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Some novel interlacing properties of the zeros for the Bessel and spherical Bessel functions are first pre-
sented and then applied to prove an interesting uniqueness result in inverse acoustic obstacle scattering.
It is shown that in the resonance region, the shape of a sound-soft/sound-hardb&lbira sound-
soft/sound-hard disc i®? is uniquely determined by a single far-field datum measured at some fixed
spot corresponding to a single incident plane wave.
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1. Introduction

In this paper, we will be mainly concerned with an inverse acoustic obstacle scattering problem (IAOSP)
of determining the shape of an unknown impenetrable obstadtem its corresponding scattered far-
field pattern. It is assumed that the obstable= RN(N = 2, 3) is a bounded domain with connected
complemenG:= RN\ D. Consider a given incident plane wavéx) = exp{ikx - d}, where i= /=1,

d € SN-1 s the incident direction ankl > 0 is the wave number. The presence of the inhomogeneity

D will scatter the incident wave and lead to a scattered wévg\Vriting the total field asi, thenu =

u' + u® and solves the following Helmholtz system:

Au+ku=0 inG,
. (1.1)
im0 (N=D/2(2 _ k) =0,

wherer = |x| for anyx € RN. System {.1) will be associated with either of the following boundary
conditions:

u=0 o0noG (the sound-soft obstacle) (1.2)
ou
> =0 onoG (the sound-hard obstacle) (1.3)
V

wherev is the unit normal t@G directed into the interior of.
We know that for any Lipschitz continuous bound&®, there exists a unique solutian = u

(D;d, k) € HI%)C(G) to the above Helmholtz system, amdis analytic on any compact set i@,
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see McLean (2000. Moreover, the asymptotic behaviour at infinity of the scattered wavés
given by
s gkl . 1
u>(x) = |x|(N——1)/2 [uoo(x) +0 (m)} as|x| - oo (1.4

uniformly for all directionsk = x/|x| € SN=1. The analytic functioni., (R) is defined on the unit sphere
SN=1 and often called the far-field pattern, s@elton & Kress(1998. We shall writeu (X; D, d, k)
to specify its dependence on the observation diretidhe obstacld, the incident direction and the
wave numbek.

The IAOSP is to determinéG from the measurement of the far-field patterg (X; D, d, k), i.e.
we need to solve the following operator equation:

F(@G) = Us(%; D,d, k), (%,d,k) e S{ ™t x St x K c SN=1 x SN1 x (0, +00),

whereS) ™ andS{ ~* are subsets @#N-1, K c (0, c0) and the non-linear operatét is defined by

the Helmholtz equation system. This problem plays an indispensable role in many fields of science
and technology such as radar and sonar, medical imaging, geophysical exploration and non-destructive
testing, etc., se€olton & Kress(1998. An important theoretical issue in IAOSP is the ‘uniqueness’,

i.e. how many measurement data may uniquely determine the object. It is observed that for a single
incident wave at a fixed frequency and incident direction, the inverse problem is formally determined
with measurement in every possible direction, since the measurement data depend on the same number
of variablesN — 1, as does the object. However, even up to now, this important theoretical and practical
problem still remains largely open.

Since the first uniqueness result due to Schiffer for sound-soft ge@érabstacle by countably
many incident plane waves (s€elton & Kress 1998 Lax & Phillips, 1967), there has been extensive
study in this direction and a lot of results can be found in the literatureCséien & Sleemar(1983,
Gintides(2005), Kirsch & Kress(1993, Rondi(2003 andSleemar(1982 for uniqueness with general
smooth obstacles, sééessandrini & Rond{2005, Cheng & Yamamotg¢2003, Elschner & Yamamoto
(2006 andLiu & Zou (2006a,b;2007 for uniqueness with polyhedral- type scatterers andlLsee
(21997 andYun (2007) for uniqueness with balls ari¢tess(1995gb) andMdnch(1997) for uniqueness
with obstacles of smooth planar curves.

It is emphasized that for uniqueness studies, one can assume that the far-field data are given only
on an open subset 8N~1, no matter how small the subset is, since we can always recover such data
on the whole unit sphere by analytic continuation. In fact, all the existing results about uniqueness for
the IAOSP have made use of the fact that far-field pattern is given on the whole unit sphere. However,
in some cases, if the obstacle is of very simple geometric structures, e.g. it is a ball or a &be in
then its radius and centre can uniquely identify the object. Hence, for a ball or a disc, two measurement
data are sufficient to formally determine the obstacle. This raises a natural question: ‘could unigueness
be established in those cases mathematically’? In the present paper, we make a first step towards this
important direction. We will prove that,, (dg; D, do, ko) with dg andkg fixed uniquely determines the
radius of the obstacl® which can be a sound-soft/sound-hard balR# or a sound-soft/sound-hard
disc inR? centred at origin, provideky is in the resonance region. More accurately speaking, in the
sound-soft case, KpR < 7 /2, then the radiu® of the underlying ball is uniquely determined by the
single daturmu, (do; D, do, ko) (this condition becomdgR < 0.89357697 in the 2D case); whereas in
the sound-hard case,i§R < +/2, thenR is uniquely determined by (do; D, do, ko) (this condition
becomedoR < 1 in the 2D case). To our knowledge, this is the first result of such kind which uses
only a single measurement datum. The proof is based on carefully studying the forward-scattering
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far-field data given by the series expansion of wave or spherical wave functions and some fine prop-
erties of the zeros of the Bessel and spherical Bessel functions. We wish to emphasize that there are
uniqueness results by one single incident plane wave for a sound-hard or sound-softRFa(sie
Liu, 1997 Yun, 2001, but they rely heavily on the reflection of solutions to Helmholtz equatiof) (
corresponding to a ball, as well as require the measured far-field data on the whole unit sphere.

The plan of the paper is as follows: In Sect@we collect and present some preliminary knowledge
of the Bessel and spherical Bessel functions which is relevant to our investigation. Sestidevoted
to the main unigueness results.

2. Bessel and spherical Bessel functions

In this section, we shall present some novel properties of the Bessel and spherical Bessel functions,
especially about the positive zeros of these functions and their derivatives for the subsequent use. We
refer toAbramowitz & Stegur(1965, Tranter(1968 andWatson(1944) for other more elaborate and
intensive studies on the Bessel functions &otton & Kress(1998 andLebede1965 for discussions

about applications of the Bessel functions to wave scattering theory. In the followimgs [BtU {0} be

an non-negative integer. The first- and second-kind Bessel functions ofrgnaamely,J, (t) and Y, (t)

are, respectively, defined by the following series expansions:

00 (_1)p(%t)n+2p

Jn(t):pz_(:) pirin+p+1) (2.1)
Y(t_2 Int c J(t (n 1_p)| 2 n-2p
0= {n+c] ”)“pz;, o (5)
1)P t\N+2pP
Tz Z p|En+) D! (‘) {w(p+n)+y(p) 2.2)

wherey (p):= Zrﬁ:zl 1/mforp=1,2,..., w(0):=0andC ~ 0.5772 is the Euler’s constant. And in
(2.2), the finite sum is set to be zero in the case: 0. Usually, J, is referred to as the Bessel function
while Y, as the Neumann function, and both are solutions to the Bessel differential equation

t2£7(t) + tf/'(t) + [t> = n?] f(t) = 0, (2.3)

which arises when finding separable solutions to Laplace’s equation and the Helmholtz equation in cylin-
drical and spherical coordinates. For our purpose, we are especially interested in the real positive zeros
of the Bessel and the Neumann functions and their respective derivatives. Due to the Bessel-Lommel
theorem (se&Vatson 1944 Chapter XV), it is well-known that both the Bessel and the Neumann func-
tions have infinitely many positive zeros, with no repetitions except for the possible zero at the origin.
By Rolle’s theorem, we know that botd (t) andY),(t) also have infinitely many positive zeros. From

now on and throughout the rest of the paper, we shalljys¢o denote theth positive zero, arranged in
ascending order of magnitude, of the functidyix) and j;, ¢ thesth positive zero of) (x), except that

in the case ofly(t), we countt = O as its first ‘positive’ zero. Similarly, theth positive zeros o¥y(t)

andY; (t) are denoted by, s andyy, ¢, respectively. The following lemma summarizes some interlacing
properties of these zero points, seeramowitz & Stegur(1965 Section 9.5, pp. 370)Watson(1944

Chapter XV) and.iu & Zou (2006¢ Theorems 3 and 4).
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LEMMA 2.1 For anyn € N U {0}, the positive zeros aof,(t) are interlaced with those a1 (t):

jna < n411 < jn2 < Jnt12 < jnz <---, (2.4)
while the positive zeros of,(t) are interlaced with those &f,;1(t):

Yl < Y1l < Yn2 < Ynt12 < Yn3 < --- . (2.5)
Similarly, the positive zeros o (t) are interlaced with those o , (t):

Int <lntpt <lnz <lnsr2 <dnz < (2.6)
while the positive zeros of;,(t) are interlaced with those dﬁﬂ(t):

Va1 < Yne11 < Y2 < Y12 < Ynz < (2.7)

By takingn = 0,1, 2, ... in Lemmaz2.1, we immediately derive the following lemma with mathe-
matical induction.

LEMMA 2.2 Foreacls = 1,2, 3, ..., the sequencegn sj,- o and{yn;s}o>, are strictly monotonically
increasing, i.e. foreach=1,2,3, ...,

Jos <jus < <lJns<jntis < -, Yos <Yis < " <VYns < Ynt1ls <. (2.8)

Similarly, for eachs = 1,2, 3, ..., the sequence{sjr’,,s}ﬁio and {yy s}neg are strictly monotonically
increasing, i.e. foreach=1,2,3, ..,

G L 4 Y / / / /
Jos <Jis < <lns<lntrs <> Yos <Y1s <" <¥ns <Yny1s < - (2.9)

With the help of Lemma&.2, we are able to show the following crucial results to our subsequent
unigueness investigation.

THEOREM2.1 For the Bessel and the Neumann functidn@) andY(t), we have
In()Ya(t) <0 fort e (0,0.89357697 (2.10)
uniformly for alln € N U {0}, while for J(t) andY;(t), we have fott € (0, 1) that
JOYHH) <0, FOYLt) >0, n=1,2,3,.... (2.11)

Proof. We first make the following observations that for each fired

tn
)= ———[1 + O(t? t 0, Nn=0,1,2,... 2.12
n() 2n1—v(n+1)[+ ()] aS—>+,n 9 =y &y s ( )
t
Jé(t)=—§[1+0(t2)] ast — +0, (2.13)
ntn—l
J(t)==———[14+0(t?»)] ast— +0, n=1,2,3,..., (2.14)

27 (n+1)
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whereas fon being a positive integer,

Ya(t) = —%[1 +0(t)] ast — +0, (2.15)
Y (t) = %[1 +0(t)] ast — +0; (2.16)
and finally forn = 0,
Yo(t) = f [m % + c] [14Ot?)] ast— +0, (2.17)
Yo(t) = %[1 +0(t)] ast — +0. (2.18)

Hence, it is seen from2(12), (2.15 and @.17) that forn € N U {0} and sufficiently smalt > 0, J,(t)
is positive butYy(t) is negative. This further implies thag(t) > 0 fort € (0, jn,1) andYp(t) < O
fort € (0, yn,1). Next, by Lemma2.2, we know that the sequencefs, 1}p> o and{yn,1}n> are strictly
monotonically increasing, i.e.

jor<ijn1<jz1<--+, Yo1<Yn1<Yz1<---.

Therefore, the smallest positive zeros fiy(t) andY,(t), n = 0,1, 2, ..., are, respectively, given by
(seeOlver, 196Q Table 1)

jo1 = 2.40482556 yp1 = 0.89357697
and then it is easily deduced that
Jn(®)Yn(t) <0 fort e (0,0.89357697 (2.19)

uniformly forn=0,1,2, .. ..

We proceed to prove the relatiod.{1) for the derivatives](t) andY; (t). By (2.13, (2.14), (2.1
and @.18), it is seen that fon € N U {0} and sufficiently smalt > 0, bothJ;(t) andY},(t) are positive
with the only exceptional cas#)(t), which is negative near the origin. By Lemr@2, the sequence
{if.1}ne is strictly monotonically increasing, i.e.

o/ U H Y
Jop <Ji1 < <lh1<lJngr1 <"

Noting thatjy; = O, which together with the fact thgt ; < j;, by Lemma2.1, shows that the
smallest positive zero fod;(t), n = 0,1,2,..., is given byji’l = 1.84118378 (se®lver, 196Q
Table II). Hence, we know that fdare (0, 1.84118378,

Jt) <0, Jt)>0, n=12 ... (2.20)

Similarly, by Lemmaz2.2, the sequenc@y&l}ﬁio is strictly monotonically increasing and hence the
smallest positive zero for,(t) is given byyy ; = 2.19714132 (see alsDlver, 196Q Table II). Hence,
we have fott € (0,2.19714132,

Y, (t)>0, n=0,12.... (2.21)
Combining .20 with (2.21) immediately givesZ.17). O
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The above discussions for the Bessel and the Neumann functions will be mainly used for the later
analysis of 2D inverse scattering problem, whereas for our study of the 3D inverse scattering prob-
lem, we need similar results for spherical Bessel functions. The first- and second-kind spherical Bessel
functions of orden, namely,j,(t) andyn(t) are, respectively, given by the following series expansions:

] . o0 (_l)ptn+2p

jn(t):= gzpp!1-3-~-(2n+2p+1)’ (2.22)
R CDIRS (—1)Pzp—n-1

Yn(t):= — 2nn! pzzé 2Ppl(=2n 4+ 1)(=2n+3)---(=2n+2p—1)° (2.23)

Usually, jn(t) is referred to as spherical Bessel function whjilét) as spherical Neumann function, and
both are solutions to the spherical Bessel differential equation

t2£”(t) + 2tf/(t) + [t — n(n + 1)] f (t) = 0. (2.24)

By the relationship between spherical Bessel functions and Bessel functions of real orders, it is known
that there are infinitely many positive zeros for bilit) andyn(t), hence also foi;, (t) andy;(t) (see
Watson 1944 Liu & Zou, 20069. Henceforth, we let theth positive zeros ofin(t), ya(t), j,(t) and

yh(t) for n € N U {0} to be denoted by s, bn s, &, s andby, ¢ respectively, except that for = 0,

we countt = 0 to be the first positive zero gfy(t). Then, similar to Lemma&.1, one can obtain the
following interlacing relations, whose proof can be foundLin & Zou (20069.

LEMMA 2.3 For anyn € N U {0}, we have
an1 <anyll <@n2 <@np12 <an3 < -+, bn1<bnyr1 <bn2 <bnp12 <bnz<--- (2.25)

and

/ / / / / / / / / /
81 <811 <8np <8np1p <8ng <o, By <Pnggg <Bpp <bngg, <bpg <.
(2.26)

By takingn = 0, 1, 2, ... in Lemma2.3, we easily derive the following lemma with mathematical
induction.

LEMMA 2.4 Foreacts = 1,2,3, ..., the sequencei@n shy o, {bn.sineos {ah slneg and{by, ¢}n2, are
all strictly monotonically increasing, i.e. foreash=1,2, 3, .. .,

os <as <---<ans<ang1s <---, bos<bys<---<bps<bppys<--- (2.27)
and
a(/J,s<a:,I.,s<"'<ar/1,s<ar/1+1,s<"" 6,s<b3.,s<"'<b;1,s<b;1+1,s<"" (2.28)
Now, with Lemma2.4, we can show the following theorem.

THEOREM?2.2 For spherical Bessel and spherical Neumann funciigf® andyn(t), we have
in(Myn) <0 fort e (o, %) (2.29)

uniformly for alln € N U {0}, while for j/(t) andy;,(t), we have fott € (0, +/2) that
Io®Yo®) <0, jiy,(®) >0, n=1,23,.... (2.30)
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Proof. The proof is similar to that for Theore®. 1 Firstly, it is easily deduced from the series ex-
pansions 2.22) and @.23 that for spherical Bessel functions and their derivatives, we have for each
fixedn,

n

j =— ] t2 t =0,1,2,... 2.31
in(® 1.3._._(2“_1)[ +0(t")] ast— +0, n=0,1,2,..., (2.31)
t
jg0=—§u+oaw ast - +0, (2.32)
/ ntn_l 2
j =— ] =12 ...; 2.
whereas for spherical Neumann functions and their derivatives, we have for each &x&d {0},
2n)! 1
sz_zmum4n+o@n ast — +0, (2.34)
, @n)!n+1
%ayzzﬁlwﬂ[1+oaw ast — +0. (2.35)

That is, for sufficiently small > 0, js(t) is positive andj/(t) is also positive with the only exception
that jo(t) is negative near the origin, wheregs(t) is negative buyy, (t) is positive. Hence,
jn(t) > 0 fort € (0,an,1) and yn(t) <0 fort € (0,bn1), N=0,1,2,.... (2.36)

By Lemmaz2.4, we know that the sequencgs, 1},2 , and{bn 1}72, are strictly monotonically increas-
ing, i.e.
g1 <apy <apgy<---, bpir<byi<byr<---.

Noting thatjo(t) = sint/t andyp(t) = — cost/t, we have
T

aO,l =, bO,l = E)

i.e. the smallest positive zeros fg(t) andyn(t), n = 0,1, 2, ..., are, respectively, given by and

7 /2. Hence, for alh € N U {0},
jn(t) > 0 fort (0, 7) mdwm<omne@%y

As a consequence, we have
. T
in®Oyat) <0 fort e (O, 5)

uniformly forn e N U {0}.

In the same way, we can show the relati@rBQ). In fact, by Lemma.4, we know that the sequences
(&), 1102 g and{by, ;1> ; are both strictly monotonically increasing. Noting thgt, = 0, which together
with the fact thétta’l’l < 3y, by Lemma2.3 shows that the smallest positive zero fd(t), n =
0,1,2,..., is given bya) ; = 2.08157598 (se®Iver, 196Q Table Ill). Whereas the smallest positive
zero foryy,(t) is given byb{l1 = 2.79838605. Therefore, it is easily seen thattfer (0, 2.08157598,

i) <0, jit)>0, n=123 ..., (2.37)
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and fort € (0, 2.79838605,
y,t) >0, n=0,1,2,.... (2.38)
Combining @.37) and .38, we immediately getZ.30). O
In the rest of this section, we briefly introduce the Legendre polynomials and Jacobi—Anger expan-

sion which are needed for our subsequent investigation (for more detailSpea & Kress 1998.
The Legendre polynomials are generated by the function

1
V1—=2tr 4+r2

which is analytic irr for r € [0, 1) and thus has the following series expansion:

for —1<t <1,

Pa(Dr 2.39
T Z htr” (2:39)
The coefficients functiongPn (t)};°, above are known as the ‘Legendre polynomials’ and they form a

complete orthogonal system lnz[ 1,1].
The following is the ‘Jacobi—Anger expansion’ for plane waves:

ghxd = Z| (2n + 1) jn(k|X]) Pa(cosd) for x e R3, (2.40)
n=0

whered is a unit vectorg = /(X,d) denotes the angle betwednandd (0 < 6 < =) and the
convergence of the serie.40 is uniform on any compact subset Bf. In R2, the Jacobi—Anger
expansion becomes

oo
4 = Jo(kIxl) + 2> i"Jn(kIx|) cosng  for x e R, (2.41)
n=1

whered is a unit vector and = /(X, d).

3. Two unigueness results

In this section, we are ready to present the main uniqueness results of this paper on determining a
sound-soft/sound-hard ball i3 or a sound-soft/sound-hard discitf by one measurement datum.

In the sequel, we assume the centre of the ball/ disc is kreoriori, and this is natural since we
cannot expect one measurement datum to determine more than one unknown. Hence, noting the Laplace
operator is invariant with respect to rigid motions, without loss of generality, we may assume that the
ball/disc is centred at origin, which is of radisand denoted bBg.

3.1 Unigueness for a sound-soft ball or disc

In view of the Dirichlet boundary datd (2) and the Jacobi—Anger expansiéh40), the scattered wave
for a sound-soft balBr c R® corresponding to the incident plane wave gkg - d} is given by (see
Colton & Kress 1998 Section 3.2)

uS(x):= ZI (2n +1) J(:)(( )) hD (k|x|)Pn(cosd) for x € R3\Bg, (3.1)
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wheref = /(X, d) and h,ﬁl)(t) = jn(t) +iyn(t) is the first-kind spherical Hankel function of order
n=0,1,2,.... The corresponding far-field pattern is given by

Uno (R; B, d, k) = LZ;)(z + 1)% P, (COSH). (3.2)
n=!

In R2, noting the Jacobi—Anger expansich4l), the scattered wave fd@g is now given by

S Jo(kR) @ n(kR) @
Hy™ (K 2 Hy” (k 0, 3.3
u3(x) = H(l)( R (kIx|) — ZI <1)(kR) (K|x|) cosn (3.3)

where H,gl) (t) = Jn(t) + iYn(t) is the first-kind Hankel function of order,n = 0,1, 2, ..., and its
far-field pattern is easily deduced (dgelton & Kress 1998 Section 3.4) to be

. [2 kR s kR
Uoo(X; Br,d, k) = -7,/ — #Jrzz#cosne . (3.4)
k| HPkR) S HP KR

From @.2) and @.4), it is observed that ifi (X; Br, do, ko) is known for the fixeddp andko and
R e Sy~ c SN~ (N = 2, 3) such that

{L(&,do);xeS)y (@b, 0<a<b<u, (3.5)

then the far-field pattern can be recovered by the unique continuation on the whole unit$Pphére

and therefore by the uniqueness resultin (1997, both the location and the shape of the ball/disc
can be uniquely identified. In practical applications, the suﬁg'e‘t1 in (3.5 could be chosen to be

an open portion ofi74, N SN~1 with 174, being any hyperplane i®N that containgdp. It is noted

that Condition 8.5) contains an infinite set of observation data. Then, a natural question arises: if the
observation data are available only at a finite discrete set of the observation directiBfs frcan

the ball be uniquely determined? This question is surely important and meaningful to real applications.
Next, we will give a definite answer to the question. In fact, surprisingly we are able to show that only
one single observation datum is sufficient to uniquely determine the shape of the ball/disc. This is the
first result of such kind, using a single observation datum.

THEOREM 3.1 The far-field datunu(do; Br, do, ko) uniquely determines the radius of a sound-soft
Br in RN provided

/2, for N = 3,
0 < kR < (3.6)
0.89357697 for N = 2.

Therefore, one measurement datum at one observation direction corresponding to a single incident plane
wave uniquely identifies the radius of a sound-soft ball or disc.

Proof. By contradiction, suppose there exist two sound-soft lisand Br, with Ry > Ry > 0 such
that
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In theR3 case, we have fron8(2) with = Z(do, do) = O that
oo (o: B, o, ko) = Z(z +1) ‘(jfz‘;’o;) Pa(d). (3.8)

From series expansio.89, we see thaP,(1) = 1 foralln e NU{0}. Then, it follows from 8.7) and
(3.8 that

in(t1) in(t2)
Z(z +1) (1)1 Z( h(1>2 (3.9)

n=0 )
wheret; = kgR1, t2 = kgRo and O< to < t1 < 7 /2 by (3.6).
Set
in(®) _ in(®)
hr(11)(t) jn(®) +iyn(t)

On(t) = = an(t) —ian(t),

fort € (0, +o00) andn =0, 1, 2, .. .. Itis easy to find out that

0 ~ Oy
“O=o+ro Y=o +eo (3.10)
and we know by 3.9) that
> @0+ Dan(t) = D (20 + Dan(t2). (3.11)
n=0 n=0

Next, using the definition af,(t) in (3.10 and the Wronskian relation for spherical Bessel functions
(see (2.36) irColton & Kress 1998, we can derive

a;](t) _ 2jn (O YN[ OYn(t) — jn(®)Yn ()] __ E jn(M®OYn(t) (3.12)

[i2@) + ya()]? t2[j2) + Y212

Then by the first statement in Theoré2, we conclude thatfon =0, 1, .. .,

ap(t) >0 forte (0, %)

which implies thatx, (t) is strictly monotonically increasing fdre (0, z/2) uniformly inn € N U {0}.
Therefore, seeing that@ t; < t; < 7/2, we have

(ln(tl) > an(tz) > 0, n= 0, 1, .

But this obviously contradicts3(11).
For theR? case, we derive by using the relatidh4) and the assumptior8(7) that

Jo(t1) o Jn(t1) Jo(t2) — Jn(t2)
—= 42 = +2 _— 3.13
HEY ) ; H ) HP () ; Hi® (t2) (349
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wheret; = kgR1, t2 = kgRo and O< tp < t; < 0.89357697 by 3.6). Now, we set

O IR 1O N
M= T - = T v = 0~ Tl

fort € (0,+o00)andn=0,1,2,..., and itis easy to check that

_ J2(1) = o In(®)Yn()
O=2o+vzo YT Ro+vo (319
Then we obtain from3.13),
Lo(t) +2 " Anltr) = Ao(t2) + 2D Int2). (3.15)
n=1 n=1

But by definition of i, (t) in (3.14) and the Wronskian relation for the Bessel functions (see (3.56) in
Colton & Kress 1998, we find that

L 2RO OO — ROYO] 4 IOYal)
Anl) = [20) + Y22 =T azo sveor GO

Then by the first statement in Theoréhi, we conclude that fon =0, 1, .. .,
Jnt) >0 fort e (0,0.89357697,

and this implies that(t) is strictly monotonically increasing fdr € (0, 0.89357697 uniformly in
n € NU {0}. Hence, noting that & t, < t; < 0.89357697, we come to

In(t) > Ant) >0, Nn=0,1,...,

which clearly contradicts with the equalit$.(5. a

3.2 Uniqueness for a sound-hard ball or disc

In view of the Neumann boundary data) and the Jacobi—Anger expansiéi40), the scattered wave
for a sound-hard baBg c R2 corresponding to the incident plane wave gkg - d} is easily derived
to be (seerun, 2001

uS(x) = Zm(z +1) (1)5( ))h(l)(k|x|)P(cosH) for x € R3\Bg, (3.17)

whered = /(d, X). Its corresponding far-field pattern is given by ($eeton & Kress 1998 Theo-
rem 2.15)

Uso (X; BRr, d, k) = c Z(Zn + 1)#”1) P (cosd). (3.18)
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In R, the scattered field and its far-field pattern are given by

JykR) — ., J(KR)

uS(x) = —— 20— HP (k|x|) — 2D i"—1 = H D (k|x|) cosnd), (3.19)
HP (kR —~ HY'«kR
= [2 ] J(KR S J(kR
Uso(R; Br,d, k) = —e ' =y [% + 22 % cosn&] . (3.20)
TE LHy” (kR) n=1 Hn” (KR)

Similarly to the sound-soft case, using the uniqueness resdlirii2007), it is observed from3.18
and @.20 that the far-field data corresponding to a single incident plane Waﬁfg'ﬁﬁsatisfying 3.5
uniquely identify the ball/disBg. It is also similar to the sound-soft case that the determination of a
sound-hard ball by a single observation datum is not only mathematically interesting but also practically
important and meaningful. This is answered by the following theorem.

THEOREM 3.2 The far-field datunu (do; Br, do, ko) determines the shape of a sound-hard ball/disc
Br in RN uniquely provided
V2 forN =3,

0 < koR 321
=10 <[1 for N = 2. (3-21)

Proof. We suppose by contradiction that there exist two sound-hardBajlandBg, with Ry > Ry >0
such that

Uso (do; BRy, do, ko) = Uso (do; Br,, do, ko) . (3.22)
In the case oR3, we see from%.18 and .22 that
< ht) < jh(t2)
@n+ 1= =D '@2n4+ 1) (3.23)
nZo hi (ty) Z:(:) hi (t2)
wheret; = koRy, t1 = koRy and O< to < t1 < +/2 by (3.21).
Set
o W
Ta®:= WDy IO +iv'® = /n® =10
Clearly,
., 2 .
in"(® = In®Yya®)
nt:—, nt:—. 324
PO= 120 rwo YT R0 o ©29
Then, we have from3.23 that
D@0+ Dpalt)) = D (20 + Dpa(ta). (3.25)
n=0 n=0
By straightforward calculations, we derive
,B/n(t) — 2jn(t)yn(t)[jn(t)yn(t) - jn(t)yn(t)] ] (3.26)

(1520 + 2]
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Noting that bothj, andy, satisfy the spherical Bessel differential equatiar2{),

"_ i/ tz_n(n+1)-
In —_F]n - t—zlna
t2—n(n+1)
yg: _fyrl'l - t—zyna

thus by the Wronskian relation for spherical Bessel functions (see (2.8&)lion & Kress 1998, we
obtain

. . t2—nin+1) . . nn+1) —t?
v = v = g Gy — ) = D (3.27)
Using this, we get from3.26) that

1) —t2  2jib)ya(t
= N+ HORO
(i + 20|

By the second statement in Theor@m, one can easily check that for=10, 1, . . .,
Bat) >0 for0O<t <~/2,

which implies thaign (t) is strictly monotonically increasing for @ t < +/2 uniformly inn € N U {0}.
Therefore, we have
Bn(t1) > fn(t2) >0 forn=0,1,...,

but this clearly contradicts with the equality.25).
In the case oR?, we readily see the following from the expressi@r2Q) and the assumptio3(22:

Ji( = JAt J4( = J(t
((i)(/ . 2 (ri)(/ L - ((i)(/ 2 2 (ri)(’ 2 ’ (3.28)
Hy™ (t1) n—1 Hn” (t1)  Hy~ (t2) n—1 Hn” (t2)
wheret; = kgR1, t2 = kgRo and O< t2 < t1 < 1 by (3.21). Now, we set
Jn' () Jn'(t) i~
An(t):= = - = () — 1y ,().
Itis easy to see
2t N JOY(t
= —2 W5 ¢ = O (3.29)

I + YA 2 + YA

So we have from3.28) that

7o(t) +2 D yn(t) = yo(t2) +2 D yn(ta). (3.30)
n=1 n=1
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Now using the Wronskian relation for the Bessel functions (see (3.36dlton & Kress 1998 and the
Bessel differential equatior2 (3 for J,(t) andY(t), we can derive

23OV OLH Y50 — HOYFO]
[320 + Y20)]
n?—t2  2J.(1)Yi()
rt3 2°
[ 320 + 2w

Y /n(t) =

Then by the second statement in Theoiz) we obtain
y'y®) >0 forO<t <1
Hence,yn(t) is strictly monotonically increasing for @ t < 1 uniformly inn € N U {0}. So we have
yn(t1) > yn(t2) >0, n=0,1,...,

but this clearly contradicts with the relatio®.80). O
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