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Zeros of the Bessel and spherical Bessel functions and their applications
for uniqueness in inverse acoustic obstacle scattering
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Some novel interlacing properties of the zeros for the Bessel and spherical Bessel functions are first pre-
sented and then applied to prove an interesting uniqueness result in inverse acoustic obstacle scattering.
It is shown that in the resonance region, the shape of a sound-soft/sound-hard ball inR3 or a sound-
soft/sound-hard disc inR2 is uniquely determined by a single far-field datum measured at some fixed
spot corresponding to a single incident plane wave.
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1. Introduction

In this paper, we will be mainly concerned with an inverse acoustic obstacle scattering problem (IAOSP)
of determining the shape of an unknown impenetrable obstacleD from its corresponding scattered far-
field pattern. It is assumed that the obstacleD ⊂ RN(N = 2, 3) is a bounded domain with connected
complementG:= RN\D. Consider a given incident plane waveui(x) = exp{ikx ∙ d}, where i=

√
−1,

d ∈ SN−1 is the incident direction andk > 0 is the wave number. The presence of the inhomogeneity
D will scatter the incident wave and lead to a scattered waveus. Writing the total field asu, thenu =
ui + us and solves the following Helmholtz system:






Δu + k2u = 0 in G,

limr →∞ r (N−1)/2
(
∂us

∂r − ikus
)

= 0,
(1.1)

wherer = |x| for any x ∈ RN . System (1.1) will be associated with either of the following boundary
conditions:

u =0 on∂G (the sound-soft obstacle), (1.2)

∂u

∂ν
=0 on∂G (the sound-hard obstacle), (1.3)

whereν is the unit normal to∂G directed into the interior ofG.
We know that for any Lipschitz continuous boundary∂G, there exists a unique solutionu = u

(D; d, k) ∈ H1
loc(G) to the above Helmholtz system, andu is analytic on any compact set inG,
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see McLean (2000). Moreover, the asymptotic behaviour at infinity of the scattered waveus is
given by

us(x) =
eik|x|

|x|(N−1)/2

{
u∞(x̂)+ O

(
1

|x|

)}
as|x| → ∞ (1.4)

uniformly for all directionsx̂ = x/|x| ∈ SN−1. The analytic functionu∞(x̂) is defined on the unit sphere
SN−1, and often called the far-field pattern, seeColton & Kress(1998). We shall writeu∞(x̂; D, d, k)
to specify its dependence on the observation directionx̂, the obstacleD, the incident directiond and the
wave numberk.

The IAOSP is to determine∂G from the measurement of the far-field patternu∞(x̂; D, d, k), i.e.
we need to solve the following operator equation:

F(∂G) = u∞(x̂; D, d, k), (x̂, d, k) ∈ SN−1
0 × S̃N−1

0 ×K ⊂ SN−1 × SN−1 × (0,+∞),

whereSN−1
0 andS̃N−1

0 are subsets ofSN−1, K ⊂ (0,∞) and the non-linear operatorF is defined by
the Helmholtz equation system. This problem plays an indispensable role in many fields of science
and technology such as radar and sonar, medical imaging, geophysical exploration and non-destructive
testing, etc., seeColton & Kress(1998). An important theoretical issue in IAOSP is the ‘uniqueness’,
i.e. how many measurement data may uniquely determine the object. It is observed that for a single
incident wave at a fixed frequency and incident direction, the inverse problem is formally determined
with measurement in every possible direction, since the measurement data depend on the same number
of variables,N −1, as does the object. However, even up to now, this important theoretical and practical
problem still remains largely open.

Since the first uniqueness result due to Schiffer for sound-soft generalC2-obstacle by countably
many incident plane waves (seeColton & Kress, 1998; Lax & Phillips, 1967), there has been extensive
study in this direction and a lot of results can be found in the literature; seeColton & Sleeman(1983),
Gintides(2005), Kirsch & Kress(1993), Rondi(2003) andSleeman(1982) for uniqueness with general
smooth obstacles, seeAlessandrini & Rondi(2005), Cheng & Yamamoto(2003), Elschner & Yamamoto
(2006) and Liu & Zou (2006a,b;2007) for uniqueness with polyhedral- type scatterers and seeLiu
(1997) andYun (2001) for uniqueness with balls andKress(1995a,b) andMönch(1997) for uniqueness
with obstacles of smooth planar curves.

It is emphasized that for uniqueness studies, one can assume that the far-field data are given only
on an open subset ofSN−1, no matter how small the subset is, since we can always recover such data
on the whole unit sphere by analytic continuation. In fact, all the existing results about uniqueness for
the IAOSP have made use of the fact that far-field pattern is given on the whole unit sphere. However,
in some cases, if the obstacle is of very simple geometric structures, e.g. it is a ball or a cube inRN ,
then its radius and centre can uniquely identify the object. Hence, for a ball or a disc, two measurement
data are sufficient to formally determine the obstacle. This raises a natural question: ‘could uniqueness
be established in those cases mathematically’? In the present paper, we make a first step towards this
important direction. We will prove thatu∞(d0; D, d0, k0) with d0 andk0 fixed uniquely determines the
radius of the obstacleD which can be a sound-soft/sound-hard ball inR3 or a sound-soft/sound-hard
disc inR2 centred at origin, providedk0 is in the resonance region. More accurately speaking, in the
sound-soft case, ifk0R < π/2, then the radiusR of the underlying ball is uniquely determined by the
single datumu∞(d0; D, d0, k0) (this condition becomesk0R< 0.89357697 in the 2D case); whereas in
the sound-hard case, ifk0R <

√
2, thenR is uniquely determined byu∞(d0; D, d0, k0) (this condition

becomesk0R < 1 in the 2D case). To our knowledge, this is the first result of such kind which uses
only a single measurement datum. The proof is based on carefully studying the forward-scattering
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far-field data given by the series expansion of wave or spherical wave functions and some fine prop-
erties of the zeros of the Bessel and spherical Bessel functions. We wish to emphasize that there are
uniqueness results by one single incident plane wave for a sound-hard or sound-soft ball inR3 (see
Liu, 1997; Yun, 2001), but they rely heavily on the reflection of solutions to Helmholtz equation (1.1)
corresponding to a ball, as well as require the measured far-field data on the whole unit sphere.

The plan of the paper is as follows: In Section2, we collect and present some preliminary knowledge
of the Bessel and spherical Bessel functions which is relevant to our investigation. Section3 is devoted
to the main uniqueness results.

2. Bessel and spherical Bessel functions

In this section, we shall present some novel properties of the Bessel and spherical Bessel functions,
especially about the positive zeros of these functions and their derivatives for the subsequent use. We
refer toAbramowitz & Stegun(1965), Tranter(1968) andWatson(1944) for other more elaborate and
intensive studies on the Bessel functions andColton & Kress(1998) andLebedev(1965) for discussions
about applications of the Bessel functions to wave scattering theory. In the following, letn ∈ N∪ {0} be
an non-negative integer. The first- and second-kind Bessel functions of ordern, namely,Jn(t) andYn(t)
are, respectively, defined by the following series expansions:

Jn(t)=
∞∑

p=0

(−1)p
(1

2t
)n+2p

p!Γ (n + p + 1)
, (2.1)

Yn(t)=
2

π

{
ln

t

2
+ C

}
Jn(t)−

1

π

n−1∑

p=0

(n − 1 − p)!

p!

(
2

t

)n−2p

−
1

π

∞∑

p=0

(−1)p

p!(n + p)!

(
t

2

)n+2p

{ψ(p + n)+ ψ(p)}, (2.2)

whereψ(p):=
∑p

m=1 1/m for p = 1, 2, . . . , ψ(0):= 0 andC ≈ 0.5772 is the Euler’s constant. And in
(2.2), the finite sum is set to be zero in the casen = 0. Usually,Jn is referred to as the Bessel function
while Yn as the Neumann function, and both are solutions to the Bessel differential equation

t2 f ′′(t)+ t f ′(t)+ [t2 − n2] f (t) = 0, (2.3)

which arises when finding separable solutions to Laplace’s equation and the Helmholtz equation in cylin-
drical and spherical coordinates. For our purpose, we are especially interested in the real positive zeros
of the Bessel and the Neumann functions and their respective derivatives. Due to the Bessel–Lommel
theorem (seeWatson, 1944, Chapter XV), it is well-known that both the Bessel and the Neumann func-
tions have infinitely many positive zeros, with no repetitions except for the possible zero at the origin.
By Rolle’s theorem, we know that bothJ ′

n(t) andY′
n(t) also have infinitely many positive zeros. From

now on and throughout the rest of the paper, we shall usejn,s to denote thesth positive zero, arranged in
ascending order of magnitude, of the functionJn(x) and j ′n,s thesth positive zero ofJ ′

n(x), except that
in the case ofJ ′

0(t), we countt = 0 as its first ‘positive’ zero. Similarly, thesth positive zeros ofYn(t)
andY′

n(t) are denoted byyn,s andy′
n,s, respectively. The following lemma summarizes some interlacing

properties of these zero points, seeAbramowitz & Stegun(1965, Section 9.5, pp. 370),Watson(1944,
Chapter XV) andLiu & Zou (2006c, Theorems 3 and 4).
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LEMMA 2.1 For anyn ∈ N ∪ {0}, the positive zeros ofJn(t) are interlaced with those ofJn+1(t):

jn,1 < jn+1,1 < jn,2 < jn+1,2 < jn,3 < ∙ ∙ ∙ , (2.4)

while the positive zeros ofYn(t) are interlaced with those ofYn+1(t):

yn,1 < yn+1,1 < yn,2 < yn+1,2 < yn,3 < ∙ ∙ ∙ . (2.5)

Similarly, the positive zeros ofJ ′
n(t) are interlaced with those ofJ ′

n+1(t):

j ′n,1 < j ′n+1,1 < j ′n,2 < j ′n+1,2 < j ′n,3 < ∙ ∙ ∙ , (2.6)

while the positive zeros ofY′
n(t) are interlaced with those ofY′

n+1(t):

y′
n,1 < y′

n+1,1 < y′
n,2 < y′

n+1,2 < y′
n,3 < ∙ ∙ ∙ . (2.7)

By takingn = 0, 1, 2, . . . in Lemma2.1, we immediately derive the following lemma with mathe-
matical induction.

LEMMA 2.2 For eachs = 1, 2, 3, . . ., the sequences{ jn,s}∞n=0 and{yn,s}∞n=0 are strictly monotonically
increasing, i.e. for eachs = 1, 2, 3, . . .,

j0,s < j1,s < ∙ ∙ ∙ < jn,s < jn+1,s < ∙ ∙ ∙ , y0,s < y1,s < ∙ ∙ ∙ < yn,s < yn+1,s < ∙ ∙ ∙ . (2.8)

Similarly, for eachs = 1, 2, 3, . . ., the sequences{ j ′n,s}
∞
n=0 and {y′

n,s}
∞
n=0 are strictly monotonically

increasing, i.e. for eachs = 1, 2, 3, . . .,

j ′0,s < j ′1,s < ∙ ∙ ∙ < j ′n,s < j ′n+1,s < ∙ ∙ ∙ , y′
0,s < y′

1,s < ∙ ∙ ∙ < y′
n,s < y′

n+1,s < ∙ ∙ ∙ . (2.9)

With the help of Lemma2.2, we are able to show the following crucial results to our subsequent
uniqueness investigation.

THEOREM 2.1 For the Bessel and the Neumann functionsJn(t) andYn(t), we have

Jn(t)Yn(t) < 0 for t ∈ (0, 0.89357697) (2.10)

uniformly for all n ∈ N ∪ {0}, while for J ′
n(t) andY′

n(t), we have fort ∈ (0, 1) that

J ′
0(t)Y

′
0(t) < 0, J ′

n(t)Y
′
n(t) > 0, n = 1, 2, 3, . . . . (2.11)

Proof. We first make the following observations that for each fixedn,

Jn(t)=
tn

2nΓ (n + 1)
[1 + O(t2)] ast → +0, n = 0, 1, 2, . . . , (2.12)

J ′
0(t)= −

t

2
[1 + O(t2)] ast → +0, (2.13)

J ′
n(t)=

ntn−1

2nΓ (n + 1)
[1 + O(t2)] ast → +0, n = 1, 2, 3, . . . , (2.14)
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whereas forn being a positive integer,

Yn(t)= −
2n(n − 1)!

π tn
[1 + O(t)] ast → +0, (2.15)

Y′
n(t)=

2nn!

π tn+1
[1 + O(t)] ast → +0; (2.16)

and finally forn = 0,

Y0(t)=
2

π

[
ln

t

2
+ C

]
[1 + O(t2)] ast → +0, (2.17)

Y′
0(t)=

2

π t
[1 + O(t)] ast → +0. (2.18)

Hence, it is seen from (2.12), (2.15) and (2.17) that forn ∈ N ∪ {0} and sufficiently smallt > 0, Jn(t)
is positive butYn(t) is negative. This further implies thatJn(t) > 0 for t ∈ (0, jn,1) andYn(t) < 0
for t ∈ (0, yn,1). Next, by Lemma2.2, we know that the sequences{ jn,1}∞n=0 and{yn,1}∞n=0 are strictly
monotonically increasing, i.e.

j0,1 < j1,1 < j2,1 < ∙ ∙ ∙ , y0,1 < y1,1 < y2,1 < ∙ ∙ ∙ .

Therefore, the smallest positive zeros forJn(t) andYn(t), n = 0, 1, 2, . . ., are, respectively, given by
(seeOlver, 1960, Table I)

j0,1 = 2.40482556, y0,1 = 0.89357697,

and then it is easily deduced that

Jn(t)Yn(t) < 0 for t ∈ (0, 0.89357697) (2.19)

uniformly for n = 0, 1, 2, . . ..
We proceed to prove the relation (2.11) for the derivativesJ ′

n(t) andY′
n(t). By (2.13), (2.14), (2.16)

and (2.18), it is seen that forn ∈ N ∪ {0} and sufficiently smallt > 0, bothJ ′
n(t) andY′

n(t) are positive
with the only exceptional caseJ ′

0(t), which is negative near the origin. By Lemma2.2, the sequence
{ j ′n,1}

∞
n=0 is strictly monotonically increasing, i.e.

j ′0,1 < j ′1,1 < ∙ ∙ ∙ < j ′n,1 < j ′n+1,1 < ∙ ∙ ∙ .

Noting that j ′0,1 = 0, which together with the fact thatj ′1,1 < j ′0,2 by Lemma2.1, shows that the
smallest positive zero forJ ′

n(t), n = 0, 1, 2, . . ., is given by j ′1,1 = 1.84118378 (seeOlver, 1960,
Table II). Hence, we know that fort ∈ (0, 1.84118378),

J ′
0(t) < 0, J ′

n(t) > 0, n = 1, 2, . . . . (2.20)

Similarly, by Lemma2.2, the sequence{y′
n,1}

∞
n=0 is strictly monotonically increasing and hence the

smallest positive zero forY′
n(t) is given byy′

0,1 = 2.19714132 (see alsoOlver, 1960, Table II). Hence,
we have fort ∈ (0, 2.19714132),

Y′
n(t) > 0, n = 0, 1, 2, . . . . (2.21)

Combining (2.20) with (2.21) immediately gives (2.11). �
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The above discussions for the Bessel and the Neumann functions will be mainly used for the later
analysis of 2D inverse scattering problem, whereas for our study of the 3D inverse scattering prob-
lem, we need similar results for spherical Bessel functions. The first- and second-kind spherical Bessel
functions of ordern, namely,jn(t) andyn(t) are, respectively, given by the following series expansions:

jn(t):=
∞∑

p=0

(−1)ptn+2p

2p p!1 ∙ 3 ∙ ∙ ∙ (2n + 2p + 1)
, (2.22)

yn(t):= −
(2n)!

2nn!

∞∑

p=0

(−1)pt2p−n−1

2p p!(−2n + 1)(−2n + 3) ∙ ∙ ∙ (−2n + 2p − 1)
. (2.23)

Usually, jn(t) is referred to as spherical Bessel function whileyn(t) as spherical Neumann function, and
both are solutions to the spherical Bessel differential equation

t2 f ′′(t)+ 2t f ′(t)+ [t2 − n(n + 1)] f (t) = 0. (2.24)

By the relationship between spherical Bessel functions and Bessel functions of real orders, it is known
that there are infinitely many positive zeros for bothjn(t) andyn(t), hence also forj ′n(t) andy′

n(t) (see
Watson, 1944; Liu & Zou, 2006c). Henceforth, we let thesth positive zeros ofjn(t), yn(t), j ′n(t) and
y′

n(t) for n ∈ N ∪ {0} to be denoted byan,s, bn,s,a′
n,s andb′

n,s respectively, except that forn = 0,
we countt = 0 to be the first positive zero ofj ′0(t). Then, similar to Lemma2.1, one can obtain the
following interlacing relations, whose proof can be found inLiu & Zou (2006c).

LEMMA 2.3 For anyn ∈ N ∪ {0}, we have

an,1 < an+1,1 < an,2 < an+1,2 < an,3 < ∙ ∙ ∙ , bn,1 < bn+1,1 < bn,2 < bn+1,2 < bn,3 < ∙ ∙ ∙ (2.25)

and

a′
n,1 < a′

n+1,1 < a′
n,2 < a′

n+1,2 < a′
n,3 < ∙ ∙ ∙ , b′

n,1 < b′
n+1,1 < b′

n,2 < b′
n+1,2 < b′

n,3 < ∙ ∙ ∙ .
(2.26)

By takingn = 0, 1, 2, . . . in Lemma2.3, we easily derive the following lemma with mathematical
induction.

LEMMA 2.4 For eachs = 1, 2, 3, . . ., the sequences{an,s}∞n=0, {bn,s}∞n=0, {a′
n,s}

∞
n=0 and{b′

n,s}
∞
n=0 are

all strictly monotonically increasing, i.e. for eachs = 1, 2, 3, . . .,

a0,s < a1,s < ∙ ∙ ∙ < an,s < an+1,s < ∙ ∙ ∙ , b0,s < b1,s < ∙ ∙ ∙ < bn,s < bn+1,s < ∙ ∙ ∙ (2.27)

and

a′
0,s < a′

1,s < ∙ ∙ ∙ < a′
n,s < a′

n+1,s < ∙ ∙ ∙ , b′
0,s < b′

1,s < ∙ ∙ ∙ < b′
n,s < b′

n+1,s < ∙ ∙ ∙ . (2.28)

Now, with Lemma2.4, we can show the following theorem.

THEOREM 2.2 For spherical Bessel and spherical Neumann functionsjn(t) andyn(t), we have

jn(t)yn(t) < 0 for t ∈
(
0,
π

2

)
(2.29)

uniformly for all n ∈ N ∪ {0}, while for j ′n(t) andy′
n(t), we have fort ∈ (0,

√
2) that

j ′0(t)y
′
0(t) < 0, j ′n(t)y

′
n(t) > 0, n = 1, 2, 3, . . . . (2.30)
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Proof. The proof is similar to that for Theorem2.1. Firstly, it is easily deduced from the series ex-
pansions (2.22) and (2.23) that for spherical Bessel functions and their derivatives, we have for each
fixedn,

jn(t)=
tn

1 ∙ 3 ∙ ∙ ∙ (2n + 1)
[1 + O(t2)] ast → +0, n = 0, 1, 2, . . . , (2.31)

j ′0(t)= −
t

3
[1 + O(t2)] ast → +0, (2.32)

jn
′(t)=

ntn−1

1 ∙ 3 ∙ ∙ ∙ (2n + 1)
[1 + O(t2)] ast → +0, n = 1, 2, . . . ; (2.33)

whereas for spherical Neumann functions and their derivatives, we have for each fixedn ∈ N ∪ {0},

yn(t)= −
(2n)!

2nn!

1

tn+1
[1 + O(t2)] ast → +0, (2.34)

y′
n(t)=

(2n)!

2nn!

n + 1

tn+2
[1 + O(t2)] ast → +0. (2.35)

That is, for sufficiently smallt > 0 , jn(t) is positive andj ′n(t) is also positive with the only exception
that j ′0(t) is negative near the origin, whereasyn(t) is negative buty′

n(t) is positive. Hence,

jn(t) > 0 for t ∈ (0,an,1) and yn(t) < 0 for t ∈ (0, bn,1), n = 0, 1, 2, . . . . (2.36)

By Lemma2.4, we know that the sequences{an,1}∞n=0 and{bn,1}∞n=0 are strictly monotonically increas-
ing, i.e.

a0,1 < a1,1 < a2,1 < ∙ ∙ ∙ , b0,1 < b1,1 < b2,1 < ∙ ∙ ∙ .

Noting that j0(t) = sint/t andy0(t) = − cost/t , we have

a0,1 = π, b0,1 =
π

2
,

i.e. the smallest positive zeros forjn(t) and yn(t), n = 0, 1, 2, . . ., are, respectively, given byπ and
π/2. Hence, for alln ∈ N ∪ {0},

jn(t) > 0 for t ∈ (0, π) and yn(t) < 0 for t ∈
(
0,
π

2

)
.

As a consequence, we have

jn(t)yn(t) < 0 for t ∈
(
0,
π

2

)

uniformly for n ∈ N ∪ {0}.
In the same way, we can show the relation (2.30). In fact, by Lemma2.4, we know that the sequences

{a′
n,1}

∞
n=0 and{b′

n,1}
∞
n=0 are both strictly monotonically increasing. Noting thata′

0,1 = 0, which together
with the fact thata′

1,1 < a′
0,2 by Lemma2.3, shows that the smallest positive zero forj ′n(t), n =

0, 1, 2, . . ., is given bya′
1,1 = 2.08157598 (seeOlver, 1960, Table III). Whereas the smallest positive

zero fory′
n(t) is given byb′

0,1 = 2.79838605. Therefore, it is easily seen that fort ∈ (0, 2.08157598),

j ′0(t) < 0, j ′n(t) > 0, n = 1, 2, 3, . . . , (2.37)
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and fort ∈ (0, 2.79838605),

y′
n(t) > 0, n = 0, 1, 2, . . . . (2.38)

Combining (2.37) and (2.38), we immediately get (2.30). �
In the rest of this section, we briefly introduce the Legendre polynomials and Jacobi–Anger expan-

sion which are needed for our subsequent investigation (for more details, seeColton & Kress, 1998).
The Legendre polynomials are generated by the function

1
√

1 − 2tr + r 2
for − 16 t 6 1,

which is analytic inr for r ∈ [0, 1) and thus has the following series expansion:

1
√

1 − 2tr + r 2
=

∞∑

n=0

Pn(t)r
n. (2.39)

The coefficients functions{Pn(t)}∞n=0 above are known as the ‘Legendre polynomials’ and they form a
complete orthogonal system inL2[−1, 1].

The following is the ‘Jacobi–Anger expansion’ for plane waves:

eikx∙d =
∞∑

n=0

in(2n + 1) jn(k|x|)Pn(cosθ) for x ∈ R3, (2.40)

whered is a unit vector,θ = 6 (x̂, d) denotes the angle betweenx̂ and d (0 6 θ 6 π ) and the
convergence of the series (2.40) is uniform on any compact subset ofR3. In R2, the Jacobi–Anger
expansion becomes

eikx∙d = J0(k|x|)+ 2
∞∑

n=1

in Jn(k|x|) cosnθ for x ∈ R2, (2.41)

whered is a unit vector andθ = 6 (x̂, d).

3. Two uniqueness results

In this section, we are ready to present the main uniqueness results of this paper on determining a
sound-soft/sound-hard ball inR3 or a sound-soft/sound-hard disc inR2 by one measurement datum.
In the sequel, we assume the centre of the ball/ disc is knowna priori, and this is natural since we
cannot expect one measurement datum to determine more than one unknown. Hence, noting the Laplace
operator is invariant with respect to rigid motions, without loss of generality, we may assume that the
ball/disc is centred at origin, which is of radiusR and denoted byBR.

3.1 Uniqueness for a sound-soft ball or disc

In view of the Dirichlet boundary data (1.2) and the Jacobi–Anger expansion (2.40), the scattered wave
for a sound-soft ballBR ⊂ R3 corresponding to the incident plane wave exp{ikx ∙ d} is given by (see
Colton & Kress, 1998, Section 3.2)

us(x):= −
∞∑

n=0

in(2n + 1)
jn(k R)

h(1)n (k R)
h(1)n (k|x|)Pn(cosθ) for x ∈ R3\BR, (3.1)
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whereθ = 6 (x̂, d) andh(1)n (t) = jn(t) + iyn(t) is the first-kind spherical Hankel function of ordern,
n = 0, 1, 2, . . .. The corresponding far-field pattern is given by

u∞(x̂; BR, d, k) =
i

k

∞∑

n=0

(2n + 1)
jn(k R)

h(1)n (k R)
Pn(cosθ). (3.2)

In R2, noting the Jacobi–Anger expansion (2.41), the scattered wave forBR is now given by

us(x) = −
J0(k R)

H (1)
0 (k R)

H (1)
0 (k|x|)− 2

∞∑

n=1

in
Jn(k R)

H (1)
n (k R)

H (1)
n (k|x|) cosnθ, (3.3)

whereH (1)
n (t) = Jn(t) + iYn(t) is the first-kind Hankel function of ordern, n = 0, 1, 2, . . ., and its

far-field pattern is easily deduced (seeColton & Kress, 1998, Section 3.4) to be

u∞(x̂; BR, d, k) = −e−i π4

√
2

πk

[
J0(k R)

H (1)
0 (k R)

+ 2
∞∑

n=1

Jn(k R)

H (1)
n (k R)

cosnθ

]

. (3.4)

From (3.2) and (3.4), it is observed that ifu∞(x̂; BR, d0, k0) is known for the fixedd0 andk0 and
x̂ ∈ S̃N−1

0 ⊂ SN−1 (N = 2, 3) such that

{6 (x̂, d0); x̂ ∈ S̃N−1
0 } ⊃ (a, b), 06 a < b 6 π, (3.5)

then the far-field pattern can be recovered by the unique continuation on the whole unit sphereSN−1,
and therefore by the uniqueness result inLiu (1997), both the location and the shape of the ball/disc
can be uniquely identified. In practical applications, the subsetS̃N−1

0 in (3.5) could be chosen to be
an open portion ofΠd0 ∩ SN−1 with Πd0 being any hyperplane inRN that containsd0. It is noted
that Condition (3.5) contains an infinite set of observation data. Then, a natural question arises: if the
observation data are available only at a finite discrete set of the observation directions onSN−1, can
the ball be uniquely determined? This question is surely important and meaningful to real applications.
Next, we will give a definite answer to the question. In fact, surprisingly we are able to show that only
one single observation datum is sufficient to uniquely determine the shape of the ball/disc. This is the
first result of such kind, using a single observation datum.

THEOREM 3.1 The far-field datumu∞(d0; BR, d0, k0) uniquely determines the radius of a sound-soft
BR in RN provided

0< k0R<

{
π/2, for N = 3,

0.89357697, for N = 2.
(3.6)

Therefore, one measurement datum at one observation direction corresponding to a single incident plane
wave uniquely identifies the radius of a sound-soft ball or disc.

Proof. By contradiction, suppose there exist two sound-soft ballsBR1 andBR2 with R1 > R2 > 0 such
that

u∞
(
d0; BR1, d0, k0

)
= u∞

(
d0; BR2, d0, k0

)
. (3.7)
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In theR3 case, we have from (3.2) with θ = 6 (d0, d0) = 0 that

u∞(d0; BR, d0, k0) =
i

k0

∞∑

n=0

(2n + 1)
jn(k0R)

h(1)n (k0R)
Pn(1). (3.8)

From series expansion (2.39), we see thatPn(1) = 1 for all n ∈ N∪ {0}. Then, it follows from (3.7) and
(3.8) that

∞∑

n=0

(2n + 1)
jn(t1)

h(1)n (t1)
=

∞∑

n=0

(2n + 1)
jn(t2)

h(1)n (t2)
, (3.9)

wheret1 = k0R1, t2 = k0R2 and 0< t2 < t1 < π/2 by (3.6).
Set

Θn(t) :=
jn(t)

h(1)n (t)
=

jn(t)

jn(t)+ iyn(t)
= αn(t)− iα̃n(t),

for t ∈ (0,+∞) andn = 0, 1, 2, . . .. It is easy to find out that

αn(t) =
j 2
n (t)

j 2
n (t)+ y2

n(t)
, α̃n(t) =

jn(t)yn(t)

j 2
n (t)+ y2

n(t)
, (3.10)

and we know by (3.9) that

∞∑

n=0

(2n + 1)αn(t1) =
∞∑

n=0

(2n + 1)αn(t2). (3.11)

Next, using the definition ofαn(t) in (3.10) and the Wronskian relation for spherical Bessel functions
(see (2.36) inColton & Kress, 1998), we can derive

α′
n(t) =

2 jn(t)yn(t)[ j ′n(t)yn(t)− jn(t)y′
n(t)]

[ j 2
n (t)+ y2

n(t)]
2

= −
2

t2

jn(t)yn(t)

[ j 2
n (t)+ y2

n(t)]
2
. (3.12)

Then by the first statement in Theorem2.2, we conclude that forn = 0, 1, . . .,

α′
n(t) > 0 for t ∈

(
0,
π

2

)
,

which implies thatαn(t) is strictly monotonically increasing fort ∈ (0, π/2) uniformly in n ∈ N ∪ {0}.
Therefore, seeing that 0< t2 < t1 < π/2, we have

αn(t1) > αn(t2) > 0, n = 0, 1, . . . .

But this obviously contradicts (3.11).
For theR2 case, we derive by using the relation (3.4) and the assumption (3.7) that

J0(t1)

H (1)
0 (t1)

+ 2
∞∑

n=1

Jn(t1)

H (1)
n (t1)

=
J0(t2)

H (1)
0 (t2)

+ 2
∞∑

n=1

Jn(t2)

H (1)
n (t2)

, (3.13)
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wheret1 = k0R1, t2 = k0R2 and 0< t2 < t1 < 0.89357697 by (3.6). Now, we set

Ωn(t):=
Jn(t)

H (1)
n (t)

=
Jn(t)

Jn(t)+ iYn(t)
= λn(t)− ĩλn(t),

for t ∈ (0,+∞) andn = 0, 1, 2, . . ., and it is easy to check that

λn(t) =
J2

n (t)

J2
n (t)+ Y2

n (t)
, λ̃n(t) =

Jn(t)Yn(t)

J2
n (t)+ Y2

n (t)
. (3.14)

Then we obtain from (3.13),

λ0(t1)+ 2
∞∑

n=1

λn(t1) = λ0(t2)+ 2
∞∑

n=1

λn(t2). (3.15)

But by definition ofλn(t) in (3.14) and the Wronskian relation for the Bessel functions (see (3.56) in
Colton & Kress, 1998), we find that

λ′
n(t)=

2Jn(t)Yn(t)[ J ′
n(t)Yn(t)− Jn(t)Y′

n(t)]

[ J2
n (t)+ Y2

n (t)]
2

= −
4

π t

Jn(t)Yn(t)

[ J2
n (t)+ Y2

n (t)]
2
. (3.16)

Then by the first statement in Theorem2.1, we conclude that forn = 0, 1, . . .,

λ′
n(t) > 0 for t ∈ (0, 0.89357697),

and this implies thatλn(t) is strictly monotonically increasing fort ∈ (0, 0.89357697) uniformly in
n ∈ N ∪ {0}. Hence, noting that 0< t2 < t1 < 0.89357697, we come to

λn(t1) > λn(t2) > 0, n = 0, 1, . . . ,

which clearly contradicts with the equality (3.15). �

3.2 Uniqueness for a sound-hard ball or disc

In view of the Neumann boundary data (1.3) and the Jacobi–Anger expansion (2.40), the scattered wave
for a sound-hard ballBR ⊂ R3 corresponding to the incident plane wave exp{ikx ∙ d} is easily derived
to be (seeYun, 2001)

us(x) = −
∞∑

n=0

in(2n + 1)
jn′(k R)

h(1)n
′
(k R)

h(1)n (k|x|)Pn(cosθ) for x ∈ R3\BR, (3.17)

whereθ = 6 (d, x̂). Its corresponding far-field pattern is given by (seeColton & Kress, 1998, Theo-
rem 2.15)

u∞(x̂; BR, d, k) =
i

k

∞∑

n=0

(2n + 1)
jn′(k R)

h(1)n
′
(k R)

Pn(cosθ). (3.18)
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In R2, the scattered field and its far-field pattern are given by

us(x) = −
J ′

0(k R)

H (1)
0

′
(k R)

H (1)
0 (k|x|)− 2

∞∑

n=1

in
J ′

n(k R)

H (1)
n

′
(k R)

H (1)
n (k|x|) cosnθ, (3.19)

u∞(x̂; BR, d, k) = −e−i π4

√
2

πk

[
J ′

0(k R)

H (1)
0

′
(k R)

+ 2
∞∑

n=1

J ′
n(k R)

H (1)
n

′
(k R)

cosnθ

]

. (3.20)

Similarly to the sound-soft case, using the uniqueness result inYun (2001), it is observed from (3.18)
and (3.20) that the far-field data corresponding to a single incident plane wave onS̃N−1

0 satisfying (3.5)
uniquely identify the ball/discBR. It is also similar to the sound-soft case that the determination of a
sound-hard ball by a single observation datum is not only mathematically interesting but also practically
important and meaningful. This is answered by the following theorem.

THEOREM 3.2 The far-field datumu∞(d0; BR, d0, k0) determines the shape of a sound-hard ball/disc
BR in RN uniquely provided

0< k0R<

{√
2 for N = 3,

1 for N = 2.
(3.21)

Proof. We suppose by contradiction that there exist two sound-hard ballsBR1 andBR2 with R1>R2>0
such that

u∞
(
d0; BR1, d0, k0

)
= u∞

(
d0; BR2, d0, k0

)
. (3.22)

In the case ofR3, we see from (3.18) and (3.22) that

∞∑

n=0

(2n + 1)
j ′n(t1)

h(1)n
′
(t1)

=
∞∑

n=0

(2n + 1)
j ′n(t2)

h(1)n
′
(t2)

, (3.23)

wheret1 = k0R1, t1 = k0R1 and 0< t2 < t1 <
√

2 by (3.21).
Set

Υn(t):=
jn′(t)

h(1)n
′
(t)

=
jn′(t)

jn′(t)+ iyn
′(t)

= βn(t)− iβ̃n(t).

Clearly,

βn(t) =
j ′n

2(t)

j ′n
2(t)+ Y′

n
2(t)

, β̃n(t) =
j ′n(t)y

′
n(t)

j ′n
2(t)+ y′

n
2(t)

. (3.24)

Then, we have from (3.23) that

∞∑

n=0

(2n + 1)βn(t1) =
∞∑

n=0

(2n + 1)βn(t2). (3.25)

By straightforward calculations, we derive

β ′
n(t) =

2 j ′n(t)y
′
n(t)[ j ′′n (t)y

′
n(t)− j ′n(t)y

′′
n(t)]

[
j ′n

2(t)+ y′
n

2(t)
]2

. (3.26)
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Noting that bothjn andyn satisfy the spherical Bessel differential equation (2.24),

j ′′n = −
2

t
j ′n −

t2 − n(n + 1)

t2
jn,

y′′
n = −

2

t
y′

n −
t2 − n(n + 1)

t2
yn,

thus by the Wronskian relation for spherical Bessel functions (see (2.36) inColton & Kress, 1998), we
obtain

j ′′n y′
n − j ′ny′′

n =
t2 − n(n + 1)

t2
( j ′nyn − jny′

n) =
n(n + 1)− t2

t4
. (3.27)

Using this, we get from (3.26) that

β ′
n(t) =

n(n + 1)− t2

t4

2 j ′n(t)y
′
n(t)

[
j ′n

2(t)+ y′
n

2(t)
]2
.

By the second statement in Theorem2.2, one can easily check that forn = 0, 1, . . .,

β ′
n(t) > 0 for 0< t <

√
2,

which implies thatβn(t) is strictly monotonically increasing for 0< t <
√

2 uniformly inn ∈ N ∪ {0}.
Therefore, we have

βn(t1) > βn(t2) > 0 for n = 0, 1, . . . ,

but this clearly contradicts with the equality (3.25).
In the case ofR2, we readily see the following from the expression (3.20) and the assumption (3.22):

J ′
0(t1)

H (1)
0

′
(t1)

+ 2
∞∑

n=1

J ′
n(t1)

H (1)
n

′
(t1)

=
J ′

0(t2)

H (1)
0

′
(t2)

+ 2
∞∑

n=1

J ′
n(t2)

H (1)
n

′
(t2)

, (3.28)

wheret1 = k0R1, t2 = k0R2 and 0< t2 < t1 < 1 by (3.21). Now, we set

Λn(t):=
Jn

′(t)

H (1)
n

′
(t)

=
Jn

′(t)

Jn
′(t)+ iYn

′(t)
= γn(t)− iγ̃n(t).

It is easy to see

γn(t) =
J ′

n
2(t)

J ′
n

2(t)+ Y′
n

2(t)
, γ̃n(t) =

J ′
n(t)Y

′
n(t)

J ′
n

2(t)+ Y′
n

2(t)
. (3.29)

So we have from (3.28) that

γ0(t1)+ 2
∞∑

n=1

γn(t1) = γ0(t2)+ 2
∞∑

n=1

γn(t2). (3.30)
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Now using the Wronskian relation for the Bessel functions (see (3.56) inColton & Kress, 1998) and the
Bessel differential equation (2.3) for Jn(t) andYn(t), we can derive

γ ′
n(t)=

2J ′
n(t)Y

′
n(t)[ J ′′

n (t)Y
′
n(t)− J ′

n(t)Y
′′
n (t)]

[
J ′

n
2(t)+ Y′

n
2(t)

]2

=
n2 − t2

π t3

2J ′
n(t)Y

′
n(t)

[
J ′

n
2(t)+ Y′

n
2(t)

]2
.

Then by the second statement in Theorem2.1, we obtain

γ ′
n(t) > 0 for 0< t < 1.

Hence,γn(t) is strictly monotonically increasing for 0< t < 1 uniformly inn ∈ N ∪ {0}. So we have

γn(t1) > γn(t2) > 0, n = 0, 1, . . . ,

but this clearly contradicts with the relation (3.30). �
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