
2014-15 Second Term MATH2060B 1

Solution 2

Section 6.2

2. Let f be defined on [a, b] and c ∈ [a, b]. Then

• c is a critical point of f if f ′ exists at c and f ′(c) = 0.

• c is a relative maximum (or relative minimum) of f if ∃ δ > 0 s.t. f(c) ≥ f(x)
(or f(c) ≤ f(x)) ∀ x ∈ [a, b] ∩ (c− δ, c+ δ).

• A relative extremum is either a relative maximum or a relative minimum. Any
differentiable relative extremum must be a critical point.

To find relative extremum, there are 2 steps:

(1) First, list all critical points, non-differentiable points, and endpoints. These are can-
didates for relative extrema.

(2) Second, apply the first derivative test (Theorem 6.2.8) to the points in (1).

It is always helpful to plot a graph first.

(a) For x 6= 0, f ′(x) = 1− 1

x2
= 0 ⇒ x = ±1.

Hence x = −1, 1 are the critical points of f .
Since any relative extremum must be a critical points when f is differentiable in its
domain, apply the 1st derivative test to −1 and 1, i.e. for x 6= 0,

f ′(x) = 1− 1

x2

{
> 0, for x > 1 or x < −1
< 0, for − 1 < x < 1.

Hence, relative maximum = −1, relative minimum = 1.
The interval s.t. f is increasing = (−∞,−1] ∪ [1,+∞).
The interval s.t. f is decreasing = [−1, 0) ∪ (0, 1].

(b) relative maximum = 1, relative minimum = −1.
The interval s.t. f is increasing = [−1, 1].
The interval s.t. f is decreasing = (−∞,−1] ∪ [1,+∞).

(c) relative maximum = 2/3, no relative minimum.
The interval s.t. f is increasing = (0, 2/3].
The interval s.t. f is decreasing = [2/3,+∞).

(d) no relative maximum, relative minimum = 1.
The interval s.t. f is increasing = [1,+∞).
The interval s.t. f is decreasing = (−∞, 0) ∪ (0, 1].
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3. (a) For x 6= ±1, f ′(x) = 2x sgn(x2 − 1) = 0 ⇒ x = 0
Hence x = 0 is the critical point of f .

For x 6= ±1,
f(x)− f(±1)

x− (±1)
=
|x2 − 1|
x− (±1)

= |x± 1|sgn[x− (±1)]

⇒ f ′+(±1) = lim
x→±1+

|x± 1|sgn[x− (±1)] = 2,

f ′−(±1) = lim
x→±1−

|x± 1|sgn[x− (±1)] = −2

Hence x = −1, 1 are the non-differentiable points of f .
And x = −4, 4 are the endpoints. All possible relative extrema are 0,±1,±4. Apply
the 1st derivative test to 0,±1,±4, i.e. for x 6= ±1,

sgnf ′(x) = sgn(x+ 1) sgn x sgn(x− 1)

{
> 0, for x > 1 or − 1 < x < 0
< 0, for x < −1 or 0 < x < 1.

Hence, relative maximum = 0,±4, relative minimum = ±1.

(b) no critical point, non-differentiable point = 1, endpoints = 0, 2.
relative maximum = 1, relative minimum = 0, 2.

(c) For x 6= ±
√

12, h′(x) = |x2 − 12|+ x sgn(x2 − 12)(2x) = 3 sgn(x2 − 12)(x2 − 4).
critical point = 2, non-differentiable points = ±

√
12 /∈ [−2, 3], endpoints = −2, 3.

relative maximum = 2, relative minimum = −2, 3.

(d) For x 6= 8, k′(x) = (x− 8)1/3 +
x

3
(x− 8)−2/3 =

4

3
(x− 8)−2/3(x− 6).

critical point = 6, non-differentiable point = 8, endpoints = 0, 9.
relative maximum = 0, 9, relative minimum = 6,
x = 8 is neither a relative maximum nor a relative minimum.

5. Let f(x) := x1/n − (x− 1)1/n, for x ≥ 1.

Then f ′(x) =
1

n
x1/n−1 − 1

n
(x− 1)1/n−1 for x > 1.

Define g(t) := t1/n−1 for t > 0, g′(t) =

(
1

n
− 1

)
t1/n−2 < 0 since n ≥ 2.

Then for x > 1, f ′(x) =
1

n
g(x)− 1

n
g(x− 1) < 0. Hence f is strictly decreasing for x > 1.

Note a > b > 0, then a/b > 1, hence f(a/b) < lim
x→1+

f(x) = f(1), by continuity,

i.e.
(a
b

)1/n
−
(a
b
− 1

)1/n
< 1− (1− 1) = 1 ⇒ a1/n − b1/n < (a− b)1/n.

6. Note that the function f(t) := sin t is differentiable on R, with f ′(t) = cos t. In particular,
given any x, y ∈ R with x < y, the function f(t) is continuous on [x, y], and differentiable
on (x, y). Hence the mean-value theorem applies, from which we conclude that there exists
some c ∈ (x, y) such that

sinx− sin y = (cos c) (x− y).

Now just put absolute values on both sides, and observe that | cos c | ≤ 1. Then

| sinx− sin y| ≤ |x− y|,

as desired.
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7. Note that the function f(t) := ln t is differentiable on (0,∞), with f ′(t) = 1/t. In par-
ticular, given any x ∈ (0,∞) with x > 1, the function f(t) is continuous on [1, x], and
differentiable on (1, x). Hence the mean-value theorem applies, from which we conclude
that there exists some c ∈ (1, x) such that

lnx− ln 1 =
x− 1

c
.

Now just observe that
1

x
<

1

c
< 1,

since c ∈ (1, x). Since x− 1 > 0, it follows that

x− 1

x
< lnx− ln 1 < 1 · (x− 1),

i.e.
x− 1

x
< lnx < (x− 1),

as desired.

9. For x 6= 0, f(x) = 2x4 + x4 sin
1

x
≥ 2x4 − x4 = x4 > 0 = f(0)

Hence f has an absolute minimum at x = 0.

For x 6= 0, f ′(x) = 8x3 + 4x3 sin
1

x
+ x4 cos

1

x

(
− 1

x2

)
= x2

(
8x+ 4x sin

1

x
− cos

1

x

)
Define an := 1/2nπ and bn := 1/(2nπ + π/2) with lim an = lim bn = 0.

Then f ′(an) =

(
1

2nπ

)2( 8

2nπ
− 1

)
<

(
1

2nπ

)2( 8

6n
− 1

)
< 0 if n ≥ 2

f ′(bn) =

(
1

2nπ + π/2

)2( 8

2nπ + π/2
− 4

2nπ + π/2

)
> 0 ∀ n.

Let ε > 0. Then ∃ N1, N2 ∈ N s.t. |aN1 | < ε and |bN2 | < ε, i.e. aN1 , bN2 ∈ (−ε, ε).
WLOG assume N1 ≥ 2 ∗. Hence f ′(aN1) < 0, f ′(bN2) > 0 with aN1 , bN2 ∈ (−ε, ε) ∀ ε > 0.
Hence the derivative has both positive and negative values in every nbd of 0.

∗ Remark We can replace N1 by max(N1, 2). Or we can interpret N1 already chosen to
be ≥ 2. This is a useful skill in analysis.

10.
g(x)− g(0)

x− 0
=
x+ 2x2 sin(1/x)

x
= 1 + 2x sin

1

x
⇒ g′(0) = 1 + 2 lim

x→0
x sin

1

x
= 1 + 2(0) = 1.

For x 6= 0, g′(x) = 1 + 4x sin( 1x) − 2 cos( 1x). Define an := 1/2nπ and bn := 1/(2nπ + π/2)
with lim an = lim bn = 0.
Then g′(an) = 1− 2 cos 2nπ = −1 < 0, and

g′(bn) = 1 + 4
( 1

2nπ + π
2

)
> 0.

Let ε > 0. Then ∃ N1, N2 ∈ N s.t. |aN1 | < ε and |aN2 | < ε, i.e. aN1 , bN2 ∈ (−ε, ε).
Hence g′(aN1) > 0, g′(bN2) < 0 with aN1 , bN2 ∈ (−ε, ε) ∀ ε > 0.
Thus g cannot be monotonic on (−ε, ε) ∀ ε > 0, (read Theorem 6.2.7 carefully), i.e. any
nbd of 0.
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11. Take f(x) :=
√
x is continuous on [0, 1] and hence uniformly continuous on [0, 1].

For x > 0, f ′(x) =
1

2
√
x

is unbounded, which can be proved by putting x = xn :=
1

4n2
→ 0.

13. Let x, y ∈ I s.t. x < y. By MVT, ∃ ξ ∈ (x, y) s.t.
f(x)− f(y) = f ′(ξ)(x− y) < 0, as in particular, f ′(ξ) > 0 and x− y < 0
⇒ f(x) < f(y).
Hence f is strictly increasing on I.

18. Let ε > 0. Then ∃ δ s.t.∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < ε, ∀ 0 < |x− c| < δ.

For x < c < y inside (c− δ, c+ δ),

−ε(y − c) < f(y)− f(c)− f ′(c)(y − c) < ε(y − c)

−ε(x− c) > f(x)− f(c)− f ′(c)(x− c) > ε(x− c)

−ε(y − x) < f(y)− f(x)− f ′(c)(y − x) < ε(y − x)∣∣∣∣f(y)− f(x)

y − x
− f ′(c)

∣∣∣∣ < ε.

Supplementary Exercise

1. Separating the whole interval into a sequence of finite intervals: (1, 2), · · · , (2k, 2k+1), · · · .
All of them satisfy the assumption of Mean Value Theorem. Hence we get:

f ′(x1) = f(2)−f(1)
20

f ′(x2) = f(4)−f(2)
21

...
f ′(xk+1) = f(2k+1)−f(2k)

2k

...

|f ′(xk+1| ≤ 2M/2k = 2−k+1M → 0 as k →∞
Since xk+1 ≥ 2k, so xk →∞ as k →∞
So we have the sequence.


