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Abstract. This paper reports the first spherical numer-
ical dynamo based on a three-dimensional finite element
method. We investigate a nonlinear dynamo in a turbu-
lent electrically conducting fluid spherical shell of constant
electric conductivity surrounded by an electrically hetero-
geneous mantle. Magnetic fields in the form of a three-
dimensional azimuthally traveling dynamo wave are gener-
ated by a prescribed time-dependent « in the fluid shell.
In the inner sphere, we assume that there is a solid elec-
trical conductor with the same conductivity as that of the
fluid shell. Equilibration of the generated magnetic fields is
achieved by the nonlinear process of a-quenching. We show
for the first time that finite element methods can be effec-
tively and efficiently employed to simulate three-dimensional
dynamos in spherical systems. We also show that an electri-
cally heterogeneous mantle can modulate the core dynamo,
leading to a vacillating dynamo whose amplitude depends
upon the relative phases between the generated magnetic
field and the heterogeneous mantle.

Introduction

There is evidence indicating that the Earth’s lower man-
tle adjacent to the core-mantle interface is thermally and
chemically heterogeneous (for example, Weber, 1993; Lay et
al., 1998). Thermal variations at the base of the mantle im-
pose a nonuniform thermal boundary condition that affects
convection in the outer fluid core (Bloxham and Gubbins,
1987; Zhang and Gubbins, 1993; Sumita and Olson, 1999).
Chemical variations may lead to spatially varying magnetic
diffusivity in the lowermost mantle (Jeanloz, 1990). The
magnetic interaction between the core and lower mantle
would certainly influence the behavior of the geodynamo.
In fact, it was shown by Busse and Wicht (1992) that mag-
netic fields can be generated by a uniform flow over an elec-
trically heterogeneous wall like the mantle. Buffett (1996)
showed that conductivity variations in the lowermost man-
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tle can significantly change the velocity and magnetic field
at the top of the core. Both these studies used a Cartesian
approximation.

Nearly all existing geodynamo models employ spectral
methods based on spherical harmonic expansions (Zhang
and Busse, 1989; Glatzmaier and Roberts, 1995; Sarson and
Jones, 1999; Kuang and Bloxham, 1997; Olson et al., 1999;
Christensen et al., 1999). Dormy et al. (2000) recently
provide a comprehensive summary and comparison of vari-
ous geodynamo models. When a geodynamo model assumes
that the whole mantle is a perfect insulator, the magnetic
field B in the mantle satisfies

V xB=0, (1)

V-B=0. (2)

It follows that the magnetic field B in the perfectly insulat-
ing mantle can be simply written as

Clan < ym
B=-V|Y Y G5Y"(0.9), (3)
l m

where (7, 0, ¢) are spherical polar coordinates, Y;™ are spher-
ical harmonics and Cj,, are coefficients of the expansion. If
the magnetic field in the fluid outer core is also expanded
in terms of spherical harmonics similar to (3), the values of
Cim can be determined by matching conditions at the inter-
face between the electrically conducting fluid core and the
electrically insulating mantle. As a result, we do not need to
solve (1) and (2) explicitly for the mantle. This is perhaps
the most significant advantage in using the spectral method
for simulating a spherical dynamo. However, spatially vary-
ing electric conductivity in the lower mantle, which does
not permit a solution given by (3), would complicate the
corresponding analysis substantially.

There are a number of important reasons why we bene-
fit from a numerical geodynamo that uses a finite element
method. The main one is that the Legendre transform which
is computationally inefficient severely limits the efficiency of
the spectral methods in large-scale parallel simulations. The
global nature of the spectral methods causes difficulties in
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an efficient implementation on massively parallel comput-
ers with a large number of processors. A new generation of
geodynamo model using fundamentally different numerical
methods such as finite element methods is highly desirable.
Other reason is that the spatial local variation of conductiv-
ity can be readily incorporated into a finite element geody-
namo model. However, there is a major numerical difficulty
in using finite element methods for a spherical dynamo prob-
lem: the conflict between the local nature of finite element
methods and the global nature of magnetic field boundary
conditions. In this paper, we use a simple nonlinear o?
dynamo model to show that the conflict can be resolved by
employing an asymptotic magnetic boundary condition. We
also use the finite element model to examine how the behav-
ior of nonlinear time-dependent dynamos in the fluid core
can be influenced by an electrically heterogeneous mantle.

Model, Method and Results

We consider the Earth’s outer core as a turbulent fluid
spherical shell of inner radius r; and outer radius r, with
constant magnetic diffusivity A. We assume that magnetic
fields are generated by an a-effect (Roberts, 1972, Moffatt,
1978) in the fluid shell. The inner sphere 0 < r < 7; is as-
sumed to be a solid electrical conductor that has the same
magnetic diffusivity A as the shell. The fluid shell is sur-
rounded by a mantle, r, < r < ry, that has a spatially
varying magnetic diffusivity, An,, of the form

Am = Aqu(T)M(ea ¢)7 (4)

where ¢ is a positive constant and M (6, $) and Q(r) are
positive functions. With this simple choice, the lowermost
mantle has moderate magnetic diffusivity while the rest of
the mantle behaves like an insulator.

In the solid inner core and mantle, the magnetic field B
is governed by the magnetic diffusion equation. In the fluid
shell, the magnetic field is generated by a nonlinear spherical
a? dynamo governed by the equations

0B aoa(r, 8, ¢,t)

V-B=0, (6)

where ay is a parameter and the factor (1+s|B|*) ™! involves
the nonlinear process of alpha quenching which saturates
the growing dynamo (Roberts and Soward, 1992). We take
s = 1 in our model. We nondimensionalize length by the
thickness of the shell (r, —r;) and time by the magnetic dif-
fusion time (rn—ri)Q/)\ of the fluid shell. In consequence, the
key nondimensional parameters characterizing the dynamo
problem are the radii ratio n and the magnetic Reynolds
number R,

T o — T4)|u
=1, Ro=lezpllol ™)
At the two interfaces of the fluid shell, » = r; and r =
ro, we impose the conditions that all components of the
magnetic field and the tangential component of the electric
field are continuous. Furthermore, we require that there are
no sources at infinity

B=0("?), as r— oco. (8)

We assume a three-dimensional, time-dependent « of the
form

a(r,0,¢,t) =cosO[1 + ey sinm(r — ry) sin(me — wt)], (9)

in the region r; < r < r,, where m is an azimuthal wavenum-
ber (we choose m = 2) and €5 < O(1). Our choice of « is
suggested by the recent laboratory experiment that simu-
lates convective motions in the Earth’s fluid core in the pres-
ence of a thermally heterogeneous lowermost mantle (Sumita
and Olson, 1999). It shows that there exists two widely dif-
ferent scales of convection: a small-scale turbulent flow as-
sociated with the asymptotic law [ = O(E"/?), where [ is the
scale of the flow and E is a small Ekman number (Gubbins
and Roberts, 1987); and a large-scale non-axisymmetric flow
in connection with the large-scale spatial thermal structure
of the lowermost mantle. In other words, our choice (9) at-
tempts to reflect the two-scale feature of convective motions
in the Earth’s fluid core that are strongly affected by both
rapid rotation and large-scale non-uniformity of the lower
mantle (Bloxham and Gubbins, 1987; Olson and Glatzmaier,
1996, Sumita and Olson, 1999).

The major difficulty in employing a finite element method
for a spherical dynamo problem involves the satisfaction of
the magnetic field boundary conditions. We have resolved
this difficulty by making the following asymptotic approx-
imation. We replace an infinitely extended outer exterior
of the fluid core by a thick spherical layer in the region

ro <1 < rm such that
3
r
(—m) > 1
To

For a sufficiently large (rm /7o), we can replace condition
(8) by a simple local boundary condition

(10)

B=0 at r=rn, (11)
which can be readily implemented by finite element meth-
ods. We have performed various tests comparing our fi-
nite element solutions using condition (11) with analyti-
cal or semi-analytical solutions using the asymptotic con-
dition (8). It is found that a finite element solution with
(rm /7o) & 4 is usually sufficiently large to yield the asymp-
totic result within about 1% accuracy. For example, tak-
ing 7o = 5/3(n = 0.4) for an electrically uniform mantle,
we obtain analytically the slowest decay rate, ¢ = 3.55,
for the largest scale of poloidal magnetic fields in the limit
rm/To — 00. When we use the asymptotic boundary con-
dition (11) with (rm /7o) = 6, our time-dependent finite ele-
ment model yields o = 3.57.

We now briefly describe the three-dimensional finite ele-
ment discretization of our model. We first triangulate the
outer spherical surface. In our calculation, meshes on a
spherical surface comprise 320 or 1280 triangles. The next
level will have 1280 x 4 = 5120 triangles on the surface. For
our dynamo problem, the resolution with 1280 triangles on a
surface is sufficient. To avoid a large number of nodes in the
neighborhood of the center, we use two different schemes to
divide the whole spherical system into smaller tetrahedra:
One is for the spherical shell and the other is for the inner
sphere. In short, the three-dimensional tetrahedralization
produces a uniform mesh distribution on a spherical sur-
face without the pole problem and nearly uniform nodes in
the inner sphere without the origin problem. As a typical
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Figure 1. Magnetic energy as a function of time for R, = 15
at n =0.4.

feature of a finite element method, the meshes in a particu-
lar region such as the core-mantle boundary can be refined
locally if a higher resolution is required there. In each tetra-
hedron, a linear or quadratic interpolation function is used
as a basis function. Application of the standard finite ele-
ment procedure yields a system of nonlinear equations. We
then use the Crank-Nicholson method for time integration
while the nonlinear term is treated explicitly by a second-
order extrapolation scheme. Additional technical details of
our finite element method will be discussed in a separate
paper (Chan et al., 2001).

Any spatial variation in Ap, (7,0, ) can be readily imple-
mented in our finite-element model. However, we do not
know the actual spatial variation of A, (7,6, ¢) in the lower
mantle. As a result, we assume a simple azimuthal periodic

Figure 2. Contours of the radial magnetic field B, at the core-
mantle interface plotted at ¢ = 4.5. and viewed at the north pole.
Solid (red) contours indicate that the field lines point out of the
interface and dashed (blue) contours correspond to field lines that

point into the fluid core. The parameters are R, = 15.0 and

n=0.4.

variation of the magnetic diffusivity in the lower mantle sim-
ilar to that used by Buffet (1996),

Am = A[1 + ¢4 sin(me) sin 6] e, (12)
We have used two different profiles, Q(r) = (r — r,) and
Q(r) = 7/r0, in our calculations and they give rise to similar
solutions. We choose ¢ = 0.6, n = r3/1o = 0.4, and m = 2
with either 7,,/r, = 3 or /7, = 6. We have simulated
many nonlinear dynamos at various values of the magnetic
Reynolds number. When the magnetic Reynolds number R,
is less than about 10, there are no growing dynamo solutions.
When ¢, is zero, we always obtain a three-dimensional non-
linear dynamo wave with constant amplitude as a result of
a uniform core-mantle interface. When ¢4 is non-zero, i.e.,
when the core-mantle interface is electrically nonuniform,
the resulting nonlinear dynamo is in the form of a vacil-
lating solution with a periodic variation of its amplitude.
This is because the amplitude of the generated magnetic
field is determined by the relative phases between the dy-
namo wave and the heterogeneous mantle. Figure 1 shows
the time dependence of the magnetic energy of a nonlinear
dynamo obtained at R, = 15, w = 5 and ¢4 = 0.9. The pe-
riod of vacillation, 7, is, of course, associated with the value
of the speed of the wave, w/m. In this case with m = 2 and
w = 5, we have 7 = 47 /5 = 2.51. But the period of the
magnetic energy |B|*> shown in Figure 1is 7 = 2.51/2. In
Figure 2, we show the structure of the radial component of
the generated magnetic fields at the core-mantle interface at
a particular instant. The non-axisymmetric magnetic fields
of the vacillating dynamo drift azimuthally in a direction
dependent upon the sign of w. The radial component of the
magnetic field is dominated by two magnetic flux tubes and
the vacillating dynamo solution has dipolar symmetry.

The nonlinear dynamo shown in Figures 1 and 2 is cal-
culated with rp, /7, = 6. Figure 3 shows the numerical so-
lution in the whole domain of our calculation 0 < r < 7ry,.
It clearly indicates that the penetration of the toroidal field

To <17 < Ty
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Figure 3. Contours of By in a meridional plane showing the
three domains of our dynamo calculation, the inner sphere, the
fluid shell and the outer exterior. Dashed (blue) contours indicate
that the toroidal field lines point out of the plane of the figure
and solid (red) contours correspond to the fields that point into
the plane. The parameters are the same as those in Figure 2.
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is confined to a thin layer adjacent to the interface r = r,.
At the same time, the poloidal field with (rm/ro)3 ~ 200 is
so weak that the local condition (11) represents a fairly ac-
curate boundary condition. In fact, we have also performed
the same simulation using r, /7, = 3, which produces nearly
the same dynamo solution as that with ry, /7, ~ 6.

Some Remarks

Finite element methods have been widely used in many
areas of scientific computing including fluid dynamics. This
paper represents the first attempt to employ finite-element
techniques for solving the problem of spherical planetary dy-
namos. We have resolved the two most important problems
in finite-element geodynamo modeling: (i) the conflict be-
tween the local method and the global boundary condition of
the generated magnetic field, and (ii) the three-dimensional
finite-element discretization for the whole spherical system.
Although this paper is not concerned with convection-driven
dynamos, an extension of our model to include thermal con-
vection is a straightforward matter. This is because the tem-
perature and velocity have local boundary conditions which
can be easily treated by the finite element method.

A key feature of our finite-element geodynamo model is
that the region exterior to the fluid core (the mantle and
surrounding space) is a part of the system whose governing
equations must be solved numerically together with those for
the fluid core. It follows that the three-dimensional struc-
ture of a thermally or an electrically heterogeneous mantle
can be readily incorporated into our finite-element model
without extra effort. In this sense, this is a convenient and
powerful method when one constructs a whole-earth geody-
namo model that includes both the fluid core and a hetero-
geneous mantle.

This paper represents the first and most important step
in our effort to construct a convection-driven, whole-earth
geodynamo model using the finite element method, which
is also particularly suitable for a massively parallel com-
puter. There are two related investigations that are cur-
rently underway. The first is to extend our present model
to include the equation of motion which couples with the
dynamo equation (5) by the Lorenz force. The second is to
design a suitable parallel algorithm for the fully convection-
driven dynamo problem.
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