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Abstract. We prove that a polygonal scatterer in R
2, possibly consisting of

finitely many sound-soft and sound-hard polygons, is uniquely determined by
a single far-field measurement.

1. Introduction. We consider an acoustic scattering problem by an impenetrable
obstacle D, which is assumed to be a compact set in R2 with connected complement
G = RN\D. Let ui, us and u = ui +us denote, respectively, the incident, scattered
and total filed. Throughout, we take ui(x) = exp{ikx · d} to be a time-harmonic
plane wave, with i =

√
−1, incident direction d ∈ S1 := {x ∈ R2; |x| = 1} and wave

number k > 0. Then the direct scattering problem is described by the following
Helmholtz equation

∆u + k2u = 0 in G = R2\D. (1)

The Helmholtz equation (1) is complemented by the following Sommerfeld radiation
condition

lim
r→∞

r1/2(
∂us

∂r
− ikus) = 0, (2)

with r = |x| for any x ∈ R2, and either one of the following boundary conditions:

u =0 on ∂G (the sound-soft obstacle); (3)

∂u

∂ν
=0 on ∂G (the sound-hard obstacle); (4)

where ν is the unit normal to ∂G directed into the interior of G.
It is known that for any Lipschitz domain G, there exists a unique solution

u = u(D; k, d) ∈ H1
loc(G) to the above Helmholtz system, and u is analytic in G
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(see [12]). Moreover, the asymptotic behavior at infinity of the scattered wave us

is governed by

us(x) =
eik|x|

|x|1/2

{
u∞(x̂) + O(

1

|x| )
}

as |x| → ∞, (5)

uniformly for all directions x̂ = x/|x| ∈ S1. The analytic function u∞(x̂) is defined
on the unit sphere S1, and often called the far-field pattern (see [3]). We shall write
u∞(x̂;D, d, k) to specify its dependence on the observation direction x̂, the obstacle
D, the incident direction d and the wave number k. The inverse obstacle scattering
problem is to determine ∂G from the measurement of u∞, which widely occurs in my
practical applications, e.g., radar, sonar and non-destructive testing. In the present
paper, we are mainly concerned with the uniqueness issue in the inverse problem,
i.e., is the correspondence between u∞(x̂;D, k, d) and D one to one? This is a well-
known problem and still largely remains open (see Problems 6.3 and 6.4, [9]). We
also refer to [5] for a review of the existing uniqueness results. Recently, extensive
study has been focused on establishing uniqueness for polyhedral (polygonal)-type
scatterers by means of unique continuation along lines (planes) and reflection ar-
guments for solutions of Hemlholtz equation (1) (see [1],[6],[8],[10]). It is now clear
that a general sound-soft polyhedral scatterer in RN(N ≥ 2), possibly consisting
of finitely many solid polyhedra and subsets of (N − 1)-dimensional hyperplanes,
is uniquely determined by the far-field pattern corresponding to a single incident
plane wave at an arbitrarily fixed wave number and incident direction (see [1] and
[10]). Whereas for the sound-hard case, such uniqueness is established in [10] by
N far-field measurements corresponding to N incident plane waves given by a fixed
wave number and N linearly independent incident directions. For a particular case
with one solid two-dimensional sound-hard polygon, the uniqueness is verified in [8]
by only one incoming wave. In the current work, we will establish the uniqueness
by a single incident wave for a much more general sound-hard polygonal scatterer
which consists of finitely many polygons. In fact, we have stepped further by prov-
ing the uniqueness in a much more challenging setting without knowing a prior the
physical properties of the underlying scatterers. It is remarked that all the afore-
mentioned existing uniqueness results are established under the a prior knowledge of
the physical properties on the underlying obstacles, that is, the obstacle is known
to be sound-soft or sound-hard. However, in more realistic applications, such a
prior information may not be always available. An example of such a situation is
the detection of buried objects from the far-field or near-field measurements (see,
e.g., [2]), where it is naturally assumed that (i) the number of components of the
scatterer under consideration is finite but unknown; (ii) the physical properties of
each component are unknown and it may even happen that some components of
the scatterer are sound-soft while the others are sound-hard. Hence, the uniqueness
results established in the present paper would be of much more practical interest
and importance.

The rest of the paper is organized as follows. In Section 2, we present the main
uniqueness result. Section 3 is devoted to the proof of the main theorem. In
Section 4, we give proofs of some of the key lemmata needed in Section 3. And the
paper is concluded in Section 5.

2. Main uniqueness result. We start with a detailed description on the two-
dimensional polygonal scatterers, which will be handled in this work.
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Definition 2.1. D ⊂ R2 is called a multiple polygonal scatterer of mixed type if

(i) D is a compact set with connected complement G = R2\D;

(ii) D =
m⋃

j=1

Dj , where each Dj, j = 1, 2, . . . , m, is a compact polygon and Dj ∩

Dj′ = ∅ if j 6= j′;
(iii) The number m of components is finite but unknown. The physical property of

each component obstacle Dj , j = 1, 2, . . . , m, is unknown but must be either
sound-soft or sound-hard.

Now, based on Definition 2.1, the direct problem associated with such a scatterer
clearly consists of the Helmholtz system (1)-(2) and the following mixed boundary
condition,

u = 0 on
m′⋃
j=1

∂Dj and ∂νu = 0 on
m⋃

j=m′+1

∂Dj, (6)

where 0 ≤ m′ ≤ m. This corresponds to the case that D1, . . . , Dm′ are sound-
soft polygons, while Dm′+1, . . . , Dm are sound-hard type. Henceforth, we shall use
Bu = 0 to represent the above boundary conditions on ∂D. In the sequel, without
loss of generality, we may assume that the mixed-type polygonal scatterer D satisfies
1 ≤ m′ ≤ m− 1, that is, there are both sound-soft and sound-hard components. In
fact, if all the components of the scatterer D are of the same type, i.e., all sound-soft
type, or all sound-hard type, then the uniqueness result given in Theorem 2.2 below
can be easily seen from our subsequent proof with scatterers of really mixed type.

Finally, we would like to mention a fact on the forward scattering problem that
will be implicitly used in the subsequent analysis: if x0 ∈ ∂G is an interior point
of one of the edges forming ∂G, then it is a regular point for the problem and the
total field u is infinitely smooth up to that point (see Chapter 4, [12]).

Next, we are ready to state the main result of this paper.

Theorem 2.2. Assume that D and D̃ are two mixed-type multiple polygonal scat-

terers as described in Definition 2.1, with respective boundary conditions B and B̃.

If the far-field patterns for D and D̃ coincide for a single incident plane wave at

one arbitrarily fixed incident direction and wave number, then D = D̃ and B = B̃.

Remark 1. Compared to the uniqueness result in [8] concerning a single sound-
hard polygon by a single far-field measurement, the novelty of our uniqueness result
lies in two aspects: the uniqueness applies to scatterers composed of finitely many
disjoint polygons; the uniqueness holds without a prior information on the physical
property of each component of the underlying scatterer.

In fact, our uniqueness holds in a more general setting without the pairwise
disjoint condition ( see Theorem 5.1 in Subsection 5.1). But to ease our exposition,
we will first concentrate on the relatively simpler disjoint case.

3. Proof of Theorem 2.2. We first fix some notations which shall be used through-
out the rest of the paper. For two distinct points P, Q ∈ R2, PQ denotes the open
line segment with the endpoints P and Q. Let D be a polygonal scatterer as defined
in Definition 2.1, then for a line segment PQ ⊂ G = R2\D with Q ∈ ∂G, we denote
by ∠(PQ, ∂G) the least one among the two angles in G formed by PQ and ∂G at
Q. △PQR represents the interior of the triangle with three vertices P, Q, R, which
are non-collinear, and ∠PQR stands for the interior angle at Q. We will denote an
open disc in R2 with center x and radius r by Br(x), the closure of Br(x) by B̄r(x)
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and the boundary of Br(x) by Sr(x). Moreover, the notation Tr(x) is defined to
be an open square of edge length r, centered at x, while T̄r(x) is its corresponding
closure. Unless specified otherwise, ν shall always denote the outward normal to a
concerned domain, or the normal to a line. Also we may often write u(E) = 0 for
any subset E ⊂ R2 if u(x) = 0 for x ∈ E. The distance between two sets A and B
is defined by d(A,B) = infx∈A,y∈B |x − y|. Finally, a curve γ = γ(t)(t ≥ 0) is said

to be regular if it is C1-smooth and d
dtγ(t) 6= 0.

Next, we recall some auxiliary results. The first one is about a fundamental
property of a connected set, see e.g., Theorem 3.19.9 in [7].

Lemma 3.1. Let E be a metric space, A ⊂ E be a subset and B ⊂ E be a connected
set such that A∩ B 6= ∅ and (E\A) ∩ B 6= ∅, then ∂A ∩ B 6= ∅.

Lemma 3.2. Let E be a domain in R2 and v ∈ H1
loc(E) be a solution to ∆v+k2v =

0 in E. If l0 and l are two line segments in E such that l0 ⊂ l and ∂νv = 0 (resp.
v = 0) on l0, then ∂νv = 0 (resp. v = 0) on l.

Proof. Noting v is analytic in E, the lemma is readily seen by analytic continuation.

Lemma 3.3. Let u be a solution to the system (1), (2) and (6). Then there exists
no infinite straight half-line l ⊂ G such that u = 0 on l. And there cannot exist
two infinite half-lines l1, l2 ⊂ G such that l1 and l2 are not parallel and ∂νu = 0 on
l1 ∪ l2.

Proof. From the asymptotic expression (5), one can easily see that us(x) → 0
as |x| → ∞. Furthermore, by applying the Green’s formula on the sphere of a
sufficiently large ball containing D, one directly derives that lim|x|→∞ |∇us(x)| = 0
(see the proof of Lemma 2 in [6]). The lemma then follows readily from Lemma 3.1
in [1] and Lemma 2 in [6].

Lemma 3.4. Let Ω be a connected polygonal domain in R2, OA be one of its sides
such that Ω is located at one side of OA, and R be the reflection in R2 with respect to
the extended straight line of OA. Let E be a domain in R2 such that Ω∪R(Ω) ⊂ E.
If v ∈ H1(E) satisfies ∆v + k2v = 0 in E, then we have

v(x) = −Rv(x) in Ω ∪ R(Ω) if v = 0 on OA;

v(x) = Rv(x) in Ω ∪ R(Ω) if ∂νv = 0 on OA,
(7)

where Rv(x) = v(R(x)). Consequently, if v = 0(∂νv = 0) on any other side BC of
∂Ω except OA, then v = 0 (∂νv = 0) on R(BC).

Proof. This lemma is known as the reflection principle for the Helmholtz equation
and can be verified by a combination of the proofs of Theorem 1 and Theorem 2 in
[10]. See also Lemma 1 in [8] and Lemma 3 in [6].

Our proof of Theorem 2.2 will be based on a careful study of the behaviors of
some line segments in G := R2\D, on which u assumes homogeneous Dirichlet or
Neumann data. For this purpose, we now introduce those special line segments.
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Define

S1 :={l; l is a finite open line segment extended

to maximum length in G such that u = 0 or ∂νu = 0 on l}, (8)

S2 :={l; l is an infinite open line segment extended

to maximum length in G such that u = 0 or ∂νu = 0 on l}. (9)

It is easily seen that any line segment in S1 must have its two endpoints on ∂D,
and they may lie on a single component polygon of D, or two different component
polygons of D. Whereas for any l ∈ S2, it is either a straight line in G or an
infinite half-line in G having one endpoint on ∂D. Furthermore, from Lemma 3.3,
we see that it must have that ∂uν(l) = 0 if l ∈ S2, and S2 cannot have two different
segments which are not parallel to each other.

Starting from now on, we shall use the notation Lj , with j being an integer, to
represent the straight line in R2 containing some line segment lj ⊂ S1 and denote
by Rj the reflection in R2 with respect to Lj .

For our convenience, we shall reclassify the finite line segments in S1 as below.
For any line segment l0 ∈ S1, we fix a point x0 ∈ l0. Since x0 ∈ G, we can take
a sufficiently small ball Br0

(x0) with r0 > 0 such that B̄r0
(x0) ⊂ G. Then, we

take a point A ∈ Sr0
(x0)\l0 and let B be the symmetric point to A with respect to

L0. Now, let G+
0 be the connected component of G\l0 containing A and G−

0 be the
connected component of G\l0 containing B. It is remarked that it may happen that
G+

0 = G−
0 . Next, let E+

0 be the connected component of G+
0 ∩R0(G

−
0 ) containing

A and E−
0 be the connected component of G−

0 ∩ R0(G
+
0 ) containing B. We then

introduce a symmetric set with respect to L0:

E0 = E+
0 ∪ l0 ∪ E−

0 . (10)

We know that E0 must be a connected set with its boundary composed of some line
segments on ∂D and R0(∂D) and B̄r0

(x0) ⊂ E0. Here, it is noted that the set E0

is independent of the choice of r0. Then we introduce two subsets of S1:

G1 :={l0 ∈ S1; the connected set defined in (10) associated with l0 is bounded},
G2 :={l0 ∈ S1; the connected set defined in (10) associated with l0 is unbounded}.
Since ∂E0, ∂G±

0 and R0(G
±
0 ) are all bounded by our construction, we see that if

l0 ∈ G2, then E0 would contain R2\Br(x0) with x0 ∈ l0 and r > 0 being sufficiently
large.

Next we shall present some crucial properties of the special line segments intro-
duced above, which form the key lemmata in proving Theorem 2.2. But since the
proofs for most of those lemmata involves rather lengthy and technical arguments,
we would leave them for the subsequent Section 4 and focus ourselves on the proof
of Theorem 2.2 in the current section.

In the following, two line segments lj , lj′ ⊂ G2 are called the “same” if Lj = Lj′ ,
otherwise, they are “different”. Now, we have

Lemma 3.5. There exists no line segment l0 ∈ G2 such that u = 0 on l0. Further-
more, the set G2 do not contain two “different” line segments.

Lemma 3.6. For each line segment l ∈ G2 such that u(l) = 0 (resp. ∂νu(l) = 0),

there corresponds an infinite half-line L̃ which is collinear to l such that u(L̃) = 0

(resp. ∂νu(L̃) = 0).
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Lemma 3.7. There cannot exist two infinite half-lines l1, l2 ⊂ G which are not
collinear such that ∂νu = 0 on l1 ∪ l2, disregarding whether or not they are parallel
to each other. Moreover, there cannot exist two non-collinear line segments l1, l2
such that l1 ∈ G2 while l2 ∈ S2.

Here we would like to make some important observations. Let l0, l
′
0 ⊂ G such

that ∂νu = 0 on l0 ∪ l′0. Then by Lemma 3.7, we know that either l0 and l′0 are
collinear; or l0, l

′
0 ∈ G1; or l0 ∈ G1 while l′0 ∈ S2. For the third case, we have

Lemma 3.8. There exist no line segments l0 ∈ S1 and l′0 ∈ S2 such that l0 intersects
l′0 at a unique point P ∈ G.

We proceed to present a lemma concerning the relationship among line segments
in the set S1.

Lemma 3.9. For each line segment l0 ∈ G1, there corresponds a line segment
l′0 ∈ G2.

The following is a lemma on the finiteness of the set S1.

Lemma 3.10. The set S1 = G1 ∪ G2 contains at most finitely many segments.

Finally, for our uniqueness argument, we need to make another classification of
the line segments in S1 and introduce the following two subsets:

S11 :={l; l ∈ S1 and the two endpoints

of l lie on a single component polygon of D}, (11)

S12 :={l; l ∈ S1 and the two endpoints

of l lie on two different component polygons of D}. (12)

Apparently,
S1 = S11 ∪ S12.

For S11 and S12, we have

Lemma 3.11. If l ∈ S11, then G is divided by l into two (open) connected compo-
nents, where one is bounded and the other is unbounded. Whereas if l ∈ S12, then
G\l is connected; that is, G\l has only one (open) connected component which is
G\l itself.

We are in a position to the state the proof of Theorem 2.2.

Proof of Theorem 2.2. We first show that B = B̃ if D = D̃. Set D0 = D = D̃ and

assume contrarily that B 6= B̃. Let u∞(x̂;D, d0, k0) = u∞(x̂; D̃, d0, k0) for x̂ ∈ S1

with d0 and k0 fixed, and we have by Rellich’s theorem (see, Lemma 2.11 in [3])

that u(D) = u(D̃) := u(D0). Noting B 6= B̃, there must exist an edge of D0 such

that u(D) and u(D̃) assume different boundary conditions; that is u(D0) satisfies
both homogeneous Dirichlet and Neumann boundary conditions on this edge. In
view of the Holmgren’s theorem (see Theorem 6.12 in [4]), we immediately get that
u(D0) = 0 in R2\D0, which is certainly not true.

To demonstrate Theorem 2.2, it remains to show the major part, i.e., D = D̃.
We will do this by contradiction and divide the proof into the following two steps:

Step 1: Non-empty of the set G1

Assume that u∞(x̂;D, d0, k0) = u∞(x̂; D̃, d0, k0) for x̂ ∈ S1 with d0 and k0 fixed

but D 6= D̃. We shall write respectively u = u(D) and ũ = u(D̃) to represent
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the total fields corresponding to D and D̃. Furthermore, let Ω be the (unique)

unbounded component of R2\(D∪ D̃). We have by Rellich’s theorem (see, Lemma
2.11 in [3]) that u = ũ in Ω. Moreover, using a standard argument, e.g., see the first
part of the proof of Theorem 1 in [10], we can assume without loss of generality
that there is an open segment PQ such that

PQ ⊂ ∂Ω ∩ (R2\D) = ∂Ω ∩ G. (13)

Since ∂Ω consists of segments of ∂D and ∂D̃ and u = ũ in Ω, we have u(PQ) =

ũ(PQ) = 0 if PQ lies on a sound-soft component of D̃, and ∂νu(PQ) = ∂ν ũ(PQ) =

0 if PQ lies on a sound-hard component of D̃.
By Lemma 3.2, we know that u = 0 (respectively ∂νu = 0) on the maximum

extension of PQ in G. Henceforth, the notations S1,S2,G1,G2, etc. are naturally
introduced in the earlier part of this section. Now, we turn to the key point of this
step to show

Lemma 3.12. The set G1 is not empty.

Proof. We start with the line segment PQ from (13). If u = 0 on PQ, we know by
Lemmata 3.3 and 3.5 that PQ can not be extended to an infinite half-line in G,
nor can be extended to a line segment in G2, therefore the maximum extension of
PQ belongs to G1, and the lemma is proved. Without loss of generality, we may
now assume that ∂νu = 0 on PQ, i.e., PQ lies on a sound-hard component polygon

of D̃. Denoting by lPQ the maximum extension of PQ in G, we know ∂νu = 0 on
lPQ by Lemma 3.2. If lPQ is a finite line segment having its two endpoints on a
single component of D, i.e., lPQ ∈ S11, thus lPQ ∈ G1 by Lemma 3.11, and so G1

is not empty. Hence we assume below that lPQ ∈\S11, that is, either lPQ ∈ S12 or
lPQ ∈ S2. We next consider these two cases.

Case I: lPQ ∈ S2. By definition, lPQ is an infinite half-line segment in G.

Noting PQ ⊂ ∂Ω∩G ⊂ ∂D̃\D, the edge of ∂Ω containing PQ has to be separated
from lPQ at a vertex V of ∂Ω, lying in G. Hence there exists a point V ′ ∈ G such
that V ′V ⊂ ∂Ω ∩ G and V V ′ is not parallel to PQ. Furthermore, by recalling the
fact that u = ũ in Ω, we may assume that ∂νu = ∂ν ũ = 0 on V ′V (otherwise we
must have u(V ′V ) = ũ(V ′V ) = 0, this implies that the extension of V ′V is in G1 by
Lemma 3.5). Then by Lemma 3.3, we see that V ′V cannot be extended to infinity
in G by noting that lPQ is another infinite half-line in G on which ∂νu = 0. On
the other hand, the maximum extension of V ′V cannot belong to G2; otherwise by

Lemma 3.6, we would get an infinite half-line L̃V V ′ such that ∂νu = 0 on L̃V V ′ .
Obviously, this infinite half-line is not collinear to PQ, contradicting Lemma 3.7.
Therefore, if we denote the maximum extension of V ′V in G by lV V ′ , then we
must have lV V ′ ∈ G1, thus G1 is not empty. But we remark that in this case, one
has lPQ ∈ S2 ,lV V ′ ∈ G1 and lPQ ∩ lV V ′ = V ∈ G, so immediately we come to a
contraction to Lemma 3.8.

Case II: lPQ ∈ S12. By definition, lPQ has its two endpoints on two different

component polygons of D. Clearly, PQ lies on one edge of D̃, which we denote
by ǫPQ. Let ePQ be the connected component of ǫPQ\D containing PQ, we know
PQ ⊂ ePQ ⊂ lPQ. Recalling that PQ ⊂ ∂Ω, we next show that ePQ ⊂ ∂Ω. Firstly,
we take an arbitrary point x′ ∈ Ω which stays sufficiently close to PQ and lies on
one side of lPQ. By Lemma 3.11, we know that G\lPQ is connected, and thus for
any point x ∈ ePQ, there is a curve γ1 which connects x and x′ and lies entirely in

G\lPQ. Moreover, noting the component polygons of D̃ are compact and disjoint
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with each other, we can require that γ1 is sufficiently close to ePQ and avoids

intersection with any other component polygon of D̃. Then, noting Ω is connected
and unbounded, let γ2 be a curve which connects x′ to infinity and lies entirely in
Ω. Let γ = γ1 ∪ γ2, then γ connects x to infinity without any intersection with

D and D̃. Since both D and D̃ are bounded, we know the unbounded connected

component Ω of R2\(D∪D̃) is unique. Now, we conclude that we must have γ ⊂ Ω.

In fact, noting γ ⊂ R2\(D∪ D̃) through our construction, if γ ⊂\Ω, then there must

exist a bounded component Ω′ of R2\(D∪ D̃) such that γ ∩Ω′ 6= ∅. By Lemma 3.1,

it is easy to deduce that γ ∩ ∂Ω′ 6= ∅, that is, γ ∩ (∂D ∪ ∂D̃) 6= ∅, contradicting
our construction. So, γ ⊂ Ω, which implies that ePQ ⊂ ∂Ω. Hence without loss
of generality, we may assume that PQ = ePQ. We next still need to distinguish
between two cases.

II(i) If either P or Q is not on ∂D, then, P ∈ G or Q ∈ G. Let us assume that

Q ∈ G, and clearly, Q is the vertex of a component polygon of D̃, which we denote

by D̃1. We may assume that D̃1 is a sound-hard polygon, otherwise G1 is not empty

by the first part of the proof. Another edge of D̃1 other than ǫPQ, having Q as the
endpoint, is denoted by ǫP ′Q, see Fig. 1.

Figure 1. Illustration of the proof of Lemma 3.12

Noting the polygons forming D̃ are disjoint and compact, we can choose a suf-

ficiently small ball Bε(Q) such that Bε(Q) ⊂ G and Bε(Q) ∩ (D̃\D̃1) = ∅ (see

Fig. 1). Clearly, Bε(Q)\D̃1 ⊂ R2\(D ∪ D̃) and Bε(Q) ∩ Ω 6= ∅, so it is easy to see

that Bε(Q)\D̃1 ⊂ Ω. Letting P ′Q = ǫP ′Q ∩ Bε(Q), then we know P ′Q ⊂ ∂Ω, and
∂νu = ∂ν ũ = 0 on lP ′Q, where lP ′Q is the maximum extension of P ′Q in G. Now,
if lP ′Q is infinite, i.e., lP ′Q ∈ S2, we can easily deduce by Lemmata 3.6 and 3.7 that
lPQ ∈ G1 by noting lPQ and lP ′Q are not parallel. If lP ′Q is finite, we have either
lP ′Q ∈ S11 or lP ′Q ∈ S12. For lP ′Q ∈ S11, we know lP ′Q ∈ G1 by Lemma 3.11; and
if lP ′Q ∈ S12, then we have two non-parallel finite line segments lPQ and lPQ′ , both
belongs to S12. By Lemma 3.5, we know that at least one of lPQ and lP ′Q belongs
to G1.

II(ii) Both P and Q are on ∂D, i.e., PQ = lPQ. If PQ ∈ G1, then we are done.
We now assume that PQ ∈\G1, i.e., PQ ∈ G2. In the following, we will call such



UNIQUENESS IN INVERSE OBSTACLE SCATTERING 383

line segments as PQ “non-extendable”. That is, an open line segment l ⊂ ∂D̃\D is
“non-extendable” iff l is an open connected component of ǫl\D, where ǫl is the edge

of D̃ containing l, and the endpoints of l are on two different component polygons
of D; moreover, the connected set defined in (10) corresponding to l is unbounded.

Let X be the set of all “non-extendable” line segments. Clearly, ∂D̃\D is composed
of finitely many open line segments and points, and we denote the set of those
open line segments by H. We refer to those open line segments in Y := H\X as
“extendable”. Moreover, we define

X0 := {l ∈ X ; l is collinear to PQ}. (14)

Next, we show a key observation that G\X0 is connected. If X0 contains only one
line segment, i.e., PQ, then by Lemma 3.11, we obviously have that G\X0 = G\PQ
is connected. So, without loss of generality we may assume that X0 contains another
line segment different from PQ. If G\X0 is not connected, then it must have
bounded connected component. In fact, noting both X0 and D are bounded, the
unbounded component of G\X0 is unique. Let E be one of the bounded connected
component of G\X0 (see, e.g, Fig. 2). Clearly, ∂E must contain at least one line
segment from X0, which we denote by l1. Now, it is straightforward to check that
the connected set defined in (10) corresponding to l1 is contained in R1(E) ∪ E,
where R1 is the reflection with respect to L1 with L1 being the straight line in R2

containing l1. Since E is bounded, this contradicts with our definition that l1 is
“non-extendable”, which implies that G\X0 is connected.

Figure 2. Illustration of the proof of Lemma 3.12

Noting D̃ is composed of solid polygons together with the fact that G\X0 is
connected, we easily see that H\X0 6= ∅. Again noting G\X0 is connected, there
must be some line segment l0 ∈ H\X0 which lies on the unbounded component

of G\(D ∪ D̃), i.e., ∂Ω. In fact, if there are no line segments from H\X0 which
lies on ∂Ω, then ∂Ω ⊂ ∂D ∪ X0. We next show that ∂Ω = ∂D ∪ X0, which then

implies Ω = G\X0. Firstly, since D and D̃ are bounded, we know the unbounded

component of R2\(D ∪ D̃), i.e., Ω is unique. Moreover, by noting ∂D and X0 are
bounded, we know that both the unbounded connected sets Ω and G\X0 contain
R2\Br1

(0) with sufficiently large r1 > 0. Next, for any x ∈ ∂D ∪ X0, since G\X0
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is an unbounded connected set, there exists a curve γx which connects x to infinity
and lies entirely in G\X0; that is, it avoids intersection with ∂D ∪ X0. Now, we
conclude that γx ⊂ Ω. In fact, if γx ⊂\Ω, then (R2\Ω) ∩ γx 6= ∅. But it is clear
that γx intersect Ω outside of Br1

(0), i.e, Ω ∩ γx 6= ∅. Then, by Lemma 3.1 with
A = Ω and B = γx, we easily get that ∂Ω ∩ γx 6= ∅. Noting ∂Ω ⊂ ∂D ∪ X0,
this certainly contradicts with our construction of γx. Hence, γx lies entirely in
Ω, which implies that x ∈ ∂Ω. That is, ∂D ∪ X0 ⊂ ∂Ω, thus we have shown that
∂Ω = ∂D∪X0, which implies Ω = R2\(D∪X0) = G\X0. However, noting H\X0 6= ∅
and H\X0 ⊂ G\X0 = Ω, there must be some line segment from H\X0 which lies on
∂Ω, leading to a contradiction. Hence, there must be such l0 ∈ H\X0 which lies on
∂Ω.

Depending on l0 lying on a sound-soft or a sound-hard component polygon of

D̃, we know have u(l0) = ũ(l0) = 0 or ∂νu(l0) = ∂ν ũ(l0) = 0. If u = 0 on l0, as
we did at the beginning of the proof, we conclude immediately that the maximum
extension of l0 belongs to G1. So we may assume that ∂νu = 0 on l0. We first
consider the case that l0 is collinear to PQ. Noting l0 ∈\X0, we know either l0 can
be extended to be an infinite half-line in G, and this will lead us to Case I above;
or the maximum extension of l0 is finite which either is a line segment in G1 or, by
our construction, a line segment of Case II(i) above where we can find another
line segment belonging to G1. If l0 is not collinear to PQ, then by Lemma 3.7, l0 can
not extend to infinity in G, neither can the maximum extension of l0 in G belong
to G2. Hence, we have l0 ∈ G1, thus Lemma 3.12 is proved.

By Lemma 3.12, G1 6= ∅, hence by Lemma 3.9, G2 6= ∅. Then by Lemma 3.10,
we know that both G1 and G2 contain finitely many line segments. By Lemma 3.6
and Lemma 3.3, we may assume that ∂νu(l) = 0 for each l ∈ G2. Furthermore,
by Lemma 3.5, the line segments in G2 are collinear to each other; that is, they
lie on a same straight line. Following the proof of the connectedness of G\X0 in
Lemma 3.12, where X0 is defined in (14), we still see that G\G2 is connected.

Step 2: Two “different” line segments in G2

The goal of this step is to find two line segments in S2, which are not parallel to

each other, contradicting Lemma 3.3, thus completes the proof of D = D̃.
We can write for some m′ satisfying 1 ≤ m′ < m that

S1 = G1 ∪ G2 (15)

with

G1 =

m′⋃

j=1

lj, G2 =

m⋃

j=m′+1

lj . (16)

From the discussions in Step 1, we know both G1 and G2 are not empty, the line
segments in G2 are collinear to each other, and the set G\G2 is connected.

Let Λ be the unbounded connected component of G\S1 = G\(G1 ∪ G2). Since
both D and S1 are bounded, we know that Λ is unique. Obviously,

Λ ∩ S1 = ∅. (17)

Noting G\G2 is connected, there must exist a point P ∈ ∂Λ lying on a segment l
of G1. Let E be the connected set defined in (10) corresponding to l. Since l ∈ G1,
we know that E is bounded. Next, we show that

∂E ∩ Λ 6= ∅. (18)
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In fact, we first see that Bε(P ) ⊂ E for sufficiently small ε > 0. Then, because
P ∈ ∂Λ, we know that Bε(P ) ∩ Λ 6= ∅. That is, E ∩ Λ 6= ∅. Furthermore, it is
obvious that (R2\E) ∩Λ 6= ∅. Hence, by Lemma 3.1, we immediately get (18).

Now, let L be the straight line in R2 containing l, by the reflection principle in
Lemma 3.4, u is either even symmetric with respect to L in E if ∂νu(l) = 0 or odd
symmetric with respect to L in E if u(l) = 0. Since ∂E is composed of some points
and open line segments lying on ∂D and ∂R(D), where R is the reflection with

respect to L, we see that there must exist an open line segment l̃ ⊂ Λ ∩ ∂E such
that u(l̃) = 0 or ∂νu(l̃) = 0. Now, by Lemma 3.2 and (17), it is seen that l̃ can

be extended to an infinite line segment L̃ ∈ S2. In fact, assume contrarily that the
maximum extension of L̃ in G belongs to S1, i.e., L̃ ∈ S1, then l̃ ⊂ Λ∩ L̃ ⊂ Λ∩S1,
which contradicts (17).

If u = 0 on l, then we readily get a contradiction to Lemma 3.3, which concludes
Theorem 2.2. Now we assume that ∂νu = 0 on L̃. Next, we show another crucial fact
that L̃ ⊂ Λ. Indeed, if L̃ ⊂\Λ, then apparently, there must exist some intersection

points of L̃ with S1, which readily yields a contradiction to Lemma 3.8.
Now, since ∂E forms the boundary of a bounded polygonal domain and L̃ lies

entirely in Λ, there exists a point V0 ∈ Λ, which is a vertex of the polygonal domain,
and an open line segment l̃′ ⊂ Λ ∩ ∂E starting at V0, which is not parallel to L̃.
Again by Lemma 3.2 and (17), the maximum extension of l̃′ in G belongs to S2.
Clearly, we have obtained a contradiction to Lemma 3.3.

The proof of Theorem 2.2 is completed.

4. Proofs of Lemmata 3.5–3.11.

Proof of Lemma 3.5. Assume contrarily that there exists l0 ∈ G2 such that u(l0) =
0. Let E0 be the connected set constructed in (10) corresponding to l0. We know
from the earlier discussion that E0 contains R2\Br(x0) with any fixed x0 ∈ l0 and
r > 0 sufficiently large. Since u(l0) = 0, by the reflection principle in Lemma 3.4,
we know u(x) = −R0u(x) in E0; namely, u(x) is odd symmetric with respect to L0

in E0. So, let L̃0 be one of the two infinite portions of L0 outside of Br(x0) (see

Fig. 3), then u(x) = 0 on L̃0, which contradicts Lemma 3.3. This proves the first
statement of the lemma.

Next, we again use the contradiction argument to prove the second statement.
Assume contrarily that l1, l2 ∈ G2 are two “different” line segments. Obviously, from
the first result of the lemma and the definition of G2, we know that ∂νu = 0 on l1∪l2.
Let Ej (j = 1, 2) be the unbounded connected sets constructed in (10) corresponding
to lj (j = 1, 2). Moreover, we let Br(xj) (j = 1, 2) with arbitrarily fixed xj ∈ lj (j =
1, 2) and sufficiently large r > 0, be the ball such that R2\Br(xj) ⊂ Ej (j = 1, 2).
Since ∂νu(l1) = ∂νu(l2) = 0, it is seen by the reflection principle in Lemma 3.4
that u(x) is even symmetric with respect to Lj (j = 1, 2) in Ej . Hence we have

∂νu(x) = 0 on L̃1 and L̃2, where L̃1 and L̃2 are respectively one of the infinite
portions of L1\Br(x1) and L2\Br(x2) (see Fig. 3 for a similar illustration). Since

L1 6= L2, it follows that L̃1 ∦ L̃2 or L̃1 ‖ L̃2. But if L̃1 ∦ L̃2, we immediately get a

contradiction to Lemma 3.3. So we next assume L̃1 ‖ L̃2.
Let B̄r(xj) ⊂ Tr′(0) (j = 1, 2) with sufficiently large r′ > r (see Fig. 4). More-

over, we choose Tr′(0) in a way such that both L̃1 and L̃2 are perpendicular to one of

the edges of Tr′(0) (see Fig. 4). For convenience, we will still denote by L̃1 and L̃2,
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Figure 3. Illustration of the proof of Lemma 3.5

Figure 4. Illustration of the proof of Lemma 3.5

respectively, the infinite half lines L̃1\Tr′(0) and L̃2\Tr′(0). Let G′ = R2\Tr′(0).

Since ∂νu = 0 on L̃2, using a similar reflection argument as above, we see that u

is even symmetric with respect to L2 in (R2(G
′\L̃2) ∩ G′) ∪ L̃2. It is apparent

that L̃1, R2(L̃1) ⊂ R2(G
′\L̃2) ∩ G′ and hence by noting ∂νu = 0 on L̃1, we have

∂νu = 0 on R2(L̃1) by Lemma 3.4. Set L̃3 = R2(L̃1) and let L3 be the straight

line in R2 containing L̃3. If the infinite half-line L̃3 has its endpoint on ∂Tr′(0), we

repeat the above argument with respect to L3 to find ∂νu = 0 on L̃4 := R3(L̃2).
Continuing with this procedure, we can get a family of parallel infinite half-lines,

L̃j, j = 1, 2, . . . , such that ∂νu = 0 on L̃j . Since the distance between each pair

of L̃j and L̃j+1, j = 1, 2, . . . is d(L̃1, L̃2) > 0 being fixed, we see that there is a

L̃M , M ∈ N, such that LM , the straight line in R2 containing L̃M , lies entirely
in G′. That is, Tr′(0) lies entirely on one side of LM , and the same holds for D.
Obviously, by Lemma 3.2, we have ∂νu = 0 on LM . Let D1 be one sound-hard
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component polygon of D and hence ∂νu = 0 on lD1
∪ lD′

1
, where lD1

and l′D1
are

two edges of D1 possessing a common vertex. Then, again using the reflection ar-
gument as above, it is easily seen that u is even symmetric with respect to LM

in R2\(D ∪ RM (D)), hence ∂νu = 0 on RM (lD1
) ∪ RM (l′D1

). Noting RM (lD1
) and

RM (l′D1
) lying on the other side of LM , both can be extended to infinite half-lines in

G. Therefore, we have established a contradiction to Lemma 3.3, which completes
the proof.

Proof of Lemma 3.6. This can be readily seen from the proof of Lemma 3.5.

Proof of Lemma 3.7. Combining the proof of Lemma 3.5 and the results in Lem-
mata 3.3 and 3.6 gives the proof.

Proof of Lemma 3.8. Assume contrarily that there exist l0 ∈ S1 and l′0 ∈ S2 such
that l0 ∩ l′0 = P ∈ G. Clearly, we know ∂νu = 0 on l′0 by Lemma 3.5 and l0 ∈ G1 by
Lemma 3.7. Now, we take γ(t) ⊂ l′0(t ≥ 0) such that γ(0) = P and limt→∞ |γ(t)| =
+∞ (see Fig. 5). Obviously, γ(t)(t ≥ 0) ⊂ G is a regular curve. Now, we set

Figure 5. Illustration of the proof of Lemma 3.8

ρ = d(γ,D) and r0 =
1

2
ρ.

Since γ is a closed set in G and D is compact, we see that ρ > 0 is attainable.
Hence, r0 > 0 and for any point x ∈ γ(t), we have B̄r0

(x) ⊂ G. Next, we set
x0 := γ(t0) with t0 = 0.

Let x̃+
1 = γ(t̃1) ∈ Sr0

(x0) ∩ γ, and x̃−
1 ∈ Sr0

(x0) be the symmetric point of x̃+
1

with respect to L0. It is remarked that by Lemma 3.1, γ must intersect Sr0
(x0),

and by noting that γ is an infinite half-line, the intersection must be a unique
point. Now, let G+

0 be the connected component of G\l0 containing x̃+
1 and G−

0

be the connected component of G\l0 containing x̃−
1 . Let E+

0 be the connected
component of G+

0 ∩ R0(G
−
0

) containing x̃+
1 and E−

0 be the connected component
of G−

0 ∩ R0(G
+
0 ) containing x̃−

1 . Observe that E+
0 = R0(E

−
0 ), and if we set E0

to be the symmetric set with respect to L0, namely, E0 = E+
0 ∪ l0 ∪ E−

0 , then E0

contains the closed ball B̄r0
(x0). In fact, E0 is the same connected set defined in

(10) corresponding to l0 and hence is bounded by noting l0 ∈ G1. Clearly, ∂E0
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is composed of some line segments lying on ∂D and R0(∂D). Moreover, by the
reflection principle in Lemma 3.4, one sees that u(x) = −R0u(x) in E0 if u(l0) = 0
and u(x) = R0u(x) in E0 if ∂νu(l0) = 0. Now, by the unboundedness of γ and
the boundedness of E0, one can easily derive by Lemma 3.1 that there must exist
a t1 > t̃1, such that x1 = γ(t1) ∈ ∂E0. For definiteness, we take x1 be the ‘last’

point on γ to intersect ∂E0, that is, t1 = max{t > 0; γ(t) ∈ ∂E0} < ∞. Let l̃1 be
the open line segment on ∂E0 whose closure containing x1. Since γ is an infinite

half-line, it may happen that l̃1 ⊂ γ, and if this happens, by noting ∂E0 forms the

boundary of a polygonal domain, we let l̃1 be the other line segment on ∂E0 which

has x1 as a vertex. That is, without loss of generality, we may assume that l̃1 ∦ γ.
Since ∂E0 is composed of some line segments lying on ∂D and R0(∂D) and u(x)

is either even or odd symmetric with respect to L0 in E0, we have either u(l̃1) = 0

or ∂νu(l̃1) = 0. Let l1 be the maximum extension of l̃1 in G, then by the analytic
continuation we know that either u(l1) = 0 or ∂νu(l1) = 0. If u(l1) = 0, then by
Lemma 3.3, it cannot be an infinite line segment, and further by Lemma 3.5, l1 ∈\G2

and therefore, we have l1 ∈ G1. Whereas if ∂νu(l1) = 0, by noting ∂νu(γ) = 0, we
easily deduce from Lemma 3.7 that l1 ∈ G1. That is, we have l1 ∈ G1. Furthermore,
our construction ensures that l1 is different from l0 and the length of γ(t) from t0
to t1 is larger than r0, i.e.,

|γ(t0 ≤ t ≤ t1)| ≥ |γ(t0 ≤ t ≤ t̃1)| ≥ r0.

Next, let x̃+
2 = γ(t̃2) ∈ Sr0

(x1) ∩ γ, and x̃−
2 be the symmetric point of x̃+

2 with
respect to L1, then let G+

1 be the connected component of G\l1 containing x̃+
2 and

G−
1 be the connected component of G\l1 containing x̃−

2 . Let E+
1 be the connected

component of G+
1 ∩R1(G

−
1 ) containing x̃+

2 and E−
1 be the connected component of

G−
2 ∩R2(G

+
2 ) containing x̃−

2 . Set E1 = E+
1 ∪ l1 ∪E−

1 , then we see that E1 contains
the closed ball B̄r0

(x1) and its boundary is composed of some line segments lying on
∂D and R1(∂D). By a similar argument as used earlier for deriving x1 = γ(t1) and

l1, there exists a point x2 = γ(t2)(t2 > t̃2) and open line segment l̃2 ⊂ ∂E1 whose
closure containing x2. Furthermore, we may assume that x2 is the ‘last’ point on

γ to intersect ∂E1 and l̃2 ∦ γ. Let l2 be the maximum extension of l̃2 in G, then
clearly, we still have either u(l2) = 0 or ∂νu(l2) = 0. The same as above for treating
l1, we can show that l2 ∈ G1. Moreover, we see that l2 is different from l1 and l0
and the length of γ(t) from t1 to t2 is larger than r0, i.e.,

|γ(t1 ≤ t ≤ t2)| ≥ |γ(t1 ≤ t ≤ t̃2)| ≥ r0.

Continuing with this procedure, we can construct a strictly increasing sequence
{tn}∞n=0 such that for any n, xn = γ(tn) ∈ ln with ln ∈ G1. Moreover, the line
segments ln, n ∈ N, are different from each other, and the length of γ(t) from tn to
tn+1 is not less than r0, i.e.,

|γ(tn ≤ t ≤ tn+1)| ≥ r0. (19)

Since every finite line segment in G1 has its two endpoints on ∂D and D is bounded,
we see that G1 is bounded. In fact, G1 ⊂ co(D), where co(D) is the convex hull of
D. By further noting limt→∞ |γ(t)| = +∞, we must have limn→∞ tn = T for some
finite T . Otherwise, we would have limn→∞ tn = +∞ due to the fact that tn is
strictly increasing and this further implies limn→∞ |γ(tn)| = +∞, contradicting the
fact that γ(tn) = xn ∈ G1 for each n and the boundedness of G1. Then, because
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γ(t) is C1-smooth curve, we must have that

lim
n→∞

|γ(tn ≤ t ≤ tn+1)| = lim

∫ tn+1

tn

|γ′(t)| = 0, (20)

which contradicts the inequality (19). The proof is completed.

Proof of Lemma 3.9. The lemma can be shown by using a similar path argument
as that in the proof of Lemma 3.8. For the convenience of readers, we would give
some details in the following and put emphasis on the necessary modifications.

Let G′ be the unbounded connected component of G\l0. Next, we fix an arbitrary
point x0 ∈ l0. Let γ = γ(t) (t ≥ 0) be a regular curve such that γ(0) = x0,
γ(t) (t > 0) lies entirely in G′ and limt→∞ |γ(t)| = +∞. It is clear that γ(t) ∈ l0 iff
t = 0, and we set t0 = 0. Let

ρ = d(γ,D) and r0 =
1

2
ρ,

and it is noted that ρ > 0 is attainable. Hence, r0 > 0 and for any point x ∈ γ(t),
we have B̄r0

(x) ⊂ G.
Let x̃+

1 = γ(t̃1) ∈ Sr0
(x0)∩γ, and x̃−

1 ∈ Sr0
(x0) be the symmetric point of x̃+

1 with
respect to L0. Furthermore, we have taken t̃1 = max{t > 0; γ(t) ∈ Sr0

(x0)} < +∞.
Now, let G+

0 be the connected component of G\l0 containing x̃+
1 and G−

0 be the
connected component of G\l0 containing x̃−

1 . Let E+
0 be the connected component

of G+
0 ∩R0(G

−
0

) containing x̃+
1 and E−

0 be the connected component of G−
0 ∩R0(G

+
0 )

containing x̃−
1 . Set E0 = E+

0 ∪ l0 ∪ E−
0 , which is exactly the connected set defined

in (10) corresponding to l0 and hence is bounded by noting l0 ∈ G1. As in the
proof of Lemma 3.8, we know that ∂E0 is composed of some line segments lying
on ∂D and R0(∂D) and u(x) is either even or odd symmetric with respect to L0

in E0. Now, by the unboundedness of γ and the boundedness of E0, one can easily
derive by Lemma 3.1 that there must exist a t1 > t̃1, such that x1 = γ(t1) ∈ ∂E0.

Let l̃1 be the open line segment on ∂E0 whose closure containing x1. Clearly, we

have either u(l̃1) = 0 or ∂νu(l̃1) = 0. Let l1 be the maximum extension of l̃1 in G,
then by the analytic continuation we know that either u(l1) = 0 or ∂νu(l1) = 0. If
u(l1) = 0, then by Lemma 3.3, it cannot be an infinite line segment, and further
by Lemma 3.5, l1 ∈\G2 and therefore, we have l1 ∈ G1. Whereas if ∂νu(l1) = 0, we
first show that l1 ∈\S2, that is, l1 cannot extend to infinity in G. In fact, if l1 can
extend to infinity in G, since l1 is extended from an open line segment lying on
∂E0 and ∂E0 forms the boundary of a polygonal domain, we know that l1 has to
be separated from ∂E0 at some point V ∈ G. Then V is a vertex of ∂E0. Hence,
there is another point V ′ ∈ G such that V ′V ⊂ ∂E0 ∩ G. Let l′1 be the maximum
extension of V V ′ in G and clearly, u = 0 or ∂νu = 0 on l′1. Noting l1 ∦ l′1, we have
by Lemma 3.3 that l′1 ∈ S1. But then we have l1 ∈ S2, l′1 ∈ S1 and l1 ∩ l′1 = V , and
this obviously contradicts Lemma 3.8. Hence, we must have that l1 ∈\S2, that is,
l1 ∈ S1. That is, for both cases of u(l1) = 0 or ∂νu(l1) = 0, we have either l1 ∈ G1

or l1 ∈ G2. If l1 ∈ G2, then we are done. To proceed further, we may assume that
l1 ∈ G1. We may further assume that x1 = γ(t1) is the ‘last’ point on γ to intersect
l1, that is,

t1 = max{t > 0; γ(t) ∈ l1} < ∞.

Then, we note the following two crucial facts: l1 is different from l0, since l0 intersect
γ only at x0; the length of γ(t) from t0 to t1 is larger than r0, i.e.,

|γ(t0 ≤ t ≤ t1)| ≥ |γ(t0 ≤ t ≤ t̃1)| ≥ r0.
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Next, with the line segment l1 and the point x1 = γ(t1), we can perform a
similar reflection argument as above to derive another point x2 = γ(t2)(t2 > t̃2)

and another open line segment l̃2 whose closure contains x2. Let l2 be the maximum

extension of l̃2 in G, then clearly, we still have either u(l2) = 0 or ∂νu(l2) = 0. Then
using the same argument as above for treating l1, we can see that either l2 ∈ G2

and we are done, or l2 ∈ G1. If we still have l2 ∈ G1, we may further assume that
x2 = γ(t2) is the ‘last’ point on γ to intersect l2. Then, we see that l2 is different
from l1 and l0, since x0 = γ(t0) and x1 = γ(t1) are, respectively, the last point to
pass through l0 and l1, and the length of γ(t) from t1 to t2 is larger than r0, i.e.,

|γ(t1 ≤ t ≤ t2)| ≥ |γ(t1 ≤ t ≤ t̃2)| ≥ r0.

With this l2 ∈ G1, we can continue with the above procedure to find t3 > t2 such that
x3 = γ(t3) ∈ l3 with either l3 ∈ G2 then we are done, or l3 ∈ G1. Moreover, through
our construction, we still have |γ(t2 ≤ t ≤ t3)| ≥ r0 if l3 ∈ G1. Continuing with this
procedure, eventually, we are led to: either there is a line segment lm ∈ G2, m ≥ 1,
then we are done, or there are countably many different line segments {ln}∞n=0 ⊂ G1

and a strictly increasing sequence {tn}∞n=0 such that for each n, xn = γ(tn) ∈ ln and
|γ(tn ≤ t ≤ tn+1)| ≥ r0. If we assume the latter case, then it is easy to derive the
relationship (20) which gives a similar contradiction to that for Lemma 3.8. The
proof is completed.

Next, we treat the proof of Lemma 3.10. To this end, we need some auxiliary
results as follows.

Lemma 4.1. For any ε > 0 and 0 < θ < 2π, consider the sectorial domain
E = {x ∈ R2; 0 < arg x < θ, |x| < ε} and the three points A = (ε, 0), O = (0, 0), B =
(ε cos θ, ε sin θ). Take a point P ∈ E such that φ = ∠AOP ∈ (0, θ) and φ/θ ∈\Q,

where Q is the set of rational numbers. Let Ê be a connected unbounded domain

containing E and assume that v ∈ H1
loc(Ê) such that

∆v + k2v = 0 in Ê,

and satisfies either of the following conditions

(i) v = 0 on OA ∪ OB ∪ OP ;
(ii) ∂νv = 0 on OA ∪ OB ∪ OP ;
(iii) v = 0 on OA ∪ OB and ∂νv = 0 on OP ;
(iv) ∂νv = 0 on OA ∪ OB and v = 0 on OP ;

then v(x) − exp{ikx · d}, for x ∈ Ê, does not satisfy the Sommerfeld radiation
condition (2).

Proof. Case (i) and case (ii) are verified respectively in [6] (Lemma 2) and [8]
(Lemma 4). For case (iii), since φ ∈ (0, θ) and φ/θ ∈\Q, we can choose m ∈ N and
0 < φ1 < φ such that

θ = mφ + φ1,
φ1

φ
∈\Q.

Then, if m ≥ 2 (see the left figure in Fig. 6), we set ϕ = 2φ and

P ′ = (ε cosϕ, ε sin ϕ).

Clearly, ∠AOP ′ = ϕ ∈ (0, θ) and ϕ/θ = 2φ/θ ∈\Q. Furthermore, noting v = 0 on
OA and ∂νv = 0 on OP , we have by Lemma 3.4 that v = 0 on OP ′, and this reduces
case (iii) to case (i). On the other hand, if m = 1 (see the right figure in Fig. 6),
then φ1 = θ − φ. We set ϕ = φ − φ1 = θ − 2φ1 = 2φ − θ and P ′ = (ε cosϕ, ε sin ϕ).
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 AO

B

P

P’
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Figure 6. Illustration of case (iii), Lemma 4.1

Apparently, ϕ ∈ (0, θ) and ϕ/θ = (2φ − θ)/θ = (2φ/θ − 1) ∈\Q. Noting v = 0 on
OB and ∂νv = 0 on OP , we have by Lemma 3.4 that v = 0 on OP ′, and this also
reduces case (iii) to case (i). In a like manner, we can prove case (iv).

Lemma 4.2. Let the sector E and the points A, B, O be defined as in Lemma 4.1,
and P ∈ E be a point such that φ = ∠AOP ∈ (0, θ) and

φ

θ
=

n

m
∈ Q, (21)

where m, n ∈ N, 1 ≤ n ≤ m−1 and the greatest common divisor of m and n is one.
Suppose v ∈ H1(E) satisfies

∆v + k2v = 0 in E,

and one of the following conditions:

(i) v = 0 on OA ∪ OB and v = 0 on OP ;
(ii) ∂νv = 0 on OA ∪ OB and ∂νv = 0 on OP ;
(iii) v = 0 on OA ∪ OB and ∂νv = 0 on OP ;
(iv) ∂νv = 0 on OA ∪ OB and v = 0 on OP .

Then there exist m − 1 points P j ∈ E, 1 ≤ j ≤ m − 1, such that ∠AOP j = j
mθ

and v = 0 on OP j for case (i); ∂νv = 0 on OP j for case (ii); v = 0 or ∂νv = 0 on
OP j for both cases (iii) and (iv).

Proof. Case (i) is Lemma 4 in [6], while by making use of the reflection principle of
Lemma 3.4, cases (ii)-(iv) can be proved quite similarly to case (i).

The following are several useful corollaries of Lemma 4.2.

Corollary 1. For case (iii) in Lemma 4.2, if m is an odd number, then v = 0 in
E.

Proof. Let m = 2z + 1 with z ∈ N. By Lemma 4.2, we know that there exist 2z
points P j ∈ E, 1 ≤ j ≤ 2z such that

∠AOP j =
j

2z + 1
θ, and v = 0 or ∂νv = 0 on OP j , 1 ≤ j ≤ 2z. (22)

Clearly, we have Pn = P . We next distinguish two cases:
Case 1. n is even. We let n = 2z′ with 1 ≤ z′ ≤ z. Since v = 0 on OA and ∂νv = 0
or v = 0 on OP 1, by Lemma 3.4, we have v = 0 on OP 2. But noting v = 0 or
∂νv = 0 on OP 3, we have v = 0 on OP 4 by using Lemma 3.4. Continuing with this
procedure, we can eventually see that v = 0 on OP 2z′

= OP . But by assumptions
∂νv = 0 on OP . Then we can apply Holmgren’s theorem (see Theorem 6.12 in [4])
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to conclude that v = 0 in E.
Case 2. n is odd. We let n = 2z′ − 1 with 1 ≤ z′ ≤ z. Since v = 0 on OB
and ∂νv = 0 or v = 0 on OP 2z , by Lemma 3.4, we know v = 0 on OP 2z−1. But
noting v = 0 or ∂νv = 0 on OP 2z−2, we have v = 0 on OP 2z−3 again by Lemma 3.4.
Continuing with this procedure, we can eventually see that v = 0 on OP 2z′−1 = OP ,
which together with the assumption that ∂νv = 0 on OP readily shows v = 0 in E
by Holmgren’s theorem.

Similar to the proof of Corollary 1, we can demonstrate

Corollary 2. For case (iv) in Lemma 4.2, if m is an odd number, then v = 0 in
E.

Corollary 3. For case (iii) and case (iv) in Lemma 4.2, if m = 2z with z ∈ N,
then we have u = 0 or ∂νu = 0 on OP z, which implies that u = 0 or ∂νu = 0 on
OP ′, where P ′ ∈ E such that

∠AOP ′

θ
=

1

2
.

Proof of Lemma 3.10. We prove by contradiction. Assume that S1 contains infin-
itely many line segments PjQj , j ∈ N. Since D is composed of finitely many
polygons, without loss of generality, we may assume that Pj ∈ ∂D1 and Qj ∈ ∂D′

1

for j ∈ N , where D1 and D′
1 are component polygons of D. We remark that it

may happen that D1 = D′
1, i.e., Pj and Qj lie on a same polygons. By passing to

a subsequence, we may further assume that

1. Pi 6= Pj if i 6= j;
2. limj→∞ Pj = P∞ and limj→∞ Qj = Q∞;
3. Pj , Qj, j ∈ N are respectively located at one side of P∞, Q∞, and Pj ’s are

not vertices of D1;
4. PjPj+1 ⊂ ∂D1 and QjQj+1 ⊂ ∂D′

1;
5. either u(PjQj) = 0 for all j ∈ N or ∂νu(PjQj) = 0 for all j ∈ N.

It is noted that the endpoints {Qj}j∈N may not necessarily be mutually distinct.
Apparently, there are four cases to consider:

(a). D1 is a sound-soft polygon and u(PjQj) = 0 for all j ∈ N;
(b). D1 is a sound-hard polygon and ∂νu(PjQj) = 0 for all j ∈ N;
(c). D1 is a sound-soft polygon and ∂νu(PjQj) = 0 for all j ∈ N;
(d). D1 is a sound-hard polygon and u(PjQj) = 0 for all j ∈ N.

Case (a) and Case (b) can be shown to lead to a contradiction completely similar to
that in [8] (see the proof of Lemma 7 in [8], which is also applicable to the sound-soft
case). It is emphasized that the scatterer considered in [8] is a single sound-hard
polygon. However, to show the finiteness of the line segments in Case (a) and
Case (b), one only needs to study the local behaviors of those line segments near
D1. So the arguments in [8] are still applicable to derive a similar contradiction with
Cases (a) and (b), even the current scatterer composed of finitely many sound-hard
and sound-soft polygons.

In the following, we only consider Case (c). And Case (d) can be treated in a
like manner. By Lemma 4.1, it is readily seen that

∠(QjPj , ∂D1)

π
=

nj

mj
∈ Q ∀j ∈ N, (23)

where mj , nj ∈ N for all j ∈ N, and the greatest common divisor for mj and nj is
one. Furthermore, by Corollary 1 we have that mj for j ∈ N is even. Otherwise,
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by the unique continuation, we would get u = 0 in G, which obviously contradicts
Lemma 3.3. So we may let mj = 2zj, with zj ∈ N for j ∈ N. Then, by noting
∂νu(QjPj) = 0 and using Corollary 3, we have ∂νu(Q′

jPj) = 0 or u(Q′
jPj) = 0,

where Q′
jPj ⊂ G is such that

∠(Q′
jPj , ∂D1)

π
=

1

2
, j ∈ N. (24)

Next, we first assume that there are infinitely many j ∈ N such that ∂νu(Q′
jPj) = 0.

Then, by extracting a subsequence, we may assume that ∂νu(Q′
jPj) = 0 for all

j ∈ N. Since limj→∞ |PjPj+1| = 0, by repeatedly applying Lemma 3.4 to the
quadrilateral domains PjQ

′
jQ

′
j+mPj+m with respect to the symmetry axes PjQ

′
j ,

j, m ∈ N, we can show the following: there is a family {lm}m∈N of line segments
with ∂νu(lm) = 0, lm ‖ PjQ

′
j for all j, m ∈ N and ∪m∈Nlm is dense in the set

U := {P ; |PP∞| < δ} ∩G with sufficiently small δ > 0. Since the Laplace operator
is invariant with respect to rigid motions, we can assume that PjQ

′
j are parallel to

the x2-axis and ∂D1 is on the x1-axis near P∞. Hence, from ∂u/∂ν(lm) = 0, we
have ∂x1

u(lm) = 0 in G, which readily gives that ∂x1
u = 0 in U by the continuity of

∂x1
u in G. Furthermore, by noting that ∂x1

u also satisfies the Helmholtz equation,
we have by analytic continuation that u(x1, x2) = u(x2) for all (x1, x2) ∈ G. Next,
since u satisfies the equation ∆u + k2u = 0 in G, i.e. ux2x2

+ k2u = 0 in G,
we can derive from the boundary condition u(0) = 0 (because u(∂D1) = 0) that
u(x2) = c sin kx2 for some constant c ∈ C. Then, from the Sommerfeld radiation
condition, we have lim|x|→∞ |c sin kx2 − exp{ikx · d}| = 0. Particularly, by taking
x̃ = (x1, π/k) and letting x1 → ∞, we have limx1→∞ | exp{ikx̃ · d}| = 0, which is
certainly not true. On the other hand, if there are infinitely many j ∈ N such that
u(Q′

jPj) = 0, by extracting a subsequence if necessary, we may again assume that

u(Q′
jPj) = 0 for all j ∈ N. Then, by a similar argument as above and repeated

application of Lemma 3.4 to the quadrilateral domains PjQ
′
jQ

′
j+mPj+m with respect

to the symmetry axes PjQ
′
j , for j, m ∈ N, eventually gives that u = 0 in G,

contradicting Lemma 3.3. The proof is completed.

Proof of Lemma 3.11. Let AB := l ∈ S11. Without loss of generality, we may
assume that A, B ∈ ∂D1 with D1 being a component polygon of D. Clearly, the
connected path ∂D1 is divided by the two points A and B into two parts, and one of
which, along with AB, forms a (nonempty) polygon. We denote by G+ the interior
of the polygon. Now, we shall show that G+ must lie entirely in G; i.e., it is a
bounded connected component of G. If this is not true, then G+ ∩D 6= ∅. On the
other hand, for any point x′

0 ∈ AB, noting x′
0 ∈ G := R2\D, we have a sufficiently

small ball Bε(x
′
0) such that Bε(x

′
0) ⊂ G. Clearly Bε(x

′
0) ∩ G+ 6= ∅, so we know

G ∩ G+ = (R2\D) ∩ G+ 6= ∅. Then by Lemma 3.1 with A = D and B = G+, we
have ∂D ∩ G+ 6= ∅, which contradicts with our definition of G+. Hence G+ is a
bounded connected component of G\AB. Since the open connected set G cannot
be divided into more than two connected components by the line segment AB (see
e.g. the first step in the proof of Jordan’s curve theorem in Appendix 4, Chapter 9,
[7]), and noting G is unbounded, we therefore have another (unique) unbounded
connected component of G\AB, namely, G− = (G\AB)\G+.

We consider the case AB := l ∈ S12. Noting the facts that A, B lying on two
different component polygons and the component polygons of D are disjoint, it is
apparent to see that G\l is connected.
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5. Concluding remarks.

5.1. Remove the disjoint condition. Our uniqueness argument equally applies
to the case without the disjoint condition, namely, condition (ii) in Definition 2.1,
for the mixed-type multiple polygonal scatterers discussed in Theorem 2.2. First,
let us investigate what will happen if two component polygons of D intersect with
each other. Let D1, D2 ⊂ D and D1 ∩D2 6= ∅. If D1 ∩D2 contains an open portion
of ∂D1∪∂D2, then noting D1 and D2 are compact polygons, we see D1∪D2 must be
a single component polygon in D (see, e.g., Fig. 7, the two scatterers are equivalent
to each other).

Figure 7. Illustration of the equivalence of two scatterers

Hence, if D1 intersects with D2, then they intersect only at some points. In
fact, we can show that the intersection point is unique. In fact, if D1 intersects
D2 at more than one point, e.g., let {P, P ′} = D1 ∩ D2, then ∂D1 and ∂D2 are,
respectively divided by P and P ′ into two parts. Obviously, one of the two parts
of ∂D1 forms with another part on ∂D2 a polygonal domain which disconnects to
infinity; that is, R2\(D1 ∪ D2) is not connected since it has a bounded connected
component, which contradicts to our assumption that R2\D is connected. Now, we
define for each j = 1, 2, . . . , m,

D′
j = {Di ⊂ D; Di ∩ Dj 6= ∅, i = 1, 2, . . . , m}, (25)

and we call D′
j a “polygon”. The expression of D can be reformulated as

D =

m′⋃

j=1

D′
j

with each D′
j being a “polygon”, and D′

i∩D′
j = ∅ for i 6= j. We would like to remark

that for this D, the connected complement G = R2\D is not necessary a Lipschitz
domain. But in the current work, we are mainly concerned with the uniqueness in
the inverse problem, so we would still assume that there exists a unique solution
u ∈ H1

loc(G) for the forward scattering problem.
With the above preparations, it is now straightforward to modify our proof of

Theorem 2.2 for mixed-type multiple polygonal scatterers without the disjoint con-
dition, and obtain

Theorem 5.1. Assume that D and D̃ are two mixed-type multiple polygonal scat-
terers as described in Definition 2.1, but without the disjoint condition in (ii), with

respective boundary conditions B and B̃. If the far-field patterns for D and D̃

coincide for a single incident plane wave at arbitrarily fixed incident direction and

wave number, then D = D̃ and B = B̃.
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5.2. Uniqueness in high-dimensions. As for uniqueness for polyhedral scatter-
ers in higher dimensions of RN (N ≥ 3), the situation becomes much more sophisti-
cated. The uniqueness with far-field data from one single incident wave is still open.
However, by modifying the proof in [10], we can show the uniqueness for polyhedral
scatterers without knowing their a prior physical properties by using far-field data
from N different plane waves. In fact, the scatterers could be much more general in
this case, which can admit the simultaneous presence of both solid and crack-type
components. Let us first follow [10] to prescribe exactly the terminology a mixed-
type multiple polyhedral scatterer. In the following, a cell is defined to be the closure
of an open subset of an (N − 1)-dimensional (N ≥ 2) hyperplane. And an obstacle
D is said to be a multiple polyhedral scatterer in RN (N ≥ 2) if it is a compact
subset of RN with connected complement G = RN\D, and the boundary of G is
composed of a finite union of cells, i.e.,

∂G =

m⋃

j=1

Cj , (26)

where each Cj is a cell. Furthermore, if D is called to be of mixed type if the
physical properties of each cell is unknown a priori; namely, they may be either lie
on some sound-hard or sound-soft solid polyhedra, or they themselves are sound-
hard or sound-soft screens. Now, on ∂G, we will be associated with the following
mixed boundary condition

u = 0 on
m′⋃
j=1

Cj , and ∂νu = 0 on
m⋃

j=m′+1

Cj , (27)

where 0 ≤ m′ ≤ m, corresponding to the case that C1, . . . , Cm′ are sound-soft, while
Cm′+1, . . . , Cm are sound-hard. Again denoting by Bu = 0 the above boundary
condition, we can show that

Theorem 5.2. Assume that D and D̃ are two mixed-type multiple polyhedral scat-

terers in RN (N ≥ 2) with respective boundary conditions B and B̃. If the far-field

patterns for D and D̃ coincide for N incident plane waves at a fixed wave number

and N linearly independent incident directions, then D = D̃ and B = B̃.

The proof of Theorem 5.2 follows basically from that of [10] with some modifi-
cations and we refer to [11] for a detailed exposition.
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