Solution 6

Section 7.2

8. Suppose that the conclusion is not true, then there exists some point $c \in [a, b]$ such that $f(c) > 0$. By continuity of f, there exists a $\delta > 0$ such that $f > \frac{1}{2}f(c)$ on $[c - \delta, c + \delta]$. Then

$$
0 = \int_a^b f \ge \int_{c-\delta}^{c+\delta} f \ge f(c)\delta > 0.
$$

Contradiction!

- 9. Taking function f to be 0 on $(0, 1]$ and $f(0) = 1$. Obviously, f is not continuous on $[0, 1]$ and $f \ge 0$. Since $f(x) = 0$ except one point $x = 0$, therefore, $f \in \mathcal{R}[0,1]$ and $\int_0^1 f = 0$. This is a counterexample if we drop the continuity assumption.
- 10. Let $F(x) = f(x) g(x)$, then F is continuous on [a, b] and $\int_a^b F = 0$. It suffices to show that there exists a point $c \in [a, b]$ such that $F(c) = 0$.

If F changes sign on [a, b], then by continuity of F, there must be a point c such that $F(c) = 0.$

If F doesn't change sign, W.L.O.G, we can assume that $F > 0$. Then $\int_a^b F > 0$. Contradiction!

- 13. Taking function f to be $\frac{1}{x}$ on $(0, 1]$ and $f(0) = 0$. For any $c \in (0, 1)$, since f is continuous on [c, 1], thus $f \in \mathcal{R}[c, 1]$. However, f is unbounded on [0, 1], hence $f \notin \mathcal{R}[0, 1]$.
- 16. Since f is a continuous function on [a, b], thus f attains its maximum and minimum. Let $M = \max_{[a,b]} f$ and $m = \min_{[a,b]} f$, then $m \leq f(x) \leq M$ for any $x \in [a,b]$. We have the following inequality:

$$
m \le \frac{1}{b-a} \int_a^b f \le M.
$$

Again by the continuity of f, there exists $c \in [a, b]$ such that $f(c) = \frac{1}{b-a} \int_a^b f$.

17. Let $M = \max_{[a,b]} f$ and $m = \min_{[a,b]} f$, then $m \le f(x) \le M$ for any $x \in [a,b]$. Since $g > 0$, by Q8 above,

$$
\int_{a}^{b} g > 0,
$$

and hence

$$
m=\frac{\int_a^bmg}{\int_a^bg}\leq \frac{\int_a^bfg}{\int_a^bg}\leq \frac{\int_a^bMg}{\int_a^bg}=M.
$$

By the continuity of f, there exists $c \in [a, b]$ such that $f(c) = \frac{\int_a^b fg}{c b}$ $\int_{a}^{b} \frac{fg}{g}$, i.e. $\int_{a}^{b} fg = f(c) \int_{a}^{b} g$.

Section 7.3

9. (a)
$$
G(x) = F(x) - \int_a^c f
$$
.
\n(b) $H(x) = \int_a^b f - F(x)$.
\n(c) $S(x) = F(\sin x) - F(x)$.

11. (a)

$$
F'(x) = \frac{1}{1+x^6}(x^2)' = \frac{2x}{1+x^6}
$$

.

(b)

$$
F'(x) = \sqrt{1+x^2} - \sqrt{1+x^4}(x^2)' = \sqrt{1+x^2} - 2x\sqrt{1+x^4}.
$$

15. Note

$$
g(x) = \int_0^{x+c} f(t)dt - \int_0^{x-c} f(t)dt.
$$

Since f is continuous at both $x + c$ and $x - c$, by Fundamental theorem of calculus and the chain rule, g is differentiable at x , and

$$
g'(x) = f(x+c)\frac{d}{dx}(x+c) - f(x-c)\frac{d}{dx}(x-c) = f(x+c) - f(x-c).
$$

21. a. Since $(tf \pm g)^2 \ge 0$, thus $\int_a^b (tf \pm g)^2 \ge 0$ for any $t \in \mathbb{R}$.

b. It follows from $\int_a^b (tf \pm g)^2 \geq 0$, we have $t \int_a^b f^2 + \frac{1}{t}$ $\frac{1}{t}g^2 \ge 2\int_a^b f(\mp g)$ for any $t > 0$. By G-M inequality, $2 \int_a^b f(\mp g) \ge -\left(t \int_a^b f^2 + \int_a^b f^2\right)$ 1 $\frac{1}{t}g^2\Big).$ Hence,

$$
2|\int_{a}^{b}fg| \leq t \int_{a}^{b} f^{2} + \frac{1}{t}g^{2}.
$$

c. By (b), $2| \int_a^b fg | \leq \int_a^b$ 1 $\frac{1}{t}g^2$ for any $t > 0$. Let $t \to +\infty$, we obtain $\int_a^b fg = 0$. d. Note that

$$
\left(t\int_{a}^{b} f^{2} + \int_{a}^{b} \frac{1}{t} g^{2}\right)^{2}
$$
\n
$$
= \left(t\int_{a}^{b} f^{2} - \int_{a}^{b} \frac{1}{t} g^{2}\right)^{2} + 4\int_{a}^{b} f^{2} \int_{a}^{b} g^{2}
$$
\n
$$
\geq 4 \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}.
$$

In fact, when $t^2 = \frac{\int_a^b f^2}{\int_a^b g}$ $\frac{\int_a^b f^2}{\int_a^b g^2}$, $\left(t \int_a^b f^2 + \int_a^b$ the minimum of $\left(t \int_a^b f^2 + \int_a^b f$ 1 $\left(\frac{1}{t}g^2\right)^2 = 4\int_a^b f^2 \int_a^b g^2$. Therefore, $\int_a^b f^2 \int_a^b g^2$ is 1 $\frac{1}{t}g^2\bigg)^2$ with respect to t. Using G-M inequality, we have $\left(t \int_a^b f^2 + \int_a^b f^2\right)$ 1 $\frac{1}{t}g^2\Big)^2 \geq 4\left(\int_a^b|fg|\right)^2.$ Hence,

$$
|\int_{a}^{b} fg|^{2} \leq \left(\int_{a}^{b} |fg|\right)^{2} \leq \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}.
$$