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Solution 8

Section 8.1

1. Since we are only concerned about pointwise convergence here for x ≥ 0, let x ≥ 0 be
fixed. Then as n→∞, we have

lim
n→∞

x = x

which is a finite real number, and

lim
n→∞

(x+ n) = +∞.

Hence
lim
n→∞

x

x+ n
= 0,

as desired.

2. Let x ≥ 0 be fixed. Then for all n ∈ N, we have

enx ≥ 1 + nx > 0.

(Why? Either show this by differentiation, or use the power series expansion

enx = 1 + nx+

(
(nx)2

2!
+

(nx)3

3!
+ . . .

)
where the bracketed terms are non-negative since nx ≥ 0.) This says

0 ≤ xe−nx ≤ x

1 + nx

for all n ∈ N. Since
lim
n→∞

x

1 + nx
= 0,

by Sandwich theorem, we see that
lim
n→∞

xe−nx

exists and is equal to 0.

8. Let x ≥ 0 be fixed. Then for all n ∈ N, we have

enx ≥ 1 + nx > 0.

(Why? Either show this by differentiation, or use the power series expansion

enx = 1 + nx+

(
(nx)2

2!
+

(nx)3

3!
+ . . .

)
where the bracketed terms are non-negative since nx ≥ 0.) This says

0 ≤ xe−nx ≤ x

1 + nx

for all n ∈ N. Since
lim
n→∞

x

1 + nx
= 0,

by Sandwich theorem, we see that
lim
n→∞

xe−nx

exists and is equal to 0.
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11. Define the functions fn and f on [0,∞) by fn(x) = x
x+n and f(x) = 0. We already know

from Question 1 that fn converges pointwisely to f on [0,∞).

Suppose first a > 0 is given. To prove the uniform convergence of fn to f on [0, a], simply
observe that the sup-norm of fn − f over [0, a] is∥∥∥∥ x

x+ n
− 0

∥∥∥∥
[0,a]

=
1

1 + n
a

,

which tends to 0 as n→∞. Hence fn converges to f uniformly on [0, a].

Next, to show that fn does not converge to f uniformly on [0,∞), note that

‖fn − f‖[0,∞) = sup
x∈[0,∞)

x

x+ n
= 1,

the last equality following since

0 ≤ x

x+ n
≤ 1

for all x ∈ [0,∞), and

lim
x→∞

x

x+ n
= 1.

Hence ‖fn− f‖[0,∞) does not tend to 0 as n→∞ (in fact it tends to 1 instead), and from
this we see that the convergence of fn to f is not uniform on [0,∞).

12. Define the functions fn and f on [0,∞) by fn(x) = nx
1+n2x2 and f(x) = 0. We already

know from Question 2 that fn converges pointwisely to f on [0,∞).

To prove that this convergence is uniform on [a,∞) for all a > 0, let a > 0 be given. Then
the sup-norm of fn − f over [a,∞) is∥∥∥∥ nx

1 + n2x2
− 0

∥∥∥∥
[a,∞)

≤
∥∥∥∥ 1

nx

∥∥∥∥
[a,∞)

=
1

na
,

which tends to 0 as n→∞. Hence fn converges to f uniformly on [a,∞).

To prove that the convergence of fn to f is not uniform on [0,∞), note that for all n ∈ N,
we have

‖fn − f‖[0,∞) = sup
x∈[0,∞)

|fn(x)| ≥ fn
(

1

n

)
=

1

2
.

Hence ‖fn − f‖[0,∞) does not tend to 0 as n → ∞. This shows fn does not converge
uniformly to f on [0,∞).

18. Define the functions fn and f on [0,∞) by fn(x) = xe−nx and f(x) = 0. We already
know from Question 8 that fn converges pointwisely to f on [0,∞). To prove that this
convergence is uniform on [0,∞), observe that the sup-norm of fn − f over [0,∞) is∥∥xe−nx − 0

∥∥
[0,∞)

=
1

n
e−1,

because the maximum value of xe−nx on [0,∞) is attained when x = 1/n. (Check by
differentiation!) Since

lim
n→∞

‖fn − f‖[0,∞) = lim
n→∞

1

n
e−1 = 0,

we see that fn converges to f uniformly on [0,∞).



2014-15 Second Term MAT2060B 3

22. Recall fn(x) = x+ 1
n and f(x) = x for all x ∈ R, n ∈ N. Thus

‖fn − f‖R = sup
x∈R

∣∣∣∣(x+
1

n

)
− x

∣∣∣∣ =
1

n
,

which tends to 0 as n→∞. So fn converges to f uniformly on R.

On the other hand,

‖f2n − f2‖R = sup
x∈R

∣∣∣∣∣
(
x+

1

n

)2

− x2
∣∣∣∣∣ = sup

x∈R

∣∣∣∣2xn +
1

n

2
∣∣∣∣ = +∞

for all n ∈ N. So f2n does not converge uniformly to f2 on R.

Remark. Hence if fn converges uniformly to f on a set A, and gn converges uniformly to
g on the same set A, it is not necessarily true that fngn converges uniformly to fg. The
problem is that the functions involved could be unbounded. If we work only with bounded
functions, then the product will still uniformly converge, as we see in the next question.

23. Suppose fn and gn are sequences of bounded functions that converge uniformly on A to f
and g respectively.

First we claim that there exists a constant M1 ∈ R, such that

‖fn‖A ≤M1 for all n ∈ N :

This is because using Cauchy’s criterion, taking ε = 1, we see that there exists N ∈ N,
such that

‖fn − fm‖A ≤ 1 for all n,m ≥ N,

which implies that
‖fn‖A ≤ ‖fN‖A + 1 for all n ≥ N.

Hence taking M1 = max{‖f1‖A, . . . , ‖fN−1‖A, ‖fN‖A + 1}, we get the desired claim. (Or
else: since the triangle inequality implies

|‖fn‖A − ‖fm‖A| ≤ ‖fn − fm‖A,

which shows that {‖fn‖A} is a Cauchy sequence of real numbers, we see that {‖fn‖A} is
a convergent sequence of real numbers, which in particular implies that it is a bounded
sequence of real numbers.) (We sometimes say that fn is a sequence of uniformly bounded
functions.)

Similarly, there exists a number M2 ∈ R, such that

‖gn‖A ≤M2 for all n ∈ N.

It follows that

‖fngn − fg‖A =‖fn(gn − g) + (fn − f)g‖A
≤‖fn‖A‖gn − g‖A + ‖fn − f‖A‖g‖A
≤M1‖gn − g‖A +M2‖fn − f‖A
→0

as n → ∞, by uniform convergence of fn and gn to f and g respectively. Hence fngn
converges uniformly to fg on A.
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24. Since g is continuous on [−M,M ], we see that g is uniformly continuous on [−M,M ].
Hence given ε > 0, there exists δ > 0, such that whenever y1, y2 ∈ [−M,M ] with |y1−y2| ≤
δ, we have

|g(y1)− g(y2)| < ε.

Now fn converges uniformly to f on A, and |fn(x)| ≤ M for all x ∈ A and n ∈ N. Thus
|f(x)| ≤M for all x ∈ A as well. In addition, uniform convergence of fn to f implies that
there exists N ∈ N, such that for all n ≥ N , we have ‖fn(x)− f(x)‖A ≤ δ, i.e.

|fn(x)− f(x)| ≤ δ for all x ∈ A.

Hence using the earlier inequality for g with y1 = fn(x), y2 = f(x), we get

|g(fn(x))− g(f(x))| < ε for all x ∈ A and all n ∈ N.

Hence
‖g ◦ fn − g ◦ f‖A < ε,

and since this is true for all n ≥ N , we see that g ◦ fn converges uniformly to g ◦ f on A.

Supplementary Exercises

1. (a) Just note that

lim
n→∞

cos 5x

n+ x2
= 0

for all x ∈ R, by sandwich theorem. Also,∥∥∥∥ cos 5x

n+ x2

∥∥∥∥
R

= sup
x∈R

| cos 5x|
n+ x2

≤ sup
x∈R

1

n+ x2
=

1

n
,

which tends to 0 as n→∞. Thus cos 5x
n+x2 converges uniformly to 0 on R.

(b) Fix x. Then 0 ≤ cos2 πx ≤ 1. If cos2 πx = 1, then cos2n πx = 1 ⇒ lim cos2n πx = 1.

Otherwise, lim cos2n πx = 0.

Hence lim cos2n πx =

{
1, if cos2 πx = 1
0, o.w.

=

{
1, x ∈ Z
0, x /∈ Z =: f(x),

since cos2 πx = 1 ⇔ πx = kπ, for some k ∈ Z ⇔ x ∈ Z.

Now for any positive integer n, we have∥∥cos2n πx− f(x)
∥∥
R ≥

∥∥cos2n πx− 0
∥∥
(0,1)
≥ lim

x→0+
cos2n πx = 1,

which does not converge to 0 as n → ∞. So (cos2n πx) does not converge to f
uniformly on R as n→∞.

(c) Now lim
|x|

n2 + x2
= 0, we have

∥∥∥∥ |x|
n2 + x2 − 0

∥∥∥∥
R

= sup
x∈R

∣∣∣∣ |x|
n2 + x2

∣∣∣∣ = sup
x∈[0,+∞)

x

n2 + x2
.

Hence we have∥∥∥∥ |x|
n2 + x2

− 0

∥∥∥∥
R

= sup
x∈[0,+∞)

x

n2 + x2
≤ sup

x∈[0,n)

x

n2 + x2
+ sup

x∈[n,+∞)

x

n2 + x2

≤ sup
x∈[0,n)

x

n2
+ sup

x∈[n,+∞)

x

x2
≤ 2

n
→ 0

Hence, the sequence

(
|x|

n2 + x2

)
converges uniformly to 0 on R.


