Solution 6

Section 7.2

8. Suppose that the conclusion is not true, then there exists some point $c \in [a, b]$ such that f(c) > 0. By continuity of f, there exists a $\delta > 0$ such that $f > \frac{1}{2}f(c)$ on $[c - \delta, c + \delta]$. Then

$$0 = \int_{a}^{b} f \ge \int_{c-\delta}^{c+\delta} f \ge f(c)\delta > 0$$

Contradiction!

- 9. Taking function f to be 0 on (0,1] and f(0) = 1. Obviously, f is not continuous on [0,1] and $f \ge 0$. Since f(x) = 0 except one point x = 0, therefore, $f \in \mathcal{R}[0,1]$ and $\int_0^1 f = 0$. This is a counterexample if we drop the continuity assumption.
- 10. Let F(x) = f(x) g(x), then F is continuous on [a, b] and $\int_a^b F = 0$. It suffices to show that there exists a point $c \in [a, b]$ such that F(c) = 0.

If F changes sign on [a, b], then by continuity of F, there must be a point c such that F(c) = 0.

If F doesn't change sign, W.L.O.G, we can assume that F > 0. Then $\int_a^b F > 0$. Contradiction!

- 13. Taking function f to be $\frac{1}{x}$ on (0,1] and f(0) = 0. For any $c \in (0,1)$, since f is continuous on [c,1], thus $f \in \mathcal{R}[c,1]$. However, f is unbounded on [0,1], hence $f \notin \mathcal{R}[0,1]$.
- 16. Since f is a continuous function on [a, b], thus f attains its maximum and minimum. Let $M = \max_{[a,b]} f$ and $m = \min_{[a,b]} f$, then $m \leq f(x) \leq M$ for any $x \in [a, b]$. We have the following inequality:

$$m \le \frac{1}{b-a} \int_a^b f \le M.$$

Again by the continuity of f, there exists $c \in [a, b]$ such that $f(c) = \frac{1}{b-a} \int_a^b f$.

17. Let $M = \max_{[a,b]} f$ and $m = \min_{[a,b]} f$, then $m \leq f(x) \leq M$ for any $x \in [a,b]$. Since g > 0, by Q8 above,

$$\int_{a}^{b} g > 0,$$

and hence

$$m = \frac{\int_a^b mg}{\int_a^b g} \le \frac{\int_a^b fg}{\int_a^b g} \le \frac{\int_a^b Mg}{\int_a^b g} = M.$$

By the continuity of f, there exists $c \in [a, b]$ such that $f(c) = \frac{\int_a^b fg}{\int_a^b g}$, i.e. $\int_a^b fg = f(c) \int_a^b g$.

Section 7.3

9. (a)
$$G(x) = F(x) - \int_{a}^{c} f$$
.
(b) $H(x) = \int_{a}^{b} f - F(x)$.
(c) $S(x) = F(\sin x) - F(x)$.

11. (a)

$$F'(x) = \frac{1}{1+x^6}(x^2)' = \frac{2x}{1+x^6}$$

(b)

$$F'(x) = \sqrt{1+x^2} - \sqrt{1+x^4}(x^2)' = \sqrt{1+x^2} - 2x\sqrt{1+x^4}.$$

15. Note

$$g(x) = \int_0^{x+c} f(t)dt - \int_0^{x-c} f(t)dt$$

Since f is continuous at both x + c and x - c, by Fundamental theorem of calculus and the chain rule, g is differentiable at x, and

$$g'(x) = f(x+c)\frac{d}{dx}(x+c) - f(x-c)\frac{d}{dx}(x-c) = f(x+c) - f(x-c).$$

21. a. Since $(tf \pm g)^2 \ge 0$, thus $\int_a^b (tf \pm g)^2 \ge 0$ for any $t \in \mathbb{R}$.

b. It follows from $\int_a^b (tf \pm g)^2 \ge 0$, we have $t \int_a^b f^2 + \frac{1}{t}g^2 \ge 2 \int_a^b f(\mp g)$ for any t > 0. By G-M inequality, $2 \int_a^b f(\mp g) \ge -\left(t \int_a^b f^2 + \int_a^b \frac{1}{t}g^2\right)$. Hence,

$$2|\int_{a}^{b} fg| \le t \int_{a}^{b} f^{2} + \frac{1}{t}g^{2}.$$

c. By (b), $2|\int_a^b fg| \le \int_a^b \frac{1}{t}g^2$ for any t > 0. Let $t \to +\infty$, we obtain $\int_a^b fg = 0$. d. Note that

$$\left(t \int_{a}^{b} f^{2} + \int_{a}^{b} \frac{1}{t} g^{2} \right)^{2}$$

$$= \left(t \int_{a}^{b} f^{2} - \int_{a}^{b} \frac{1}{t} g^{2} \right)^{2} + 4 \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}$$

$$\ge 4 \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}.$$

In fact, when $t^2 = \frac{\int_a^b f^2}{\int_a^b g^2}$, $\left(t \int_a^b f^2 + \int_a^b \frac{1}{t} g^2\right)^2 = 4 \int_a^b f^2 \int_a^b g^2$. Therefore, $\int_a^b f^2 \int_a^b g^2$ is the minimum of $\left(t \int_a^b f^2 + \int_a^b \frac{1}{t} g^2\right)^2$ with respect to t. Using G-M inequality, we have $\left(t \int_a^b f^2 + \int_a^b \frac{1}{t} g^2\right)^2 \ge 4 \left(\int_a^b |fg|\right)^2$. Hence,

$$|\int_a^b fg|^2 \le \left(\int_a^b |fg|\right)^2 \le \int_a^b f^2 \int_a^b g^2.$$