Solution 2

Section 6.2

- 2. Let f be defined on [a, b] and $c \in [a, b]$. Then
	- c is a critical point of f if f' exists at c and $f'(c) = 0$.
	- c is a relative maximum (or relative minimum) of f if $\exists \delta > 0$ s.t. $f(c) \ge f(x)$ (or $f(c) \leq f(x)$) $\forall x \in [a, b] \cap (c - \delta, c + \delta)$.
	- A relative extremum is either a relative maximum or a relative minimum. Any differentiable relative extremum must be a critical point.

To find relative extremum, there are 2 steps:

- (1) First, list all critical points, non-differentiable points, and endpoints. These are candidates for relative extrema.
- (2) Second, apply the first derivative test (Theorem 6.2.8) to the points in (1).

It is always helpful to plot a graph first.

(a) For $x \neq 0$, $f'(x) = 1 - \frac{1}{x}$ $\frac{1}{x^2} = 0 \Rightarrow x = \pm 1.$ Hence $x = -1, 1$ are the critical points of f. Since any relative extremum must be a critical points when f is differentiable in its domain, apply the 1st derivative test to -1 and 1, i.e. for $x \neq 0$,

$$
f'(x) = 1 - \frac{1}{x^2} \begin{cases} > 0, \quad \text{for } x > 1 \text{ or } x < -1 \\ < 0, \quad \text{for } -1 < x < 1. \end{cases}
$$

Hence, relative maximum $= -1$, relative minimum $= 1$. The interval s.t. f is increasing = $(-\infty, -1] \cup [1, +\infty)$. The interval s.t. f is decreasing = $[-1, 0) \cup (0, 1]$.

- (b) relative maximum = 1, relative minimum = -1 . The interval s.t. f is increasing $=[-1, 1]$. The interval s.t. f is decreasing = $(-\infty, -1] \cup [1, +\infty)$.
- (c) relative maximum $= 2/3$, no relative minimum. The interval s.t. f is increasing $=(0, 2/3]$. The interval s.t. f is decreasing = $[2/3, +\infty)$.
- (d) no relative maximum, relative minimum $= 1$. The interval s.t. f is increasing = $[1, +\infty)$. The interval s.t. f is decreasing = $(-\infty, 0) \cup (0, 1]$.

3. (a) For $x \neq \pm 1$, $f'(x) = 2x \operatorname{sgn}(x^2 - 1) = 0 \Rightarrow x = 0$ Hence $x = 0$ is the critical point of f. For $x \neq \pm 1$, $\frac{f(x) - f(\pm 1)}{x - (\pm 1)} = \frac{|x^2 - 1|}{x - (\pm 1)}$ $\frac{x}{x-(\pm 1)} = |x \pm 1| \text{sgn}[x-(\pm 1)]$ \Rightarrow $f'_{+}(\pm 1) = \lim_{x \to \pm 1^{+}} |x \pm 1| \text{sgn}[x - (\pm 1)] = 2,$ $f'_{-}(\pm 1) = \lim_{x \to \pm 1^{-}} |x \pm 1| \text{sgn}[x - (\pm 1)] = -2$

Hence $x = -1, 1$ are the non-differentiable points of f. And $x = -4$, 4 are the endpoints. All possible relative extrema are $0, \pm 1, \pm 4$. Apply the 1st derivative test to 0, ± 1 , ± 4 , i.e. for $x \neq \pm 1$.

$$
sgn f'(x) = sgn(x+1) sgn x sgn(x-1) \begin{cases} > 0, \quad \text{for } x > 1 \text{ or } -1 < x < 0 \\ < 0, \quad \text{for } x < -1 \text{ or } 0 < x < 1. \end{cases}
$$

Hence, relative maximum = $0, \pm 4$, relative minimum = ± 1 .

- (b) no critical point, non-differentiable point $= 1$, endpoints $= 0, 2$. relative maximum = 1, relative minimum = 0, 2.
- (c) For $x \neq \pm$ √ $\overline{12}$, $h'(x) = |x^2 - 12| + x \operatorname{sgn}(x^2 - 12)(2x) = 3 \operatorname{sgn}(x^2 - 12)(x^2 - 4).$ critical point = 2, non-differentiable points = $\pm\sqrt{12} \notin [-2,3]$, endpoints = -2,3. relative maximum = 2, relative minimum = -2 , 3.
- (d) For $x \neq 8$, $k'(x) = (x 8)^{1/3} + \frac{x}{2}$ $\frac{x}{3}(x-8)^{-2/3} = \frac{4}{3}$ $\frac{4}{3}(x-8)^{-2/3}(x-6).$ critical point = 6, non-differentiable point = 8, endpoints = 0, 9. relative maximum $= 0, 9$, relative minimum $= 6$, $x = 8$ is neither a relative maximum nor a relative minimum.
- 5. Let $f(x) := x^{1/n} (x 1)^{1/n}$, for $x \ge 1$. Then $f'(x) = \frac{1}{n}x^{1/n-1} - \frac{1}{n}$ $\frac{1}{n}(x-1)^{1/n-1}$ for $x > 1$. Define $g(t) := t^{1/n-1}$ for $t > 0$, $g'(t) = \left(\frac{1}{t}\right)$ $\left(\frac{1}{n} - 1\right) t^{1/n-2} < 0$ since $n \ge 2$. Then for $x > 1$, $f'(x) = \frac{1}{n}g(x) - \frac{1}{n}$ $\frac{1}{n}g(x-1) < 0$. Hence f is strictly decreasing for $x > 1$. Note $a > b > 0$, then $a/b > 1$, hence $f(a/b) < \lim_{x \to 1^+} f(x) = f(1)$, by continuity, i.e. $\left(\frac{a}{b}\right)$ $\big)^{1/n} - \big(\frac{a}{b}\big)^{1/n}$ $\left(\frac{a}{b} - 1\right)^{1/n} < 1 - (1 - 1) = 1 \Rightarrow a^{1/n} - b^{1/n} < (a - b)^{1/n}.$
- 6. Note that the function $f(t) := \sin t$ is differentiable on R, with $f'(t) = \cos t$. In particular, given any $x, y \in \mathbb{R}$ with $x < y$, the function $f(t)$ is continuous on $[x, y]$, and differentiable on (x, y) . Hence the mean-value theorem applies, from which we conclude that there exists some $c \in (x, y)$ such that

$$
\sin x - \sin y = (\cos c)(x - y).
$$

Now just put absolute values on both sides, and observe that $|\cos c| \leq 1$. Then

$$
|\sin x - \sin y| \le |x - y|,
$$

as desired.

7. Note that the function $f(t) := \ln t$ is differentiable on $(0, \infty)$, with $f'(t) = 1/t$. In particular, given any $x \in (0,\infty)$ with $x > 1$, the function $f(t)$ is continuous on [1, x], and differentiable on $(1, x)$. Hence the mean-value theorem applies, from which we conclude that there exists some $c \in (1, x)$ such that

$$
\ln x - \ln 1 = \frac{x-1}{c}.
$$

Now just observe that

$$
\frac{1}{x} < \frac{1}{c} < 1,
$$

since $c \in (1, x)$. Since $x - 1 > 0$, it follows that

$$
\frac{x-1}{x} < \ln x - \ln 1 < 1 \cdot (x-1),
$$

i.e.

$$
\frac{x-1}{x} < \ln x < (x-1),
$$

as desired.

9. For $x \neq 0$, $f(x) = 2x^4 + x^4 \sin \frac{1}{x^4}$ $\frac{1}{x} \ge 2x^4 - x^4 = x^4 > 0 = f(0)$ Hence f has an absolute minimum at $x = 0$. For $x \neq 0$, $f'(x) = 8x^3 + 4x^3 \sin \frac{1}{x}$ $\frac{1}{x} + x^4 \cos \frac{1}{x}$ \boldsymbol{x} $\left(-\frac{1}{4}\right)$ x^2 $= x^2 \left(8x + 4x \sin \frac{1}{2} \right)$ $\frac{1}{x} - \cos \frac{1}{x}$ \boldsymbol{x} \setminus Define $a_n := 1/2n\pi$ and $b_n := 1/(2n\pi + \pi/2)$ with $\lim a_n = \lim b_n = 0$. Then $f'(a_n) = \left(\frac{1}{2n\pi}\right)^2 \left(\frac{8}{2n}\right)$ $\left(\frac{8}{2n\pi}-1\right)<\left(\frac{1}{2n\pi}\right)^2\left(\frac{8}{6n}\right)$ $\left(\frac{8}{6n} - 1\right) < 0$ if $n \ge 2$ $f'(b_n) = \left(\frac{1}{2n-1}\right)$ $2n\pi + \pi/2$ $\sqrt{27}$ 8 $\frac{8}{2n\pi + \pi/2} - \frac{4}{2n\pi +}$ $2n\pi + \pi/2$ $\Big\}\geq 0$ $\forall n$. Let $\varepsilon > 0$. Then $\exists N_1, N_2 \in \mathbb{N}$ s.t. $|a_{N_1}| < \varepsilon$ and $|b_{N_2}| < \varepsilon$, i.e. $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon)$. WLOG assume $N_1 \geq 2^*$. Hence $f'(a_{N_1}) < 0, f'(b_{N_2}) > 0$ with $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon) \ \forall \ \varepsilon > 0$. Hence the derivative has both positive and negative values in every nbd of 0.

*** Remark** We can replace N_1 by max $(N_1, 2)$. Or we can interpret N_1 already chosen to $be \geq 2$. This is a useful skill in analysis.

10.
$$
\frac{g(x) - g(0)}{x - 0} = \frac{x + 2x^2 \sin(1/x)}{x} = 1 + 2x \sin \frac{1}{x} \implies g'(0) = 1 + 2 \lim_{x \to 0} x \sin \frac{1}{x} = 1 + 2(0) = 1.
$$

For $x \neq 0$, $g'(x) = 1 + 4x \sin(\frac{1}{x}) - 2\cos(\frac{1}{x})$. Define $a_n := 1/2n\pi$ and $b_n := 1/(2n\pi + \pi/2)$ with $\lim a_n = \lim b_n = 0$.
Then $g'(a_n) = 1 - 2\cos 2n\pi = -1 < 0$, and $g'(b_n) = 1 + 4(\frac{1}{2n\pi + \frac{\pi}{2}}) > 0$.

Let $\varepsilon > 0$. Then $\exists N_1, N_2 \in \mathbb{N}$ s.t. $|a_{N_1}| < \varepsilon$ and $|a_{N_2}| < \varepsilon$, i.e. $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon)$. Hence $g'(a_{N_1}) > 0, g'(b_{N_2}) < 0$ with $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon) \ \forall \ \varepsilon > 0$. Thus g cannot be monotonic on $(-\varepsilon, \varepsilon)$ $\forall \varepsilon > 0$, (read Theorem 6.2.7 carefully), i.e. any nbd of 0.

- 11. Take $f(x) := \sqrt{x}$ is continuous on [0, 1] and hence uniformly continuous on [0, 1]. For $x > 0$, $f'(x) = \frac{1}{2\sqrt{x}}$ is unbounded, which can be proved by putting $x = x_n := \frac{1}{4n^2} \to 0$.
- 13. Let $x, y \in I$ s.t. $x < y$. By MVT, $\exists \xi \in (x, y)$ s.t. $f(x) - f(y) = f'(\xi)(x - y) < 0$, as in particular, $f'(\xi) > 0$ and $x - y < 0$ \Rightarrow $f(x) < f(y)$. Hence f is strictly increasing on I .
- 18. Let $\varepsilon > 0$. Then $\exists \delta$ s.t.

$$
\left|\frac{f(x)-f(c)}{x-c}-f'(c)\right|<\varepsilon,\ \ \forall\ 0<|x-c|<\delta.
$$

For $x < c < y$ inside $(c - \delta, c + \delta)$,

$$
-\varepsilon(y-c) < f(y) - f(c) - f'(c)(y-c) < \varepsilon(y-c)
$$
\n
$$
-\varepsilon(x-c) > f(x) - f(c) - f'(c)(x-c) > \varepsilon(x-c)
$$
\n
$$
-\varepsilon(y-x) < f(y) - f(x) - f'(c)(y-x) < \varepsilon(y-x)
$$
\n
$$
\left| \frac{f(y) - f(x)}{y-x} - f'(c) \right| < \varepsilon.
$$

Supplementary Exercise

1. Separating the whole interval into a sequence of finite intervals: $(1, 2), \cdots, (2^k, 2^{k+1}), \cdots$. All of them satisfy the assumption of Mean Value Theorem. Hence we get:

$$
f'(x_1) = \frac{f(2) - f(1)}{2^0}
$$

\n
$$
f'(x_2) = \frac{f(4) - f(2)}{2^1}
$$

\n
$$
\vdots
$$

\n
$$
f'(x_{k+1}) = \frac{f(2^{k+1}) - f(2^k)}{2^k}
$$

\n
$$
\vdots
$$

 $|f'(x_{k+1}| \le 2M/2^k = 2^{-k+1}M \to 0 \text{ as } k \to \infty$ Since $x_{k+1} \geq 2^k$, so $x_k \to \infty$ as $k \to \infty$ So we have the sequence.