Solution 11

Section 9.3

3. Denote $z_n := \begin{cases} 2/n, & \text{if } n \text{ even;} \\ 1/(n+1), & \text{if } n \text{ odd.} \end{cases}$ Then $z_n \to 0, z_2 > z_1, (z_n)$ is not decreasing. $s_{2k} := \sum_{n=1}^{2k} (-1)^{n+1} z_n = \frac{1}{2} - \frac{2}{2} + \frac{1}{4} - \frac{2}{4} + \dots + \frac{1}{2k} - \frac{2}{2k} = -\frac{1}{2} \sum_{n=1}^k \frac{1}{n}.$ Hence (s_{2k}) diverges.

Thus, Leibniz Test (alternating series test) fails.

- 5. Denote $(x_n) := \left(\frac{1}{n}\right)$, which is decreasing and $\lim x_n = 0$, and $(y_n) := (1, -1, -1, 1, ...)$. Then $s_n := \sum_{k=1}^n y_k = \begin{cases} (-1)^{\frac{n+1}{2}}, & \text{if } n \text{ odd} \\ 0, & \text{if } n \text{ even} \end{cases}$ is bounded. By Dirichlet's test, we have $1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + + - \cdots = \sum_{n=1}^{\infty} x_n y_n$ converges.
- 7. Let p, q be positive integer, we claim that

$$\lim_{n \to \infty} \frac{(\log n)^p}{n^q} = 0$$

By L Hospital Rule,

$$\lim_{x \to \infty} \frac{\log x}{x^{\frac{q}{p}}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{q}{p} x^{\frac{q}{p}-1}} = \lim_{x \to \infty} \frac{1}{\frac{q}{p} x^{\frac{q}{p}}} = 0.$$

Moreover, for large x > 0,

$$\frac{d}{dx} \left(\frac{\log x}{x^{\frac{p}{q}}} \right) = \frac{p - q \log x}{p x^{\frac{q}{p} + 1}} < 0$$

Therefore $\frac{(\log n)^p}{n^q}$ is decreasing for large *n*. By alternating test, $\sum (-1)^n \frac{(\log n)^p}{n^q}$ converges.

10. By Abel's lemma, we have

$$\sum_{n=1}^{N} \frac{a_n}{n} = \frac{s_N}{N} + \sum_{n=1}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1}\right) s_n = \frac{s_N}{N} + \sum_{n=1}^{N-1} \frac{s_n}{n(n+1)} \quad \forall \ N \in \mathbb{N}.$$
 (1)

Now by hypothesis, $\exists M > 0$ s.t. $|s_N| \le M \Rightarrow \left|\frac{s_N}{N}\right| \le \frac{M}{N} \to 0$ as $N \to \infty$. Moreover, $\left|\frac{s_n}{n(n+1)}\right| \le \frac{M}{n(n+1)} \le \frac{M}{n^2} \Rightarrow \sum \frac{s_n}{n(n+1)} < \infty$, by Comparison test. Letting $N \to \infty$ in (1), we have $\sum_{n=1}^{\infty} \frac{a_n}{n} = \sum_{n=1}^{\infty} \frac{s_n}{n(n+1)}$.

11. Define
$$(y_n) := (1, -1, -1, 1, 1, 1, ...)$$
, and denote by s_n its n^{th} partial sum.
Claim $s_{\frac{n(n+1)}{2}} = (-1)^{n+1} \left[\frac{n+1}{2} \right]$. If the claim is true, (s_n) is unbounded.
Now $s_{\frac{1(1+1)}{2}} = 1 = (-1)^{1+1} \left[\frac{1+1}{2} \right]$. Assume it is true for $n = k$. Then for $n = k+1$,
 $s_{\frac{(k+1)(k+2)}{2}} = s_{\frac{k(k+1)}{2} + (k+1)} = s_{\frac{k(k+1)}{2}} + \underbrace{(-1)^{k+2} + \cdots + (-1)^{k+2}}_{k+1 \text{ terms}}$
 $= (-1)^{k+1} \left[\frac{k+1}{2} \right] + (-1)^{k+2}(k+1)$, by induction hypothesis
 $= \begin{cases} \frac{k+1}{2} - (k+1), & \text{if } k \text{ odd} \\ -\frac{k}{2} + (k+1), & \text{if } k \text{ even} \end{cases} = \begin{cases} -\frac{k+1}{2}, & \text{if } k \text{ odd} \\ \frac{k+2}{2}, & \text{if } k \text{ even} \end{cases} = (-1)^{k+2} \left[\frac{k+2}{2} \right]$

By M.I., (s_n) is unbounded. Hence Dirichlet's test cannot directly apply. Now define $f(x) := \frac{x(x+1)}{2}, \forall x \ge 1$. Then $f'(x) = x + \frac{1}{2} > 0, \forall x \ge 1$. Let $n \in \mathbb{N}$. If $f(x) = \frac{x(x+1)}{2} = n, x = \frac{-1 + \sqrt{1+8n}}{2} \ge 1$. Denote $k := [x] \le x$, and $k \ge 1$. Now s_n lies between $s_{\frac{k(k+1)}{2}}, s_{\frac{(k+1)(k+2)}{2}}$, hence we have

$$|s_n| \le \frac{k+2}{2} \le \frac{2k+2k}{2} = 2k \le -1 + \sqrt{1+8n} \le \sqrt{n+8n} = 3n^{1/2}.$$

By result in Question 14, the series converges.

14. By Abel's lemma, we have

$$\sum_{n=1}^{N} \frac{a_n}{n} = \frac{s_N}{N} + \sum_{n=1}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1}\right) s_n = \frac{s_N}{N} + \sum_{n=1}^{N-1} \frac{s_n}{n(n+1)} \quad \forall \ N \in \mathbb{N}.$$
 (2)

By hypothesis, $\exists M > 0$ s.t. $|s_N| \le MN^r \Rightarrow \left|\frac{s_N}{N}\right| \le \frac{M}{N^{1-r}} \to 0$ as $N \to \infty$. Moreover, $\left|\frac{s_n}{n(n+1)}\right| \le \frac{Mn^r}{n(n+1)} \le \frac{M}{n^{2-r}} \Rightarrow \sum \frac{s_n}{n(n+1)} < \infty$, by Comparison test, since $\sum \frac{1}{n^{2-r}} < \infty$ as $2-r > 1 \Leftrightarrow r < 1$, by integral test. Letting $N \to \infty$ in (2), we have $\sum_{n=1}^{\infty} \frac{a_n}{n} = \sum_{n=1}^{\infty} \frac{s_n}{n(n+1)}$ converges.

15. (b) By Cauchy-Schwarz inequality, we have $\forall N \in \mathbb{N}$,

$$\sum_{n=1}^{N} \frac{\sqrt{a_n}}{n} \le \left(\sum_{n=1}^{N} a_n\right)^{1/2} \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)^{1/2} < \left(\sum_{n=1}^{\infty} a_n\right)^{1/2} \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2}$$

Hence as $N \mapsto \sum_{n=1}^{N} \frac{\sqrt{a_n}}{n}$ is increasing, $\sum_{n=1}^{\infty} b_n$ converges.

(d) Define
$$a_n := \frac{1}{n(\ln n)^2}$$
. Note $\int_2^\infty \frac{dx}{x(\ln x)^2} = \int_2^\infty \frac{d(\ln x)}{(\ln x)^2} = \frac{-1}{\ln x} \Big|_2^\infty = \frac{1}{\ln 2} < \infty$.
By integral test, $\sum a_n$ converges.
Now $b_n = \sqrt{\frac{a_n}{n}} = \frac{1}{n\ln n}$. Note $\int_3^\infty \frac{dx}{x\ln x} = \int_3^\infty \frac{d(\ln x)}{\ln x} = \ln \ln x \Big|_3^\infty = \infty$.
By integral test, $\sum b_n$ diverges.

Section 9.4

- 1. (a) Now $|f_n(x)| := \frac{1}{x^2 + n^2} \le \frac{1}{n^2}, \forall x \in \mathbb{R}$. Since $\sum \frac{1}{n^2} < \infty$, by *M*-Test, $\sum f_n$ converges uniformly on \mathbb{R} .
 - (c) Now $|f_n(x)| := \left| \sin \frac{x}{n^2} \right| \le \left| \frac{x}{n^2} \right|, \forall x \in \mathbb{R}$. Since $\sum \frac{|x|}{n^2} < \infty$, by Comparison test, $\sum f_n$ converges absolutely on \mathbb{R} . Let M > 0. Then $\forall |x| \le M, |f_n(x)| \le \frac{M}{n^2}$ Hence, by *M*-Test, it converges uniformly on [-M, M].
 - (e) First we note when x = 0, the series converges. Then we rewrite $f_n(x)$ in following way,

$$\frac{x^n}{(x^n+1)} = \frac{1}{1+1/x^{-n}} \ (x>0), \text{ set } t = \frac{1}{x}, \text{ we have,}$$
$$f_n(t) = \frac{1}{1+t^n} \ (t>0)$$

For $t \leq 1$, $f_n(t) \geq \frac{1}{2}$, hence the series diverges. For t > 1, $f_n(t) < \frac{1}{t^n}$, by M-test, $f_n(t)$ absolutely converges. However, since $\sup_{t>1} f_{n+1}(t) = \frac{1}{2}$, by Cauchy Criterion, $f_n(t)$ does not uniformly converges on $(1, \infty)$

As a conclusion, the series $\sum f_n$ converges absolutely but not uniformly on [0, 1).

2. Using Weierstrass M-test, we know

$$|a_n \sin nx| \le |a_n|,$$

so the conclusion follows.

5. Let
$$L := \lim \left| \frac{a_n}{a_{n+1}} \right| \in (0,\infty)$$
. If $|x| < L$, $\lim \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| < \frac{1}{L} \cdot L = 1$.

By ratio test, $\sum a_n x^n$ converges absolutely if |x| < L.

If
$$|x| > L$$
, $\lim \left| \frac{a_{n+1}x^{n+1}}{a_n x^n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| > \frac{1}{L} \cdot L = 1.$

By ratio test, $\sum a_n x^n$ diverges if |x| > L. By Cauchy-Hadamard theorem, R = L. If L = 0, then for |x| > 0, $\lim \left| \frac{a_{n+1}x^{n+1}}{a_n x^n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = |x| \lim \left| \frac{a_{n+1}}{a_n} \right| = \infty$. By ratio test, $\sum a_n x^n$ diverges if |x| > 0. By Cauchy-Hadamard theorem, R = 0 = L. If $L = \infty$, then for $x \in \mathbb{R}$, $\lim \left| \frac{a_{n+1}x^{n+1}}{a_n x^n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = |x| \lim \left| \frac{a_{n+1}}{a_n} \right| = 0$. By ratio test, $\sum a_n x^n$ converges if $|x| < \infty$. By Cauchy-Hadamard theorem, $R = \infty = L$.

Example: Consider the power series $1 + x^2 + x^4 + \cdots$. Here $a_{2n} = 1$ but $a_{2n+1} = 0$, so $\lim_{n\to\infty} |a_n/a_{n+1}|$ does not exist but $\rho = \limsup_{n\to\infty} (|a_n|^{1/n}) = 1$ and R = 1.

6. (a)
$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n} = 0$$
. Hence the radius of convergence is ∞ .

- (b) $\lim \left| \frac{a_n}{a_{n+1}} \right| = \lim(n+1)\left(1+\frac{1}{n}\right)^{-\alpha} = \infty$, which diverges properly. Hence the radius of convergence is ∞ .
- (c) $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n^n (n+1)!}{(n+1)^{n+1} n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n} = e^{-1}$ Hence the radius of convergence is e^{-1} .

(d)
$$\lim_{x \to \infty} \left| \frac{a_n}{[\ln(n+1)]^{-1}} \right| = \lim_{x \to \infty} \frac{\ln(n+1)}{[\ln(n+1)]^{-1}} = \lim_{x \to \infty} \frac{\ln(n+1)}{\ln n}.$$

Now
$$\lim_{x \to \infty} \frac{\ln(x+1)}{\ln x} = \lim_{x \to \infty} \frac{1/(x+1)}{1/x} = \lim_{x \to \infty} \frac{1}{1+1/x} = 1$$
, by L'Hôpital's rule.
By sequential criterion, we have
$$\lim_{x \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{x \to \infty} \frac{\ln(n+1)}{\ln n} = 1.$$

Hence the radius of convergence is 1.

(f) Now $|a_n|^{1/n} = n^{-1/\sqrt{n}}$. Define $f(x) := x^{-2/x}$, $x \ge 1$. Then $f'(x) = e^{\frac{-2\ln x}{x}} \cdot \frac{x(-2/x) - (-2\ln x) \cdot 1}{x^2} = 2x^{-2/x} \cdot \frac{\ln x - 1}{x^2} > 0$, for x > e. By sequential criterion, $n \mapsto n^{-1/\sqrt{n}}$ is increasing for $n \ge 3$, we have $\sup_{n\ge k} |a_n| = \lim n^{-1/\sqrt{n}}, \quad \forall k \ge 3$. Now $\lim_{x\to\infty} x^{-2/x} = \lim_{x\to\infty} e^{\frac{-2\ln x}{x}} = e^{\lim_{x\to\infty} \frac{-2\ln x}{x}} = e^{\lim_{x\to\infty} \frac{-2}{x}} = e^0 = 1$, by L'Hôpital's rule.

By sequential criterion, we have $\rho := \limsup |a_n| = \lim n^{-1/\sqrt{n}} = 1$. Hence the radius of convergence $= 1/\rho = 1$.

11. Use Taylor expansion at point x = 0, we have

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k + \frac{f^{(n+1)}(c)}{(n+1)!} x^{(n+1)}$$

for |x| < r and 0 < |c| < |x|.

$$|\frac{f^{(n+1)}(c)}{(n+1)!}x^{(n+1)}| < \frac{B}{(n+1)!}r^{n+1}$$

Since $\frac{r^{n+1}}{(n+1)!} \to 0$ as $n \to \infty$. So $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$ converges to $f(x)$ for $|x| < r$.

 \mathbf{P}

12. $f'(0) = \lim_{h \to 0} \frac{e^{-1/h^2}}{h}$, set t = 1/h, we have,

$$f'(0) = \lim_{t \to \infty} \frac{t}{e^{t^2}}$$

Applying L'Hospital Rule we get $f'(0) = \lim_{t \to \infty} \frac{1}{2te^{t^2}} = 0.$ Assume that $f^{(k)}(0) = 0$, we want to show that $f^{(k+1)}(0) = 0$ We note that $f'(x) = \frac{2}{x^3}e^{-1/x^2} = P_3(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$, where P_3 is a polynomial with highest order 3.

We want to show that $f^{(n)}(x) = P_{3n}(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$. Prove it by induction: Assume that $f^{(k)}(x) = P_{3k}(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$, then $f^{(k+1)}(x) = \frac{2}{x^3}P_{3k}(\frac{1}{x})e^{-1/x^2} + \frac{1}{x^3}P_{3k}(\frac{1}{x})e^{-1/x^2}$ $P_{3k-1}(\frac{1}{x})e^{-1/x^2} = P_{3(k+1)}(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$.

Now we consider $f^{(k+1)}(0) = \lim_{h \to 0} \frac{P_{3(k+1)}(\frac{1}{h})e^{-1/h^2}}{h}$, set t = 1/h, we have,

$$f^{(k+1)}(0) = \lim_{t \to \infty} \frac{t}{P_{3(k+1)}(t)e^{t^2}}$$

Applying L'Hospital Rule we get $f^{(k+1)}(0) = \lim_{t \to \infty} \frac{1}{P_{3(k+2)}(t)e^{t^2}} = 0.$

By M.I., we have $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}$. Hence this function is not given by its Taylor expansion about x = 0.

16. It is well-known that the expansion

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n,$$

holds for $x \in (-1, 1)$. The power series on the right hand side has radius of convergence equal to 1. Hence it converges uniformly on interval [-R, R], |R| < 1. Hence we can integrate this formula from 0 to R to get

$$\ln\left(1+R\right) = \int_0^R \frac{1}{1+x} = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} R^n.$$

The conclusion follows after replacing R by x.

17. We have

$$\sum_{n=0}^{\infty} (-1)^n t^{2n} = \frac{1}{1+t^2}$$

for $t \in (-1, 1)$ (this is a geometric series), and for any $x \in (-1, 1)$, the convergence is uniform on [-|x|, |x|] (since the radius of convergence of the power series on the left-hand side is 1, as is easy to check). Thus integrating, we get

$$\sum_{n=0}^{\infty} \int_0^x (-1)^n t^{2n} dt = \int_0^x \frac{1}{1+t^2} dt,$$

i.e.

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

for any $x \in (-1, 1)$.

19. Define $f(x) := \int_0^x e^{-t^2} dt$, for $x \in \mathbb{R}$. Clearly f is smooth and f(0) = 0. $f'(x) = e^{-x^2}$. Then $f''(x) = -2xe^{-x^2} = -2xf'(x)$. Hence f'(0) = 1, f''(0) = 0. Then, by Leibniz rule, we have, for $n \in \mathbb{N}$, $[f^{(n+2)}(x) = -2xf^{(n+1)}(x) - 2nf^{(n)}(x) \Rightarrow f^{(n+2)}(0) = -2nf^{(n)}(0)]$ Clearly, $f^{(2n)}(0) = 0$, and $f^{(2n+1)}(0) = -2(2n-1)f^{(2(n-1)+1)}(0) = (-2)^2(2n-1)(2n-3)f^{(2(n-2)+1)}(0)$ $= \cdots = (-2)^n(2n-1)(2n-3)\cdots 1 \cdot f'(0) = (-2)^n\frac{(2n)!}{2^n n!}$ $= \frac{(-1)^n(2n)!}{n!}$

A Maclaurin series expansion (i.e. Taylor series centered at 0) for $\int_0^x e^{-t^2} dt$

$$=\sum_{n=0}^{\infty} \frac{f^{(2n+1)}(0)}{(2n+1)!} x^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}$$

Supplementary Exercises

1. Now $\sup_{x \in (0,b)} \left| \frac{x^n}{n} \right| = \frac{b^n}{n}$. If b < 1, we have $0 < \frac{b^n}{n} \le b^n \forall n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} b^n = \frac{b}{1-b}$, hence by Comparison Test, $\sum_{n=1}^{\infty} \frac{b^n}{n}$ converges. It follows from Weierstrass's *M*-test that $\sum_{n=0}^{\infty} \frac{x^n}{n}$ converges uniformly on (0,b) if b < 1.

Now if b > 1, the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ does not even converge pointwisely for all $x \in (0, b)$ (it diverges whenever $x \ge 1$, by comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$. Hence the series certainly does not converge uniformly on (0, b) if b > 1.

The only case that remains is when b = 1. We claim that the series also fail to converge uniformly on (0, 1), because it is not Cauchy in sup-norm on (0, 1). Assume otherwise. Then for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\left\|\frac{x^m}{m} + \dots + \frac{x^n}{n}\right\|_{(0,1)} < \frac{1}{2}$$

whenever $n \ge m \ge N$. But

$$\left\|\frac{x^m}{m} + \dots + \frac{x^n}{n}\right\|_{(0,1)} = \frac{1}{n} + \dots + \frac{1}{m}$$

so the above implies that $\{\sum_{k=1}^{n} \frac{1}{k}\}_{n \in \mathbb{N}}$ is a Cauchy sequence of real numbers, which in turn implies that $\sum_{k=1}^{\infty} \frac{1}{k}$ is convergent, a contradiction.

(The cases b < 1 and b > 1 follow also from the general discussion of power series, once we observe that the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ is 1.)

2. Note that

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-x)^n$$

whenever |x| < 1. Hence

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$
(3)

whenever |x| < 1. The series on the right hand side of (3) diverges when $|x| \ge 1$. Hence (3) is the power series representation of $1/(1 + x^2)$, and it is valid precisely when |x| < 1.

3. If the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is r, then the series converges whenever |x| < r, and diverges whenever |x| > r. Now this implies

$$\sum_{n=0}^{\infty} a_n x^{2n}$$

converges whenever $|x| < r^{1/2}$, and diverges whenever $|x| > r^{1/2}$. Hence the radius of convergence of this new power series must be $r^{1/2}$.