Solution 4

Section 6.4

3. It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1, we have $(fg)^{(k+1)}(x)$

$$= \left((fg)^{(k)} \right)'(x) = \frac{d}{dx} \left[\sum_{j=0}^{k} \binom{k}{j} f^{(k-j)}(x) g^{(j)}(x) \right], \text{ by induction hypothesis}$$

$$= \sum_{j=0}^{k} \frac{d}{dx} \left[\binom{n}{k} f^{(k-j)}(x) g^{(j)}(x) \right]$$

$$= \sum_{j=0}^{k} \binom{k}{j} \left[f^{(k+1-j)}(x) g^{(j)}(x) + f^{(k-j)}(x) g^{(j+1)}(x) \right]$$

$$= \sum_{j=0}^{k} \binom{k}{j} f^{(k+1-j)}(x) g^{(j)}(x) + \sum_{j=1}^{k+1} \binom{k}{j-1} f^{(k+1-j)}(x) g^{(j)}(x)$$

$$= f^{(k+1)}(x) g(x) + \sum_{j=1}^{k} \left[\binom{k}{j} + \binom{k}{j-1} \right] f^{(k+1-j)}(x) g^{(j)}(x) + f(x) g^{(k+1)}(x)$$

$$= \sum_{j=0}^{k+1} \binom{k+1}{j} f^{(k+1-j)}(x) g^{(j)}(x), \text{ since}$$

$$\binom{k}{j} + \binom{k}{j-1} = \frac{k!}{j!(k-j)!} + \frac{k!}{(j-1)!(k+1-j)!} = \frac{k!(k+1-j)+k!j}{j!(k+1-j)!} = \binom{k+1}{j} f^{(k+1)}(k) f^{(k+1)}(k) f^{(k+1)}(k)$$

By M.I., it is true for all n.

 $10. \ Method \ 1$

By Taylor theorem on $x \mapsto e^x$, $x \ge 0$, $e^{1/x^2} \ge 1 + \frac{1}{x^2} + \dots + \frac{1}{k!x^{2k}} \ge \frac{1}{k!x^{2k}}$, for $k \in \mathbb{N}$. Hence $\left|\frac{h(x)}{x^k}\right| = \frac{e^{-1/x^2}}{|x|^k} \le \frac{1}{|x|^k} (k!x^{2k}) = k! |x|^k \Rightarrow \lim_{x \to 0} \frac{h(x)}{x^k} = 0$, for $k \in \mathbb{N}$. Method 2 $\lim_{x \to 0} \frac{h(x)}{x^k} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x^k} = \lim_{y \to \infty} \frac{e^{-y^2}}{y^{-k}} = \lim_{y \to \infty} \frac{y^k}{e^{y^2}} = \lim_{y \to \infty} \frac{ky^{k-1}}{2ye^{y^2}} = \lim_{y \to \infty} \frac{ky^{k-2}}{2e^{y^2}} = \dots$ $= \begin{cases} \lim_{y \to \infty} C/ye^{y^2}, & \text{if } k \text{ is odd} \\ \lim_{y \to \infty} C/e^{y^2}, & \text{if } k \text{ is even} \end{cases} = 0, \text{ for some } C := C(k) \in \mathbb{R}.$

Now $h'(0) = \lim_{x \to 0} \frac{h(x)}{x} = 0$, by L'Hôpital rule I. Assume it is true for n < k. Then for n = k, by successive application of L'Hôpital rule I, $0 = \lim_{x \to 0} \frac{h(x)}{x^k} = \lim_{x \to 0} \frac{h'(x)}{kx^{k-1}} = \dots = \lim_{x \to 0} \frac{h^{(k-1)}(x)}{k!x} = \frac{h^{(k)}(0)}{k!} \Rightarrow h^{(k)}(0) = 0$ By M.I., $h^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.

By Taylor theorem, $\exists \xi$ between x and 0 s.t.

$$h(x) = h(0) + h'(0)x + \dots + \frac{h^{(n)}(0)}{n!}x^n + \frac{h^{(n+1)}(\xi)}{(n+1)!}x^{n+1} = \frac{h^{(n+1)}(\xi)}{(n+1)!}x^{n+1} = :R_n(x)$$

Hence, for $x \neq 0$, $\lim R_n(x) = h(x) = e^{-1/x^2} \neq 0$.

Remark It is very difficult here to derive the result, $\lim R_n(x) \neq 0$ for $x \neq 0$, from $R_n(x) := \frac{h^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$ directly by Leibniz rule. If you don't believe, you may try.

12. Use Taylor Expansion of sin x at point $x_0 = 0$, if $|x| \le 1$, there exists c with |c| < 1 such that

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{c'}{5040}.$$

Then we have $|\sin x - (x - \frac{x^3}{6} + \frac{x^5}{120})| = |\frac{c^7}{5040}| < \frac{1}{5040}.$

- 14. (a) By Theorem 6.4.4, $f'(0) = \cdots = f''(0) = 0$, but $f^{(3)}(0) \neq 0$. f has neither a relative minimum nor relative maximum at x = 0.
 - (b) By Theorem 6.4.4, $f'(0) = \cdots = f''(0) = 0$, but $f^{(3)}(0) \neq 0$. f has neither a relative minimum nor relative maximum at x = 0.
 - (c) h'(0) = 1. f has neither a relative minimum nor relative maximum at x = 0.
 - (d) By Theorem 6.4.4, $f'(0) = \cdots = f^{(3)}(0) = 0$, but $f^{(4)}(0) > 0$. f has a relative minimum at x = 0.

Supplementary Exercises

1. Claim: Fix $n \in \mathbb{N}$, $0 \le j \le 2^n$, then $f\left(\frac{j}{2^n}x + \left(1 - \frac{j}{2^n}\right)y\right) \le \frac{j}{2^n}f(x) + \left(1 - \frac{j}{2^n}\right)f(y)$ It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1. Note that

$$\frac{j}{2^{k+1}}x + \left(1 - \frac{j}{2^{k+1}}\right)y = \frac{j}{2^k}\frac{x}{2} + \left(1 - \frac{j}{2^k}\right)\frac{y}{2} + \left[\frac{j}{2^k} + \left(1 - \frac{j}{2^k}\right)\right]\frac{y}{2}$$
$$= \frac{j}{2^k}\left(\frac{x+y}{2}\right) + \left(1 - \frac{j}{2^k}\right)y$$

Hence, if $j \leq 2^k$, then by induction hypothesis and case n = 2, we have $\begin{aligned} f\left(\frac{j}{2^{k+1}}x + \left(1 - \frac{j}{2^{k+1}}\right)y\right) \\ &\leq \frac{j}{2^k}f\left(\frac{x+y}{2}\right) + \left(1 - \frac{j}{2^k}\right)f(y) \leq \frac{j}{2^k}\left(\frac{1}{2}f(x) + \frac{1}{2}f(y)\right) + \left(1 - \frac{j}{2^k}\right)f(y) \\ &\leq \frac{j}{2^{k+1}}f(x) + \left(1 - \frac{j}{2^{k+1}}\right)f(y) \end{aligned}$

Now, if $2^k < j \le 2^{k+1}$, then $0 \le 2^{k+1} - j < 2^k$, hence replace j by $2^{k+1} - j$, and x by y, we get the same result.

By M.I., the claim is true for all n.

Let $\lambda \in [0,1], \forall n \in \mathbb{N}$, define $j_n := [\lambda 2^n] \le 2^n$. Hence $\lambda 2^n - 1 < j_n \le \lambda 2^n$. Then $\lambda - \frac{1}{2^n} < \frac{j_n}{2^n} \le \lambda \implies \lim \frac{j_n}{2^n} = \lambda$, by Squeeze theorem.

By the claim,
$$\forall n \in \mathbb{N}$$
, $f\left(\frac{j_n}{2^n}x + \left(1 - \frac{j_n}{2^n}\right)y\right) \leq \frac{j_n}{2^n}f(x) + \left(1 - \frac{j_n}{2^n}\right)f(y)$
Letting $n \to +\infty$, we get $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$, by continuity

Remark The result is not in general true if the hypothesis of continuity is omitted, i.e. there exists a discontinuous function, which is thus not convex, satisfying the inequality stated in the question. However, it is not easy to construct such example.

2. Suppose f is convex, then by theorem 1.5 of Notes 1, we have f' is increasing function. Let $x \neq y \in [a, b]$. By mean value theorem, $\exists \xi$ in between x and y such that

$$f(y) - f(x) = f'(\xi)(y - x).$$

Hence

$$\frac{f(y) - f(x)}{y - x} = f'(\xi) = \begin{cases} \geq f(x), & \text{if } x < y. \\ \leq f(x), & \text{if } x > y. \end{cases}$$

Suppose $f(y) - f(x) \ge f'(x)(y - x)$, $\forall x, y \in [a, b]$. We attempt to show that f' is increasing. Let y > x, by our assumption, we have

$$f(y) - f(x) \ge f'(x)(y - x)$$

and

$$f(x) - f(y) \ge f'(y)(x - y)$$

which imply

$$f'(y) \ge \frac{f(x) - f(y)}{x - y} = \frac{f(y) - f(x)}{y - x} \ge f'(x)$$

Therefore, f' is increasing. Again by theorem 1.5 of Notes 1, f is concex on [a, b].

3. The product of two convex functions is in general not convex. Take f(x) := x, $g(x) := \frac{1}{\sqrt{x}}$ on (0,1). Then f''(x) = 0, $g'(x) = -\frac{1}{2}x^{-3/2}$, $g''(x) = \frac{3}{4}x^{-5/2} \ge 0$ on (0,1). Hence f, gare convex. Now $(fg)(x) = \sqrt{x}$ on (0,1). But $(fg)'(x) = \frac{1}{2}x^{-1/2} \Rightarrow (fg)''(x) = -\frac{1}{4}x^{-3/2} < 0$ on (0,1). Hence fg is not convex. The composition of two convex functions is also in general not convex. Take f(x) = -x, $g(x) = x^2$, then f and g are both convex on \mathbb{R} , but $(f \circ g)(x) = f(x^2) = -x^2$ which is certainly not convex on \mathbb{R} .

4. (a) Method 1 – Mathematical Induction
It is trivial for
$$n = 2$$
. Assume it is true for $n = k$. Then for $n = k + 1$, we have
 $f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k + \lambda_{k+1} x_{k+1})$
 $\leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + (\lambda_k + \lambda_{k+1}) f\left(\frac{\lambda_k}{\lambda_k + \lambda_{k+1}} x_k + \frac{\lambda_k}{\lambda_{k+1} + \lambda_{k+1}} x_{k+1}\right)$, by induction hypothesis
 $\leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + (\lambda_k + \lambda_{k+1}) \left(\frac{\lambda_k}{\lambda_k + \lambda_{k+1}} f(x_k) + \frac{\lambda_k}{\lambda_{k+1} + \lambda_{k+1}} f(x_{k+1})\right)$, by case $n = 2$

 $= \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_k f(x_k) + \lambda_{k+1} f(x_{k+1}).$ By M.I., it is true for all *n*.

Method 2 - Supporting Line: $y = m(x - \alpha) + f(\alpha)$, α as defined below. Denote $\alpha := \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n \in (a, b)$, since $\lambda_i \in (0, 1)$, $\sum_{i=1}^n \lambda_i = 1$.

Let $m \in [f'_{-}(\alpha), f'_{+}(\alpha)] \neq \emptyset$, since $f'_{-}(\alpha) \leq f'_{+}(\alpha)$ due to convexity of f. (see Note 3 Theorem 2.2).

If
$$x > \alpha$$
, $\frac{f(x) - f(\alpha)}{x - \alpha} \ge \lim_{x \to \alpha^+} \frac{f(x) - f(\alpha)}{x - \alpha} = f'_+(\alpha) \ge m$.
If $x < \alpha$, $\frac{f(x) - f(\alpha)}{x - \alpha} \le \lim_{x \to \alpha^-} \frac{f(x) - f(\alpha)}{x - \alpha} = f'_-(\alpha) \le m$.
(see Note 3 Theorem 2.1 and Theorem 2.2).

Together, we have $f(x) \ge m(x - \alpha) + f(\alpha), \ \forall x \in (a, b)$, since it is trivial if $x = \alpha$.

In particular, for each i, we have

$$f(x_i) \ge m(x_i - \alpha) + f(\alpha)$$

$$\sum_{i=1}^n \lambda_i f(x_i) \ge m\left(\sum_{i=1}^n \lambda_i x_i - \alpha \sum_{i=1}^n \lambda_i\right) + f(\alpha) \sum_{i=1}^n \lambda_i$$

Hence $\lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n) \ge f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n).$

(b) Let $a_1, a_2, \ldots, a_n > 0$. Note that $(e^x)'' = e^x > 0$, hence $x \mapsto e^x$ is convex. By Jensen inequality, we have

$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} e^{\ln a_1} + \frac{1}{n} e^{\ln a_2} + \dots + \frac{1}{n} e^{\ln a_n} \ge e^{\frac{1}{n} \ln a_1 + \frac{1}{n} \ln a_2 + \dots + \frac{1}{n} \ln a_n}$$
$$= e^{\frac{1}{n} \ln(a_1 a_2 \dots a_n)} = \sqrt[n]{a_1 a_2 \dots a_n},$$

which is the AM-GM inequality.

5. Since $f(x) = e^x$ is strictly convex, for $x \in (-\infty, \infty)$. Therefore,

$$f(\frac{1}{p}(p\log x) + \frac{1}{q}(q\log y)) \le \frac{1}{p}f(p\log x) + \frac{1}{q}f(q\log y)$$
$$\Leftrightarrow xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

with " = " holds iff $p \log x = q \log y$ i.e. $x^p = y^q$.

6. Let
$$A = \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}}$$
, $B = \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}}$, $x_k = \frac{|a_k|}{A}$ and $y_k = \frac{|b_k|}{B}$. Then
$$\sum_{k=1}^{n} x_k^p = 1 \text{ and } \sum_{k=1}^{n} y_k^q = 1.$$

It suffices to show $\sum_{k=1}^{n} x_k y_k \leq 1$. By Young's inequality,

$$x_k y_k \le \frac{1}{p} x_k^p + \frac{1}{q} y_k^q.$$

Sum over k, we have

$$\sum_{k=1}^{n} x_k y_k \le \frac{1}{p} + \frac{1}{q} = 1$$

with " = " holds iff $x_k^p = y_k^q$, $\forall 1 \le k \le n$.