
2014-15 Second Term MAT2060B 1

Solution 11

Section 9.3

3. Denote zn :=

{
2/n, if n even;
1/(n+ 1), if n odd.

Then zn → 0, z2 > z1, ( zn ) is not decreasing.

s2k :=
2k∑
n=1

(−1)n+1zn =
1

2
− 2

2
+

1

4
− 2

4
+ · · ·+ 1

2k
− 2

2k
= −1

2

k∑
n=1

1

n
. Hence ( s2k ) diverges.

Thus, Leibniz Test (alternating series test) fails.

5. Denote (xn ) :=

(
1

n

)
, which is decreasing and limxn = 0, and ( yn ) := ( 1,−1,−1, 1, . . . ).

Then sn :=

n∑
k=1

yk =

{
(−1)

n+1
2 , if n odd

0, if n even
is bounded. By Dirichlet’s test, we have

1− 1

2
− 1

3
+

1

4
+

1

5
− 1

6
− 1

7
+ +−− · · · =

∞∑
n=1

xnyn converges.

7. Let p, q be positive integer, we claim that

lim
n→∞

(log n)p

nq
= 0.

By L Hospital Rule,

lim
x→∞

log x

x
q
p

= lim
x→∞

1
x

q
px

q
p
−1 = lim

x→∞

1
q
px

q
p

= 0.

Moreover, for large x > 0,

d

dx

( log x

x
p
q

)
=
p− q log x

px
q
p
+1

< 0.

Therefore (logn)p

nq is decreasing for large n. By alternating test,
∑

(−1)n (logn)p

nq converges.

10. By Abel’s lemma, we have

N∑
n=1

an
n

=
sN
N

+

N−1∑
n=1

(
1

n
− 1

n+ 1

)
sn =

sN
N

+

N−1∑
n=1

sn
n(n+ 1)

∀ N ∈ N. (1)

Now by hypothesis, ∃ M > 0 s.t. | sN | ≤M ⇒
∣∣∣ sN
N

∣∣∣ ≤ M

N
→ 0 as N →∞.

Moreover,

∣∣∣∣ sn
n(n+ 1)

∣∣∣∣ ≤ M

n(n+ 1)
≤ M

n2
⇒

∑ sn
n(n+ 1)

<∞, by Comparison test.

Letting N →∞ in (1), we have
∞∑
n=1

an
n

=
∞∑
n=1

sn
n(n+ 1)

.
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11. Define ( yn ) := ( 1, −1, −1, 1, 1, 1, . . . ), and denote by sn its nth partial sum.

Claim sn(n+1)
2

= (−1)n+1

∣∣∣∣[ n+ 1

2

]∣∣∣∣. If the claim is true, ( sn ) is unbounded.

Now s 1(1+1)
2

= 1 = (−1)1+1

∣∣∣∣[ 1 + 1

2

]∣∣∣∣. Assume it is true for n = k. Then for n = k + 1,

s (k+1)(k+2)
2

= s k(k+1)
2

+(k+1)
= s k(k+1)

2

+ (−1)k+2 + · · ·+ (−1)k+2︸ ︷︷ ︸
k+1 terms

= (−1)k+1

∣∣∣∣[ k + 1

2

]∣∣∣∣+(−1)k+2(k + 1), by induction hypothesis

=


k + 1

2
− (k + 1), if k odd

−k
2

+ (k + 1), if k even

=


−k + 1

2
, if k odd

k + 2

2
, if k even

= (−1)k+2

∣∣∣∣[ k + 2

2

]∣∣∣∣
By M.I., ( sn ) is unbounded. Hence Dirichlet’s test cannot directly apply.

Now define f(x) :=
x(x+ 1)

2
, ∀ x ≥ 1. Then f ′(x) = x+

1

2
> 0, ∀ x ≥ 1. Let n ∈ N.

If f(x) =
x(x+ 1)

2
= n, x =

−1 +
√

1 + 8n

2
≥ 1. Denote k := |[x ]| ≤ x, and k ≥ 1.

Now sn lies between s k(k+1)
2

, s (k+1)(k+2)
2

, hence we have

| sn | ≤
k + 2

2
≤ 2k + 2k

2
= 2k ≤ −1 +

√
1 + 8n ≤

√
n+ 8n = 3n1/2.

By result in Question 14, the series converges.

14. By Abel’s lemma, we have

N∑
n=1

an
n

=
sN
N

+

N−1∑
n=1

(
1

n
− 1

n+ 1

)
sn =

sN
N

+

N−1∑
n=1

sn
n(n+ 1)

∀ N ∈ N. (2)

By hypothesis, ∃ M > 0 s.t. | sN | ≤MN r ⇒
∣∣∣ sN
N

∣∣∣ ≤ M

N1−r → 0 as N →∞.

Moreover,

∣∣∣∣ sn
n(n+ 1)

∣∣∣∣ ≤ Mnr

n(n+ 1)
≤ M

n2−r
⇒

∑ sn
n(n+ 1)

<∞, by Comparison test,

since
∑ 1

n2−r
<∞ as 2− r > 1 ⇔ r < 1, by integral test.

Letting N →∞ in (2), we have
∞∑
n=1

an
n

=
∞∑
n=1

sn
n(n+ 1)

converges.

15. (b) By Cauchy-Schwarz inequality, we have ∀ N ∈ N,

N∑
n=1

√
an
n
≤

(
N∑
n=1

an

)1/2( N∑
n=1

1

n2

)1/2

<

( ∞∑
n=1

an

)1/2( ∞∑
n=1

1

n2

)1/2

.

Hence as N 7→
N∑
n=1

√
an
n

is increasing,

∞∑
n=1

bn converges.
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(d) Define an :=
1

n(lnn)2
. Note

∫ ∞
2

dx

x(lnx)2
=

∫ ∞
2

d(lnx)

(lnx)2
=
−1

lnx

∣∣∣∣∞
2

=
1

ln 2
<∞.

By integral test,
∑

an converges.

Now bn =

√
an
n

=
1

n lnn
. Note

∫ ∞
3

dx

x lnx
=

∫ ∞
3

d(lnx)

lnx
= ln lnx

∣∣∣∣∞
3

=∞.

By integral test,
∑

bn diverges.

Section 9.4

1. (a) Now | fn(x) | := 1

x2 + n2
≤ 1

n2
, ∀ x ∈ R. Since

∑ 1

n2
<∞, by M -Test,∑

fn converges uniformly on R.

(c) Now | fn(x) | :=
∣∣∣ sin x

n2

∣∣∣ ≤ ∣∣∣ x
n2

∣∣∣, ∀ x ∈ R. Since
∑ |x |

n2
<∞, by Comparison test,∑

fn converges absolutely on R. Let M > 0. Then ∀ |x | ≤M , | fn(x) | ≤ M

n2

Hence, by M -Test, it converges uniformly on [−M,M ].

(e) First we note when x = 0, the series converges. Then we rewrite fn(x) in following
way,

xn

(xn + 1)
=

1

1 + 1/x−n
(x > 0), set t =

1

x
, we have,

fn(t) =
1

1 + tn
(t > 0)

For t ≤ 1, fn(t) ≥ 1

2
, hence the series diverges.

For t > 1, fn(t) <
1

tn
, by M-test, fn(t) absolutely converges.

However, since supt>1 fn+1(t) =
1

2
, by Cauchy Criterion, fn(t) does not uniformly

converges on (1,∞)

As a conclusion, the series
∑
fn converges absolutely but not uniformly on [0, 1).

2. Using Weierstrass M-test, we know

|an sinnx| ≤ |an|,

so the conclusion follows.

5. Let L := lim

∣∣∣∣ an
an+1

∣∣∣∣ ∈ (0,∞). If |x | < L, lim

∣∣∣∣ an+1x
n+1

anxn

∣∣∣∣ = lim

∣∣∣∣ an+1

an

∣∣∣∣ · |x | < 1

L
· L = 1.

By ratio test,
∑

anx
n converges absolutely if |x | < L.

If |x | > L, lim

∣∣∣∣ an+1x
n+1

anxn

∣∣∣∣ = lim

∣∣∣∣ an+1

an

∣∣∣∣ · |x | > 1

L
· L = 1.
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By ratio test,
∑

anx
n diverges if |x | > L. By Cauchy-Hadamard theorem, R = L.

If L = 0, then for |x | > 0, lim

∣∣∣∣ an+1x
n+1

anxn

∣∣∣∣ = lim

∣∣∣∣ an+1

an

∣∣∣∣ · |x | = |x | lim ∣∣∣∣ an+1

an

∣∣∣∣ =∞.

By ratio test,
∑

anx
n diverges if |x | > 0. By Cauchy-Hadamard theorem, R = 0 = L.

If L =∞, then for x ∈ R, lim

∣∣∣∣ an+1x
n+1

anxn

∣∣∣∣ = lim

∣∣∣∣ an+1

an

∣∣∣∣ · |x | = |x | lim ∣∣∣∣ an+1

an

∣∣∣∣ = 0.

By ratio test,
∑

anx
n converges if |x | <∞. By Cauchy-Hadamard theorem, R =∞ = L.

Example: Consider the power series 1 + x2 + x4 + · · · . Here a2n = 1 but a2n+1 = 0, so
limn→∞ |an/an+1| does not exist but ρ = lim supn→∞(|an|1/n) = 1 and R = 1.

6. (a) lim
n→∞

|an|
1
n = lim

n→∞

1

n
= 0. Hence the radius of convergence is ∞.

(b) lim

∣∣∣∣ an
an+1

∣∣∣∣ = lim(n+ 1)

(
1 +

1

n

)−α
=∞, which diverges properly.

Hence the radius of convergence is ∞.

(c) lim

∣∣∣∣ an
an+1

∣∣∣∣ = lim
nn(n+ 1)!

(n+ 1)n+1n!
= lim

(
1 +

1

n

)−n
= e−1 Hence the radius of conver-

gence is e−1.

(d) lim

∣∣∣∣ an
an+1

∣∣∣∣ = lim
(lnn)−1

[ln(n+ 1)]−1
= lim

ln(n+ 1)

lnn
.

Now lim
x→∞

ln(x+ 1)

lnx
= lim

x→∞

1/(x+ 1)

1/x
= lim

x→∞

1

1 + 1/x
= 1, by L’Hôpital’s rule.

By sequential criterion, we have lim

∣∣∣∣ an
an+1

∣∣∣∣ = lim
ln(n+ 1)

lnn
= 1.

Hence the radius of convergence is 1.

(f) Now | an |1/n = n−1/
√
n. Define f(x) := x−2/x, x ≥ 1. Then

f ′(x) = e
−2 ln x

x · x(−2/x)− (−2 lnx) · 1
x2

= 2x−2/x · lnx− 1

x2
> 0, for x > e.

By sequential criterion, n 7→ n−1/
√
n is increasing for n ≥ 3, we have

sup
n≥k
| an | = limn−1/

√
n, ∀ k ≥ 3.

Now lim
x→∞

x−2/x = lim
x→∞

e
−2 ln x

x = e
lim

x→∞
−2 ln x

x = e
lim

x→∞
−2
x = e0 = 1, by L’Hôpital’s rule.

By sequential criterion, we have ρ := lim sup | an | = limn−1/
√
n = 1.

Hence the radius of convergence = 1/ρ = 1.

11. Use Taylor expansion at point x = 0, we have

f(x) =

∞∑
k=0

f (k)(0)

k!
xk +

f (n+1)(c)

(n+ 1)!
x(n+ 1)
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for |x| < r and 0 < |c| < |x|.

|f
(n+1)(c)

(n+ 1)!
x(n+1)| < B

(n+ 1)!
rn+1

Since
rn+1

(n+ 1)!
→ 0 as n→∞. So

∑∞
n=0

f (n)(0)

n!
xn converges to f(x) for |x| < r.

12. f ′(0) = limh→0
e−1/h

2

h
, set t = 1/h, we have,

f ′(0) = lim
t→∞

t

et2

Applying L’Hospital Rule we get f ′(0) = limt→∞
1

2tet2
= 0.

Assume that f (k)(0) = 0, we want to show that f (k+1)(0) = 0

We note that f ′(x) =
2

x3
e−1/x

2
= P3(

1

x
)e−1/x

2
for x 6= 0, where P3 is a polynomial with

highest order 3.

We want to show that f (n)(x) = P3n(
1

x
)e−1/x

2
for x 6= 0. Prove it by induction:

Assume that f (k)(x) = P3k(
1

x
)e−1/x

2
for x 6= 0, then f (k+1)(x) =

2

x3
P3k(

1

x
)e−1/x

2
+

P3k−1(
1

x
)e−1/x

2
= P3(k+1)(

1

x
)e−1/x

2
for x 6= 0.

Now we consider f (k+1)(0) = limh→0

P3(k+1)(
1

h
)e−1/h

2

h
, set t = 1/h, we have,

f (k+1)(0) = lim
t→∞

t

P3(k+1)(t)et
2

Applying L’Hospital Rule we get f (k+1)(0) = limt→∞
1

P3(k+2)(t)et
2 = 0.

By M.I., we have f (n)(0) = 0 ∀n ∈ N. Hence this function is not given by its Taylor
expansion about x = 0.

16. It is well-known that the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn,

holds for x ∈ (−1, 1). The power series on the right hand side has radius of convergence
equal to 1. Hence it converges uniformly on interval [−R,R], |R| < 1. Hence we can
integrate this formula from 0 to R to get

ln (1 +R) =

∫ R

0

1

1 + x
=

∞∑
n=1

(−1)n+1

n
Rn.

The conclusion follows after replacing R by x.
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17. We have
∞∑
n=0

(−1)nt2n =
1

1 + t2

for t ∈ (−1, 1) (this is a geometric series), and for any x ∈ (−1, 1), the convergence is
uniform on [−|x|, |x|] (since the radius of convergence of the power series on the left-hand
side is 1, as is easy to check). Thus integrating, we get

∞∑
n=0

∫ x

0
(−1)nt2ndt =

∫ x

0

1

1 + t2
dt,

i.e.

arctanx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1

for any x ∈ (−1, 1).

19. Define f(x) :=

∫ x

0
e−t

2
dt, for x ∈ R. Clearly f is smooth and f(0) = 0.

f ′(x) = e−x
2
. Then f ′′(x) = −2xe−x

2
= −2xf ′(x). Hence f ′(0) = 1, f ′′(0) = 0.

Then, by Leibniz rule, we have, for n ∈ N, [f (n+2)(x) = −2xf (n+1)(x) − 2nf (n)(x) ⇒
f (n+2)(0) = −2nf (n)(0)] Clearly, f (2n)(0) = 0, and

f (2n+1)(0) = −2(2n− 1)f (2(n−1)+1)(0) = (−2)2(2n− 1)(2n− 3)f (2(n−2)+1)(0)

= · · · = (−2)n(2n− 1)(2n− 3) · · · 1 · f ′(0) = (−2)n
(2n)!

2nn!

=
(−1)n(2n)!

n!

A Maclaurin series expansion (i.e. Taylor series centered at 0) for

∫ x

0
e−t

2
dt

=
∞∑
n=0

f (2n+1)(0)

(2n+ 1)!
x2n+1 =

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
.

Supplementary Exercises

1. Now sup
x∈(0,b)

∣∣∣∣xnn
∣∣∣∣ =

bn

n
. If b < 1, we have 0 <

bn

n
≤ bn ∀ n ∈ N, and

∞∑
n=1

bn =
b

1− b
, hence by Comparison Test,

∞∑
n=1

bn

n
converges.

It follows from Weierstrass’s M -test that
∑∞

n=0
xn

n converges uniformly on (0, b) if b < 1.

Now if b > 1, the series
∑∞

n=1
xn

n does not even converge pointwisely for all x ∈ (0, b) (it
diverges whenever x ≥ 1, by comparison to

∑∞
n=1

1
n . Hence the series certainly does not

converge uniformly on (0, b) if b > 1.

The only case that remains is when b = 1. We claim that the series also fail to converge
uniformly on (0, 1), because it is not Cauchy in sup-norm on (0, 1). Assume otherwise.
Then for any ε > 0, there exists N ∈ N such that∥∥∥∥xmm + · · ·+ xn

n

∥∥∥∥
(0,1)

<
1

2
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whenever n ≥ m ≥ N . But∥∥∥∥xmm + · · ·+ xn

n

∥∥∥∥
(0,1)

=
1

n
+ · · ·+ 1

m
,

so the above implies that {
∑n

k=1
1
k}n∈N is a Cauchy sequence of real numbers, which in

turn implies that
∑∞

k=1
1
k is convergent, a contradiction.

(The cases b < 1 and b > 1 follow also from the general discussion of power series, once
we observe that the radius of convergence of the power series

∑∞
n=1

xn

n is 1.)

2. Note that
1

1 + x
=
∞∑
n=0

(−x)n

whenever |x| < 1. Hence

1

1 + x2
=
∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n (3)

whenever |x| < 1. The series on the right hand side of (3) diverges when |x| ≥ 1. Hence
(3) is the power series representation of 1/(1 + x2), and it is valid precisely when |x| < 1.

3. If the radius of convergence of
∑∞

n=0 anx
n is r, then the series converges whenever |x| < r,

and diverges whenever |x| > r. Now this implies

∞∑
n=0

anx
2n

converges whenever |x| < r1/2, and diverges whenever |x| > r1/2. Hence the radius of
convergence of this new power series must be r1/2.


