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Solution 6

Section 7.2

8. Suppose that the conclusion is not true, then there exists some point c ∈ [a, b] such that
f(c) > 0. By continuity of f , there exists a δ > 0 such that f > 1

2f(c) on [c − δ, c + δ].
Then

0 =

∫ b

a
f ≥

∫ c+δ

c−δ
f ≥ f(c)δ > 0.

Contradiction!

9. Taking function f to be 0 on (0, 1] and f(0) = 1. Obviously, f is not continuous on [0, 1]
and f ≥ 0. Since f(x) = 0 except one point x = 0, therefore, f ∈ R[0, 1] and

∫ 1
0 f = 0.

This is a counterexample if we drop the continuity assumption.

10. Let F (x) = f(x) − g(x), then F is continuous on [a, b] and
∫ b
a F = 0. It suffices to show

that there exists a point c ∈ [a, b] such that F (c) = 0.

If F changes sign on [a, b], then by continuity of F , there must be a point c such that
F (c) = 0.

If F doesn’t change sign, W.L.O.G, we can assume that F > 0. Then
∫ b
a F > 0. Contra-

diction!

13. Taking function f to be 1
x on (0, 1] and f(0) = 0. For any c ∈ (0, 1), since f is continuous

on [c, 1], thus f ∈ R[c, 1]. However, f is unbounded on [0, 1], hence f /∈ R[0, 1].

16. Since f is a continuous function on [a, b], thus f attains its maximum and minimum. Let
M = max[a,b] f and m = min[a,b] f , then m ≤ f(x) ≤ M for any x ∈ [a, b]. We have the
following inequality:

m ≤ 1

b− a

∫ b

a
f ≤M.

Again by the continuity of f , there exists c ∈ [a, b] such that f(c) = 1
b−a

∫ b
a f .

17. Let M = max[a,b] f and m = min[a,b] f , then m ≤ f(x) ≤M for any x ∈ [a, b]. Since g > 0,
by Q8 above, ∫ b

a
g > 0,

and hence

m =

∫ b
a mg∫ b
a g

≤
∫ b
a fg∫ b
a g
≤
∫ b
a Mg∫ b
a g

= M.

By the continuity of f , there exists c ∈ [a, b] such that f(c) =
∫ b
a fg∫ b
a g

, i.e.
∫ b
a fg = f(c)

∫ b
a g.
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Section 7.3

9. (a) G(x) = F (x)−
∫ c
a f.

(b) H(x) =
∫ b
a f − F (x).

(c) S(x) = F (sinx)− F (x).

11. (a)

F ′(x) =
1

1 + x6
(x2)′ =

2x

1 + x6
.

(b)

F ′(x) =
√

1 + x2 −
√

1 + x4(x2)′ =
√

1 + x2 − 2x
√

1 + x4.

15. Note

g(x) =

∫ x+c

0
f(t)dt−

∫ x−c

0
f(t)dt.

Since f is continuous at both x + c and x − c, by Fundamental theorem of calculus and
the chain rule, g is differentiable at x, and

g′(x) = f(x+ c)
d

dx
(x+ c)− f(x− c) d

dx
(x− c) = f(x+ c)− f(x− c).

21. a. Since (tf ± g)2 ≥ 0, thus
∫ b
a (tf ± g)2 ≥ 0 for any t ∈ R.

b. It follows from
∫ b
a (tf ± g)2 ≥ 0 , we have t

∫ b
a f

2 + 1
t g

2 ≥ 2
∫ b
a f(∓g) for any t > 0.

By G-M inequality, 2
∫ b
a f(∓g) ≥ −

(
t
∫ b
a f

2 +
∫ b
a

1
t g

2
)

.

Hence,

2|
∫ b

a
fg| ≤ t

∫ b

a
f2 +

1

t
g2.

c. By (b), 2|
∫ b
a fg| ≤

∫ b
a

1
t g

2 for any t > 0. Let t→ +∞, we obtain
∫ b
a fg = 0.

d. Note that (
t

∫ b

a
f2 +

∫ b

a

1

t
g2
)2

=

(
t

∫ b

a
f2 −

∫ b

a

1

t
g2
)2

+ 4

∫ b

a
f2
∫ b

a
g2

≥ 4

∫ b

a
f2
∫ b

a
g2.

In fact, when t2 =
∫ b
a f

2∫ b
a g

2
,
(
t
∫ b
a f

2 +
∫ b
a

1
t g

2
)2

= 4
∫ b
a f

2
∫ b
a g

2. Therefore,
∫ b
a f

2
∫ b
a g

2 is

the minimum of
(
t
∫ b
a f

2 +
∫ b
a

1
t g

2
)2

with respect to t.

Using G-M inequality, we have
(
t
∫ b
a f

2 +
∫ b
a

1
t g

2
)2
≥ 4

(∫ b
a |fg|

)2
.

Hence,

|
∫ b

a
fg|2 ≤

(∫ b

a
|fg|

)2

≤
∫ b

a
f2
∫ b

a
g2.


