz 0. (3.39)

The desired estimate (3.31) then follows directly from (3.32)—(3.35) and (3.39). O

LEMMA 3.10 For thgumps of the modified projection operatBy across the interface
I', we have the following estimate:

I TPV vz S hEllvillz, o + (hahz + h9)[v2ll2.0,0 Yo = (v, v2) € X. (3.40)

Proof. The proof will be given in the Appendix as it needs some technique used in the
proof of Lemma 3.5. O

4. Error estimatesfor the mortar finite element method

This section is devoted to thé1- andL2-norm error estimates for the mortar finite element
method (2.12) with the casa > hy. The other case with; < hy (see Remark 2.1) can be
dealt with similarly. We assume thdte L2(2) andg € HY2(I"), and thus the solution
ue X = H2(21) N H2(122) N HE(£2). By the second Strang Lemma (Ciarlet, 1978) we
have

la(u, &) — (f, &) — (9, &2)|

lu—unllye Sllu—Prullye +  sup : 4.1)
E=(1,62)€Vh €11, 0
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The first term in the right-hand side of (4.1) represents the approximation error, while the
second denotes the inconsistency error. From Lemma 3.7 we have

lu— Prully,e < hillugllz, o, + halluzliz, o, 4.2)

Moreover, by integration by parts and using (1.1)—(1.3) we see
2
au, &)=y /Q Bi(X)VU; - VE dx
=17/

2
> [ v i der [ proosmuneds— [ pa00muzsads
=1 Y% r r

=(f,§)+f 9$1d8+/ B2(X)onuz [£]ds.
r r
That implies
a(u,s)—(f,é‘)—(g,é‘z)Z/Fg[%‘]dSJr/Fﬂz(X)anw[S]ds
=/F,81(x)8nu1[$]d35 I,
We now estimate the term Ill. We first rewrite it as
1l =/F/31(X)8nul (En &1 — Enyé2) ds

+/Fﬁ1(X)3nul(<§1 — En61) dS—fF/%(X)Bnul(Sz — En,&2) ds
=11+ 2+ 3. 4.3)

For anyejl € I'h,, noting that§1|Kj e Pi(Kj) andEp, £ is the continuous and piecewise
linear interpolation o&1 on I", and using the inverse inequality we have

5/2 3/2
61— Enéall o < Mlealzety < N7 Itloe; < 0 Nenlik,.  (44)
Squaring both sides of (4.4) and summing them over all curved elerdgntild
61 = Enyallfo ) < D3NELIE o,
Then by the trace theorem of Sobolev spaces (Grisvard, 1985) we know
3/2

2] S NBL)dnULll 2y lI61 — Eméallzry S hl/ luallz, o, 115101, 2 - (4.5)

Similarly, we can derive (noting, < hy)

3 S 180U L2y €2 — Engéalli 21

3/2 3/2
< hY2utlla 0 l82ll2.0, S hY2llutllz o, 162112, 0,- (4.6)
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Forlll 1, noting the mortar conditio®@n, (En,£1) = Qn, (En,&2), we have
= /Fﬁl(x)anul (En; 61 — Qn, (Eny$1)) ds
~ [ £1003mus (Enyta — Qny (Bt s
= [ 10 = Qu)(B00muD A = Qn,)(Enénlds

—fF{U — Qny) (B U H(I — Qn,)(Enyé2)} ds.

Hence, by (3.30) we find

2
] S A = Qny)(BLOV3UD L2y D I = Qny) (En&D L 2(r)
i=1

2
S el B0 g2y Y IIEnEillzry
i=1
2
Shiluillz Y IEn&illnazry. 4.7)

i=1
It remains to estimate the terffEn &|l 12y (i = 1,2). Let th be theL 2-orthogonal
projection operator fron.2(1") onto W, . By the standard argument (Xu, 1989), we have
lv = Qnvliczcry S hillvllyery, Yo e HYD).
and fors =0, 1,
IQn vllnsry S lvllmscry,  Yv e HS(), (4.8)

which implies that (4.8) holds also fer= 1/2 by the Sobolev interpolation theory. This,
together with the inverse inequality and the trace inequality, yields

IEn & llnvzcry < I1Qn&illpvzcry + 11Qn & — En&illpyzr
S g llgvecry + 0721 Qn & — Enillzcr
S g vz + 0y 2006 — On&illary + 16 — Enillzcr)
S &z + 18l e S Nl (4.9)
It follows then from (4.3)—(4.9) that
< (halluallz o + halluzliz, ) 1€ 1l1 2,
which together with (4.1)—(4.2) leads to the following theorem.

THEOREM4.1 Letu be the solution to the interface problem (2.1) apdbe the solution
to the mortar finite element system (2.12), then we have the following optithaiorm
error estimate:

lu—unlle < hillullz @, + halluzliz, o, (4.10)
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REMARK 4.1 Theorem 4.1 still holds when the interfade is piecewiseC2-smooth
provided the true solution € X. Inthis case the nonsmooth pointsioshould be chosen
as the nodal points of the triangulatiofig and7h,.

We now proceed to give thé&2-norm error estimate for the mortar finite element
method (2.12). Consider the auxiliary problem:

-V - (BV¢) =Phu—up in 2,
¢=0 ondf2, (4.11)
[#] =0, [Bdn¢] =0 acrossl.

Let 1 = @l,, ¢2 = ¢l0,, then we have tha priori estimates by (1.5)

I$1ll2,.2; + #2ll2.2, S IPhu— Unllo, - (4.12)

Moreover, leipnh = (¢n,, ¢n,) € Vh be the mortar finite element solution ¢fthrough the
system (2.12) withf = Pyu — up andg = 0. From Theorem 4.1 we have

¢ — onllyo S hillgillz o, + hallg2ll2,0, S (h1+ h2)[[Phu — unllo, - (4.13)
By the definition ofp, we see

IPhu — Un |5 ; = a(¢h. Phu — un)
= a(¢h — ¢, Phu — Un) +a($, Pl — U) + a(, U — Up)
=IVi+IVo+IVa. (4.14)

It follows from (4.13), Lemma 3.7 and Theorem 4.1 that

V1l S ll¢ — énllellPau — unll1 o
S (he + ho)(hallugllz, o + halluzli2, 2,)IIPhu — Unllo,0- (4.15)

On the other hand, by integration by parts we know
2
Vo= Z/Q Bi(X)Vi - V(Phu —u) | dX
=174

= /Q(Phu — Up)(Phu —u) dx + /F[Phu]ﬁl(x)and: ds. (4.16)
Then by Lemmata 3.9-3.10, the trace theorem and (4.12) we obtain

IV2] < IIPhu = Unllo,2llu = Prullo, @ + IIPhUTllH-1/2¢1) 1 B1() 30 | )
< (M3 lluallz. o + (hihz 4 h3)[[uzli2, ) 1| Phu — unllo, - (4.17)

Moreover, by integration by parts (see the deduction of Il given above),

V3 =a($ — Phg,u—un) +a(Phg, u—un)
:a(¢ - Ph¢?u - Uh) +a(Ph¢v u) - (f’ H"Iqb) - (gv Ph¢ |.Qz>

=a(¢p — Ph¢,u—up) + /F B1(X)3nur [Phe]ds.
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Using Lemma 3.4, Lemma 3.10 and Theorem 4.1 we have (nbting hy)

V3] < lu = unllnellé — Padlis o + I[Phdllly-v2m 1BLOOULI H2 )
< {(he + ha)(hallutllz o, + ha2lluzliz,@,) + (2 + h3)[lualiz, )} IPhu — Unllo.g
< (M3 llugllz. @ + (hihz 4 h3)[[uzli2, )11 Phu — Unllo, - (4.18)

From (4.14)—(4.18) we find

2 2
[Phu — Unllo,2 < hilluillz, o, + (hihz 4+ h3)uzll2 o,

which together with Lemma 3.9 and the triangle inequality

[u—unllo,2 < [lU— Pnullo, + |Phu — Unllo, 2
leads to the following theorem.

THEOREM4.2 Letu be the solution to the interface problem (2.1) apdbe the solution
to the mortar finite element system (2.12), then we have the followfigorm error
estimate:

lu —unllo.2 < h3lluallz. @, + (hihz + h3)[luzli2 o,- (4.19)

REMARK 4.2 The cross tern©(h1hy) in (4.19) is common to the error estimates for all
existing mortar finite element methods for elliptic problems even with smooth coefficients,
see, for example, Belgacem (1999); Bernatdil. (1990a).

5. Effect of the numerical integration

So far all our convergence analyses have been carried out under the assumption that the
integrals involved in the the mortar finite element method (2.12), naapé€ly,, vn), (f, v)
and(g, vn,), were computed exactly. This may cause some technical difficulties in practice
for the evaluation of the integrals over those curved elements near the intErfeagould
make the numerical implementation much easier if we can replace these integrals over the
curved elements by the integrals over the corresponding straight elements. This section
aims to show that this replacement will not affect the convergence order of the mortar
element method (2.12).

To do so, we first replace the original bilinear forafun, vn) by the following
approximate one:

an(Un, vh) = an, (Un;, hy) + ah, (Un,, Uh,) (5.1)
with
an (U, vn) = Y measK)pi (o) Vun, - Vop, i=1,2
Kefhi

wherebk denotes the barycentre ¢&f, and we have used the conventional quadrature
scheme which is exact for polynomials of degred (Ciarlet, 1978). To treat the interface
integral(g, vn,) for g cor), we definegn, to be the continuous and piecewise linear
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function defined on the triangulatiof,, = {éjz}'j“il of I" such thatghz(sz) = g(sz),

i =12,...,mp. Forvy, € Vh,, we letun, be the linear interpolation aofy,, on the
triangulation'f’hz. Then the mortar finite element method with numerical integration for
solving (2.1) is: Findu; € Wy such that

2
ah(u’,ﬁ, vp) = Z /Q fup, dx +/1~“ Oh,0h, dS,  Yuh = (Vhy, Uh,) € Vh. (5.2)
i—1Y % hy

Recall thaff, (i = 1, 2) are the triangulations with straight triangular elements (no curved
elements included), anf]’h2 is the triangulation ofl" with piecewise line segments (no
curved segments included). So the major calculations in (5.2) (except for the term involving
f) are carried out either on the straight triangular elements or on the line segments. Here,
for simplicity, we do not consider the numerical integration of the term involvinip

(5.1); this can be done in a same manner as we treat the bilinearafeimuvy) and the
integral(g, vh,).

Letu be the weak solution to the interface problem (2.1) apde the finite element
solution to (5.2). The rest of this section establishes kHenorm andL2-norm error
estimates ol — uy,.

Consider an elemeri{ e 7y,. If K is a straight triangle, by the standard scaling
argument (see Ciarlet (1978)) we have

‘/Kﬁi (x) dx — meagK) i (bk)| < i1l Bi ll2.00 (5.3)

if K is a curved triangle, 1K’ € 'fhi be the straight triangle with the same verticeXas
and we have

‘/Kﬁi (x) dx — measK")B; (bk)| < hPlIi l12.00.k - (5.4)

Using (5.3)—(5.4), we immediately obtain for any € V}, that

[a(vh, vh) — an(vh, vh)| S (h1 + ha)a(vn, vh),

which implies

an(vh, vh) < a(vn, vh). (5.5)
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Now we choose/n = (Vh,, ¥h,) = Phu — uji. Then from (5.5) we have
1¥nli3 o < an(Phu — Ui, ¥n)
= an(Phu, Wh)‘/ﬁ fyndx — [ Ghp¥n, ds

th

= {an(Phu, ¥h) —a(Phu, ¥n)} +a(Phu —u, yn)

+{a<u, ) — f Fymdx — / gwhzds}
(] I

+{/ gwhz ds — /~ Ghzlzhz dS}
I th
=V1+Va+V3+ Vg (5.6)

It follows directly from (5.3)—(5.4) and Lemma 3.7 that
IVal < (hf1Paulf o + D3Pl )2 ¥ml1 0
S (halluillz, o + halluzllz,. ) ¥nl1 e (5.7)
and
V2l S Ju—Phuly oYl e S (halluillz o, + halluzll2, 2,) [¥hl1, o- (5.8)
Repeating the same process as for deriving the estimate of 1l in Section 4 we obtain
V3l < (hallullz, o, + halluzllz, o) ¥l - (5.9)

Moreover, following the same proof as for deriving Lemma 2.2 in Chen & Zou (1998) we
have

3/2
Val £ 03 2Igllacr 1,y g, (5.10)

where (2, is the union of all curved element§ ¢ Tn, With K NI # @. Now it follows
from (5.6)—(5.10) that

Il S hallullz, o, + h2lluzliz 0, + hy 2Iglna ).
which together with Lemma 3.7 leads to
lu—uillne S lu—Paullne + Ivnle
< hllugllz o, + h2lluzllz 0, +hy 21902, (5.11)
thus we have proved the following theorem.

THEOREMS5.1 Letu be the solution to the interface problem (2.1) agicoe the solution
to the mortar finite element system (5.2). The i€ H?(I"), the following optimalH*-
norm error estimate holds:

3/2
Iu—upllLe S halludllz o + hzlluzllz, o, + by 19wz -
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Next, we use the duality argument to establishitRenorm error estimate for the mortar
element method (5.2). To do so, we first introduce an auxiliary problem:

=V (BVe) =yn in,
¢=0 onaf, (5.12)
[¢] =0, [Bdnp] =0 acrossr’,

whereyn = Phu — uf. Denote bypn = (éh,, ¢n,) € Vh the mortar finite element solution
of ¢ through (5.2) withf = ¢ andgn, = 0. We then have

1¥nlI3 o = an(@n, Phu — uj)
= ah(¢h, PhU)—/ f<z>th—/~ Gh,h, ds
0] I,

= {an(¢h, Phu) — a(en, Phu)}
+{a(¢nh — ¢, Phu —un)} 4+ a(e, Phu —u) +au — up, ¢)

+ {/ 9pn, ds — [ Gh,dh, ds}
r th
=VI1+Vly+Viz+Vig+ Vis. (5.13)
Using (5.3)—(5.4), Lemma 3.7 and Theorem 5.1, and a careful analysis we can derive

2
|V|1ISZ{hi/Q ﬂi(X)|V¢hIIVPhUIdX+hiZ/ i ﬁi(X)|V¢hIIVPhU|dX}
i=1 i i\$2

i\

2
<Y thilignlly 5 IPhUlly g + 2 ldnlls e lIPaulls )

i=1
< (Mllullz 0 + (h3 + hih)lluzliz, ) 1¥hllo. o (5.14)

where( (i = 1, 2) is the union of all the curved elemerkse 7n; - We can easily obtain
the estimate for \4 as follows:

IVI2| < llgh — ¢llz 2l Phu — Unlly, e
< (M2)luzllz. 0, + (h3 + hih)lluzllz, o, + hihy 2lglwe ) I ¥nllo.- (5.15)
In the same manner as for estimating i Section 4 we obtain
IVIa| < (hflluzllz, 2, + (h3 + hiho)[[uzll2,2,) [¥hllo, o (5.16)
while in the same manner as for estimating i Section 4 we obtain
V4l € (Wlluallz 0, + (h3 + hih2)Uzll2 0, + hihd 2lglinz ) lvnlloe.  (5.17)

Using (5.10) we know

3/2
VIsl S 032 lgll ) Ignolly g,
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where

1/2
lbnally o, < 16— dnylly g, + 1911y 5, < (1 +ha + 032 1ymllo.0,

hence

VIs| < (h1h5% + h3)[1gll 2y 1¥nllo, o- (5.18)

Now it follows from (5.13)—(5.18) that

3/2
lnllo.n S h2lutllz o, + (W3 + hih)lluzliz 0, + hihy gl .

which together with the triangle inequality

lu—upllo. S lu— Pnullo,2 + [I¥nllo.2
and Lemma 3.9 yields the following theorem.

THEOREM5.2 Letu be the solution to the interface problem (2.1) agicoe the solution

to the mortar finite element system (5.2). Theg & H2(I"), the following L2-norm error
estimate holds:

3/2
lu—uillo. < h2lutllz o, + (h3 + hiho)lluzliz o, + hihy 2lIglye ).

REMARK 5.1 With a more detailed analysis, the regularity requirement on the interface
functiong in Theorems 5.1 and 5.2 can be made much weaker (Chen & Zou, 1998).
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Appendix

Proof of Lemma 3.5. The first result of (3.18) is a generalization of the conventional
extension theorems for finite element spaces to the current domain with a curved boundary
(Xu & Zou, 1998). Note thawn, can be viewed as the interpolation OFn,on,)|r
associated with the spa®,,, thus we have

1/2
my
1/2 1/2
| Frhyohy — Olh1||Hl/2(F) < hl/ |Fh1ah1|H1(F) = hl/ {Z |Fh101h1||2_|1(ejl)} . (AD)
j=1

LetK; € 7y, be a curved element WiEkiL being one of its edges. Then it follows from the
inverse inequality that

1/2 -1/2
|Fh1ah1|H1(e}-) S h]_/ |Fh105h1|l,oo,Kj S, h]_ / |Fh10[h1|1,Kj s
which together with (A.1) yields

” Fhlahl — Oh, ” HY/2(I") 5 ” Fhlahl ”l,.Ql'

Thus by the trace theorem we immediately have

leny vz ry S ITFhyothy — ahy llna2cry + IFhong THazern
§ I Fhlah1||1, - (A2)

On the other handsh, oh, can be viewed as the finite element approximation of the solution
¢ to the elliptic problem (3.1) witlg; replaced bywp,. Note thatan, € Wh,, and so

ap, € H(I") for anye € (0, 1/2) (see Xu (1989)). So the solutignhas the regularity

¢ € H¥2+<(01) and meets the estimate (3.3). Following the derivation of (5.5) in Scott
(1975), we have

lvillgaz-e(r)

¢ — Fryangllnon S e — T @l + < su >||¢>||3/2+e,91, (A.3)

nev lvilla, 2

while using Lemma 1 of Scott (1975) with= 2, we have

lvillgiz-< () < hite,
nev llvilla, o,

which together with (3.3) and (A.3), Lemma 3.2 and the inverse inequality yields

1/2+
Y%l pll3/24e.0, + DI NIBll3/21c. 0

||¢ - Fhlah1||1,!21 5
1/2+
S hl/ 6||O‘hl||H1+€(F) S lang iz (A.4)
Then, by Lemma 3.1 we have
IFhaotn I, 2, S 1M1, + 1é — Fryong [l 2
S lleny vz ), (A.5)
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with which, and (A.2), we have proved the first relation in (3.18).
We now use the duality argument to show the second relation in (3.18). Foy any
L2(2), introduce an auxiliary problem:
—Az+z=+v infq; z=0 onl. (A.6)
By integration by parts and the fact that, on, satisfies (3.17) we have
(¢ - Fhlahla 1//‘)0,91 = (d) - Fhlahla _AZ + Z)O,Ql
= (¢ - Fhlahls Z— Ihlz)l,ﬂl + { /F an¢|hlzdx}
+ {— /F(qb — Fhloehl)anzds}
=l1+ 1o+ 13. (A7)
It follows from (A.4) and Lemma 3.2 that
11l <l — Fnyan lln, 212 = hyZll, o S halleng lnwzn)lZllz, 2 (A.8)

and we obtain from Lemma 3.3, the trace theorem and (3.3) that

2l S IMhazllczcrylon@ iz
S22l 0,632,005 D212l 04 llothg - (A.9)

For I3, we have

13| < l¢ — Fnyany ly-12(my 10nZll w2y S ¢ — Frgeng lu-12¢m)liZll2, 2, (A.10)
By the triangle inequality,

¢ — Fryang ln-12¢ry < ¢ — Ing@llu-12¢r) + 0@ — Fayang lw-12r)- (A11)

Note thatlp,¢ — Fn,an, € V,?l. Again using Lemma 1 of Scott (1975) wikh= 2 we have

I |h1¢ - Fhlahl I H-Y2(I") 5” Ihld) - Fhlahl I L2(I")
3/2
ShY 21y — Fiyormy 11,0, (A.12)

From (3.3), (A.4) and the inverse inequality we know

Mhy@ — Fnyang 1,0 <I¢ — hy@dllao + ¢ — Frang o

1/2+
<ShY 2 N la/2re. 00 + leny 2y S lleng vz (A13)

It remains to estimate the terfi@ — In, ¢|ly-1/2 1 in (A.11). Consider a general curved
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segmeniejl € Ih,. Foranygj e Hl/z(ejl), using the local coordinates we have

hy

"o od, ¢t od) — (e o g (R od netxd) dx]

S

[o-mogeds= [
€
h

st . . . . ) .
= /O " (), 0) — (I, @) (x), pEx)NE (o F(xd )6 Fx) dx]
s . . . . ) )
+ /0 Lo ) — (In ) . 0))j (o Fxd )5 Fox)) o]
=ll1+ 1l (A.14)

. i S .
whereojl(xi) = /14 (qﬁjl(xi))zdxi. By (2.3)—(2.4) and the inverse inequality we
obtain

hy

S
2 ! 1ogivyaliy] i
Il < h1|lhl¢|1,oo,Kj1f0 & (o] )67 (x]) dxg

3/2
< Y11y ka5 llo et (A.15)

whereK ! is the curved element Witdaj1 as one of its edges.
On the other hand, noting thétr = an, € Wh,;, we see

PO o1 = 3@(PH +¢(PEp) = (In,9)(S]*/2.0),

which yields

hy

" (U)X, 0) = (10, $) (™2, 0))¢; (01 (xd)

S

S RCE N EICL |
e 0

&1 (x}) dx{

wheret; = ajl(sj.“l)/z. Moreover, we easily see that
G 1 hy _ 1 j j
o)) == [ 6(ds,  (Ind) (/2,00 = — | (In,$)(x1,0)dxy,
|ej| ejl |eJ-| éjl
and thus we have the following standard estimates (Brenner & Scott, 1994):
1$(S) = o176 S h1|¢|H1/2(ejl)

and

1@ (<. 0) = (g @)(S[/2, Ol 12,y S M2l(Iny ) OV 3/ g -
! !
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With these estimates, we obtain
j .
|”2| 5 hl(|¢|Hl/2(ej].) + |(|h1¢)(xl, O)'H]_/z(o,s?l))néj ||H1/2(e}.)
SJ hl(|¢|1,|<jl + ||h1¢|1,|(j1)”€j ||H1/2(ej1)- (A-l6)

Summing both sides of (A.14) ove|j1 € I, using (A.15)—(A.16), Lemma 3.2 and the
definition of the norm irH ~Y/2(I"), we have

my my
2 2 2 2 2
16— Tha 1712y SHEY Ty 17 s + h12{|¢|1,+<11 + 1In 17 o)
j=1 j=1

Sh2Ag12 o + 19 — Ing#l2 )
< hileny 121720y + D2 115 521 ) (A.17)
S Ny 1172y (A.18)
Summarizing (A.7)—(A.13) and (A.18) we finally come to
(@ — Fryd, ¥)o.u | < (halleng vz ry + h o, Hite() T hf/zllahlll Hv2cr) I llo, o,
which, together with Lemma 3.1 and the inverse inequalities, implies
lFhyothy llo,.2, < 19 — Fryong llo,y + @ llo, 2y S llethy ly-12¢1y-
This completes the proof of the second relation of (3.18). a

Proof of Lemma 3.10. By the definition of (3.20) and the fact thet = v, on I" we have
[Phv] = Phyvs — v1+v2 — Phyv2 + Fnyony

wherean, = Gh, (En, Ph,v2 — Eh, Ph;v1). From Lemma 3.4 we have

M

||[th]||Hfl/2(F) < lvi — Py vi ||H*1/2(F) + ||Fh105h1||H71/2(F)

Il
N

S

I
N

<> 2 villz, o + I Pt -1z (A.19)

Noting thaten, = En, (Fh,ah,), Uusing the techniques employed in deriving (3.36)—(3.37),
we obtain

I Fhyong li-12(ry < llotng Tg-12¢y + llathy — Fhyahy li-12¢y
3/2
< oy vy + D3 21 Frgerny .- (A.20)

Let ¢ € H3?*2(1) be the solution of the auxiliary problem (3.1) with replaced by
an,. Then using (A.4) and the inverse inequality yields

-1
||¢ - Fhlah1||1’f)l < ”¢ - Fhlolh1||1,(21 S ||ah1||H1/2([') 5 h]_ ”ah;L”H*l/Z([‘)- (A21)
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On the other hand, using (3.13) and the interpolation theory of Sobolev spaces (Bergh &
Lofstrom, 1976), the regularity estimate (3.3 ) and the inverse inequality we know

1/4 1/4 —5/4
161y o, S 01 I la2.00 S 0 oy iy S 0T llotny sz,

which together with (A.20)—(A.21) leads to

ll Fy oy |l H-Y2(I") S llon |l H-2(I")- (A.22)

Following the proof of Lemma 3.9 we have

lethy 1721y S MEllvallz 0, + (hihz + h3)|lvallz, 0,

which combining with (A.19) gives the desired result. O



