Solution 11

Section 9.3

3. Denote $z_n := \begin{cases} 2/n, & \text{if } n \text{ even}; \\ 1/(n+1), & \text{if } n \text{ odd}. \end{cases}$ $1/(n+1)$, if n odd. Then $z_n \to 0$, $z_2 > z_1$, (z_n) is not decreasing. $s_{2k} := \sum$ $2k$ $n=1$ $(-1)^{n+1}z_n=\frac{1}{2}$ $\frac{1}{2} - \frac{2}{2}$ $\frac{2}{2} + \frac{1}{4}$ $\frac{1}{4} - \frac{2}{4}$ $\frac{2}{4} + \cdots + \frac{1}{2l}$ $\frac{1}{2k} - \frac{2}{2k}$ $\frac{2}{2k} = -\frac{1}{2}$ 2 \sum $\frac{k}{\cdot}$ 1 $n=1$ $\frac{1}{n}$. Hence (s_{2k}) diverges.

Thus, Leibniz Test (alternating series test) fails.

- 5. Denote $(x_n) := \left(\frac{1}{n}\right)$ n), which is decreasing and $\lim x_n = 0$, and $(y_n) := (1, -1, -1, 1, \dots)$. Then $s_n := \sum_{n=1}^n$ $_{k=1}$ $y_k =$ \int $(-1)^{\frac{n+1}{2}}$, if *n* odd $(0, 0, \ldots)$ is bounded. By Dirichlet's test, we have $1-\frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{3} + \frac{1}{4}$ $\frac{1}{4} + \frac{1}{5}$ $\frac{1}{5} - \frac{1}{6}$ $\frac{1}{6} - \frac{1}{7}$ $\frac{1}{7}$ + + - - · · · = $\sum_{n=1}^{\infty}$ $n=1$ x_ny_n converges.
- 7. Let p, q be positive integer, we claim that

$$
\lim_{n \to \infty} \frac{(\log n)^p}{n^q} = 0.
$$

By L Hospital Rule,

$$
\lim_{x \to \infty} \frac{\log x}{x^{\frac{q}{p}}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{q}{p}x^{\frac{q}{p}-1}} = \lim_{x \to \infty} \frac{1}{\frac{q}{p}x^{\frac{q}{p}}} = 0.
$$

Moreover, for large $x > 0$,

$$
\frac{d}{dx}\left(\frac{\log x}{x^{\frac{p}{q}}}\right) = \frac{p - q\log x}{px^{\frac{q}{p} + 1}} < 0.
$$

Therefore $\frac{(\log n)^p}{n^q}$ is decreasing for large n. By alternating test, $\sum (-1)^n \frac{(\log n)^p}{n^q}$ converges.

10. By Abel's lemma, we have

$$
\sum_{n=1}^{N} \frac{a_n}{n} = \frac{s_N}{N} + \sum_{n=1}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) s_n = \frac{s_N}{N} + \sum_{n=1}^{N-1} \frac{s_n}{n(n+1)} \quad \forall \ N \in \mathbb{N}.
$$
 (1)

Now by hypothesis, $\exists M > 0$ s.t. $|s_N| \le M \Rightarrow$ sN N $\Big|\leq \frac{M}{N}$ $\frac{M}{N} \to 0$ as $N \to \infty$. Moreover, sn $n(n+1)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\leq \frac{M}{n(n+1)} \leq \frac{M}{n^2} \Rightarrow \sum \frac{s_n}{n(n+1)} < \infty$, by Comparison test. Letting $N \to \infty$ in (1), we have $\sum_{n=1}^{\infty}$ $n=1$ a_n $\frac{a_n}{n} = \sum_{n=1}^{\infty}$ $n=1$ $\frac{s_n}{n(n+1)}$.

11. Define
$$
(y_n) := (1, -1, -1, 1, 1, 1, \ldots)
$$
, and denote by s_n its n^{th} partial sum.
\nClaim $s_{\frac{n(n+1)}{2}} = (-1)^{n+1} \left[\frac{n+1}{2} \right]$. If the claim is true, (s_n) is unbounded.
\nNow $s_{\frac{1(1+1)}{2}} = 1 = (-1)^{1+1} \left[\frac{1+1}{2} \right]$. Assume it is true for $n = k$. Then for $n = k + 1$,
\n
$$
s_{\frac{(k+1)(k+2)}{2}} = s_{\frac{k(k+1)}{2} + (k+1)} = s_{\frac{k(k+1)}{2}} + \underbrace{(-1)^{k+2} + \cdots + (-1)^{k+2}}_{k+1 \text{ terms}}
$$
\n
$$
= (-1)^{k+1} \left[\frac{k+1}{2} \right] + (-1)^{k+2} (k+1), \text{ by induction hypothesis}
$$
\n
$$
= \begin{cases} \frac{k+1}{2} - (k+1), & \text{if } k \text{ odd} \\ -\frac{k}{2} + (k+1), & \text{if } k \text{ even} \end{cases} = \begin{cases} -\frac{k+1}{2}, & \text{if } k \text{ odd} \\ \frac{k+2}{2}, & \text{if } k \text{ even} \end{cases} = (-1)^{k+2} \left[\frac{k+2}{2} \right]
$$

By M.I., (s_n) is unbounded. Hence Dirichlet's test cannot directly apply. Now define $f(x) := \frac{x(x+1)}{2}$, $\forall x \ge 1$. Then $f'(x) = x + \frac{1}{2}$ $\frac{1}{2} > 0, \forall x \ge 1.$ Let $n \in \mathbb{N}$. If $f(x) = \frac{x(x+1)}{2} = n, x = \frac{-1 + \sqrt{1 + 8n}}{2}$ $\frac{k+1-\delta n}{2} \geq 1$. Denote $k := [x] \leq x$, and $k \geq 1$. Now s_n lies between $s_{\frac{k(k+1)}{2}}, s_{\frac{(k+1)(k+2)}{2}},$ hence we have

$$
|s_n| \le \frac{k+2}{2} \le \frac{2k+2k}{2} = 2k \le -1 + \sqrt{1+8n} \le \sqrt{n+8n} = 3n^{1/2}.
$$

By result in Question 14, the series converges.

14. By Abel's lemma, we have

$$
\sum_{n=1}^{N} \frac{a_n}{n} = \frac{s_N}{N} + \sum_{n=1}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) s_n = \frac{s_N}{N} + \sum_{n=1}^{N-1} \frac{s_n}{n(n+1)} \quad \forall \ N \in \mathbb{N}.
$$
 (2)

By hypothesis, $\exists M > 0$ s.t. $|s_N| \leq MN^r \Rightarrow$ sN N $\Big|\leq \frac{M}{N^{1-r}}\to 0 \text{ as } N\to\infty.$ Moreover, sn $n(n+1)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\leq \frac{Mn^r}{\sqrt{m_r}}$ $\frac{Mn^r}{n(n+1)} \leq \frac{M}{n^{2-r}} \Rightarrow \sum \frac{s_n}{n(n+1)} < \infty$, by Comparison test, since $\sum_{n=1}^{\infty} \frac{1}{n^{2-r}} < \infty$ as $2 - r > 1 \Leftrightarrow r < 1$, by integral test. Letting $N \to \infty$ in (2), we have $\sum_{n=1}^{\infty}$ $n=1$ a_n $\frac{a_n}{n} = \sum_{n=1}^{\infty}$ $n=1$ $\frac{s_n}{n(n+1)}$ converges.

15. (b) By Cauchy-Schwarz inequality, we have $\forall N \in \mathbb{N}$,

$$
\sum_{n=1}^{N} \frac{\sqrt{a_n}}{n} \le \left(\sum_{n=1}^{N} a_n\right)^{1/2} \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)^{1/2} < \left(\sum_{n=1}^{\infty} a_n\right)^{1/2} \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2}.
$$

Hence as $N \mapsto \sum_{n=1}^{N} \frac{\sqrt{a_n}}{n}$ is increasing, $\sum_{n=1}^{\infty} b_n$ converges.

I ∥ ľ

(d) Define
$$
a_n := \frac{1}{n(\ln n)^2}
$$
. Note $\int_2^{\infty} \frac{dx}{x(\ln x)^2} = \int_2^{\infty} \frac{d(\ln x)}{(\ln x)^2} = \frac{-1}{\ln x} \Big|_2^{\infty} = \frac{1}{\ln 2} < \infty$.
By integral test, $\sum a_n$ converges.
Now $b_n = \sqrt{\frac{a_n}{n}} = \frac{1}{n \ln n}$. Note $\int_3^{\infty} \frac{dx}{x \ln x} = \int_3^{\infty} \frac{d(\ln x)}{\ln x} = \ln \ln x \Big|_3^{\infty} = \infty$.
By integral test, $\sum b_n$ diverges.

Section 9.4

- 1. (a) Now $|f_n(x)| := \frac{1}{n^2+1}$ $\frac{1}{x^2 + n^2} \leq \frac{1}{n^2}$ $\frac{1}{n^2}$, $\forall x \in \mathbb{R}$. Since $\sum \frac{1}{n^2} < \infty$, by *M*-Test, $\sum f_n$ converges uniformly on R.
	- (c) Now $| f_n(x) | := |$ $\sin \frac{x}{2}$ $n²$ $\vert \leq \vert$ \boldsymbol{x} $n²$ $\Big|, \forall x \in \mathbb{R}.$ Since $\sum \frac{|x|}{n^2} < \infty$, by Comparison test, $\sum f_n$ converges absolutely on R. Let $M > 0$. Then $\forall |x| \le M$, $|f_n(x)| \le \frac{M}{n^2}$ Hence, by M-Test, it converges uniformly on $[-M, M]$.
	- (e) First we note when $x = 0$, the series converges. Then we rewrite $f_n(x)$ in following way,

$$
\frac{x^n}{(x^n+1)} = \frac{1}{1+1/x^{-n}} \ (x>0), \text{ set } t = \frac{1}{x}, \text{ we have,}
$$

$$
f_n(t) = \frac{1}{1+t^n} \ (t>0)
$$

For $t \leq 1$, $f_n(t) \geq \frac{1}{2}$ $\frac{1}{2}$, hence the series diverges. For $t > 1, f_n(t) < \frac{1}{4t}$ $\frac{1}{t^n}$, by M-test, $f_n(t)$ absolutely converges.

However, since $\sup_{t>1} f_{n+1}(t) = \frac{1}{2}$, by Cauchy Criterion, $f_n(t)$ does not uniformly converges on $(1, \infty)$

As a conclusion, the series $\sum f_n$ converges absolutely but not uniformly on [0, 1).

2. Using Weierstrass M-test, we know

$$
|a_n \sin nx| \le |a_n|,
$$

so the conclusion follows.

5. Let
$$
L := \lim \left| \frac{a_n}{a_{n+1}} \right| \in (0, \infty)
$$
. If $|x| < L$, $\lim \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| < \frac{1}{L} \cdot L = 1$.

By ratio test, $\sum a_n x^n$ converges absolutely if $|x| < L$.

If
$$
|x| > L
$$
, $\lim_{n \to \infty} \left| \frac{a_{n+1}x^{n+1}}{a_n x^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| > \frac{1}{L} \cdot L = 1$.

By ratio test, $\sum a_n x^n$ diverges if $|x| > L$. By Cauchy-Hadamard theorem, $R = L$. If $L = 0$, then for $|x| > 0$, \lim $a_{n+1}x^{n+1}$ $a_n x^n$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $=\lim$ a_{n+1} a_n $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\cdot |x| = |x| \lim$ a_{n+1} a_n $\bigg| = \infty.$ By ratio test, $\sum a_n x^n$ diverges if $|x| > 0$. By Cauchy-Hadamard theorem, $R = 0 = L$. If $L = \infty$, then for $x \in \mathbb{R}$, $\lim_{n \to \infty}$ $a_{n+1}x^{n+1}$ $a_n x^n$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $=\lim$ a_{n+1} a_n $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\cdot |x| = |x| \lim$ a_{n+1} a_n $= 0.$ By ratio test, $\sum a_n x^n$ converges if $|x| < \infty$. By Cauchy-Hadamard theorem, $R = \infty = L$.

Example: Consider the power series $1 + x^2 + x^4 + \cdots$. Here $a_{2n} = 1$ but $a_{2n+1} = 0$, so $\lim_{n\to\infty} |a_n/a_{n+1}|$ does not exist but $\rho = \limsup_{n\to\infty} (|a_n|^{1/n}) = 1$ and $R = 1$.

6. (a)
$$
\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n} = 0
$$
. Hence the radius of convergence is ∞ .

- (b) \lim a_n a_{n+1} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $=\lim(n+1)\left(1+\frac{1}{n}\right)$ n $\int_{-\infty}^{\infty} = \infty$, which diverges properly. Hence the radius of convergence is ∞ .
- (c) \lim a_n a_{n+1} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $=\lim_{n \to \infty} \frac{n^n(n+1)!}{(n+1)!}$ $\frac{n^{n}(n+1)!}{(n+1)^{n+1}n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)$ n $\Big)^{-n} = e^{-1}$ Hence the radius of convergence is e −1 .

(d)
$$
\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{(\ln n)^{-1}}{[\ln(n+1)]^{-1}} = \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n}.
$$

\nNow $\lim_{x \to \infty} \frac{\ln(x+1)}{\ln x} = \lim_{x \to \infty} \frac{1/(x+1)}{1/x} = \lim_{x \to \infty} \frac{1}{1+1/x} = 1$, by L'Hôpital's rule.
\nBy sequential criterion, we have $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n} = 1$.
\nHence the radius of convergence is 1.

(f) Now $|a_n|^{1/n} = n^{-1/\sqrt{n}}$. Define $f(x) := x^{-2/x}$, $x \ge 1$. Then $f'(x) = e^{\frac{-2 \ln x}{x}} \cdot \frac{x(-2/x) - (-2 \ln x) \cdot 1}{2}$ $\frac{(-2\ln x)\cdot 1}{x^2} = 2x^{-2/x} \cdot \frac{\ln x - 1}{x^2}$ $\frac{x^2}{x^2} > 0$, for $x > e$. By sequential criterion, $n \mapsto n^{-1/\sqrt{n}}$ is increasing for $n \geq 3$, we have $\sup |a_n| = \lim n^{-1/\sqrt{n}}, \forall k \ge 3.$ $n \geq k$ Now $\lim_{x \to \infty} x^{-2/x} = \lim_{x \to \infty} e^{\frac{-2 \ln x}{x}} = e^{\lim_{x \to \infty} \frac{-2 \ln x}{x}} = e^{\lim_{x \to \infty} \frac{-2}{x}} = e^0 = 1$, by L'Hôpital's rule.

By sequential criterion, we have $\rho := \limsup |a_n| = \lim n^{-1/\sqrt{n}} = 1$. Hence the radius of convergence $= 1/\rho = 1$.

11. Use Taylor expansion at point $x = 0$, we have

$$
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n}(n+1)
$$

for $|x| < r$ and $0 < |c| < |x|$.

$$
\left|\frac{f^{(n+1)}(c)}{(n+1)!}x^{(n+1)}\right| < \frac{B}{(n+1)!}r^{n+1}
$$
\nSince $\frac{r^{n+1}}{(n+1)!} \to 0$ as $n \to \infty$. So $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$ converges to $f(x)$ for $|x| < r$.

12. $f'(0) = \lim_{h \to 0} \frac{e^{-1/h^2}}{h}$ $\frac{h}{h}$, set $t = 1/h$, we have,

$$
f'(0) = \lim_{t \to \infty} \frac{t}{e^{t^2}}
$$

Applying L'Hospital Rule we get $f'(0) = \lim_{t \to \infty} \frac{1}{2t}$ $\frac{1}{2te^{t^2}} = 0.$ Assume that $f^{(k)}(0) = 0$, we want to show that $f^{(k+1)}(0) = 0$

We note that $f'(x) = \frac{2}{x^3}e^{-1/x^2} = P_3(\frac{1}{x^3})$ $\frac{1}{x}$) e^{-1/x^2} for $x \neq 0$, where P_3 is a polynomial with highest order 3.

We want to show that $f^{(n)}(x) = P_{3n}(\frac{1}{x})$ $\frac{1}{x}$) e^{-1/x^2} for $x \neq 0$. Prove it by induction: Assume that $f^{(k)}(x) = P_{3k}(\frac{1}{x})$ $(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$, then $f^{(k+1)}(x) = \frac{2}{x^3}P_{3k}(\frac{1}{x})$ $\frac{1}{x}$) e^{-1/x^2} + $P_{3k-1}(\frac{1}{n})$ $(\frac{1}{x})e^{-1/x^2} = P_{3(k+1)}(\frac{1}{x})$ $(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$.

Now we consider $f^{(k+1)}(0) = \lim_{h \to 0}$ $P_{3(k+1)}(\frac{1}{k})$ $\frac{1}{h}$) e^{-1/h^2} $\frac{h}{h}$, set $t = 1/h$, we have,

$$
f^{(k+1)}(0) = \lim_{t \to \infty} \frac{t}{P_{3(k+1)}(t)e^{t^2}}
$$

Applying L'Hospital Rule we get $f^{(k+1)}(0) = \lim_{t \to \infty} \frac{1}{R}$ $\frac{1}{P_{3(k+2)}(t)e^{t^2}} = 0.$

By M.I., we have $f^{(n)}(0) = 0 \forall n \in \mathbb{N}$. Hence this function is not given by its Taylor expansion about $x = 0$.

16. It is well-known that the expansion

$$
\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n,
$$

holds for $x \in (-1, 1)$. The power series on the right hand side has radius of convergence equal to 1. Hence it converges uniformly on interval $[-R, R]$, $|R| < 1$. Hence we can integrate this formula from 0 to R to get

$$
\ln(1+R) = \int_0^R \frac{1}{1+x} = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} R^n.
$$

The conclusion follows after replacing R by x .

17. We have

$$
\sum_{n=0}^{\infty} (-1)^n t^{2n} = \frac{1}{1+t^2}
$$

for $t \in (-1,1)$ (this is a geometric series), and for any $x \in (-1,1)$, the convergence is uniform on $[-|x|, |x|]$ (since the radius of convergence of the power series on the left-hand side is 1, as is easy to check). Thus integrating, we get

$$
\sum_{n=0}^{\infty} \int_0^x (-1)^n t^{2n} dt = \int_0^x \frac{1}{1+t^2} dt,
$$

i.e.

$$
\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}
$$

for any $x \in (-1, 1)$.

19. Define $f(x) := \int^x e^{-t^2} dt$, for $x \in \mathbb{R}$. Clearly f is smooth and $f(0) = 0$. 0 $f'(x) = e^{-x^2}$. Then $f''(x) = -2xe^{-x^2} = -2xf'(x)$. Hence $f'(0) = 1$, $f''(0) = 0$. Then, by Leibniz rule, we have, for $n \in \mathbb{N}$, $[f^{(n+2)}(x) = -2xf^{(n+1)}(x) - 2nf^{(n)}(x) \Rightarrow$ $f^{(n+2)}(0) = -2nf^{(n)}(0)$ Clearly, $f^{(2n)}(0) = 0$, and $f^{(2n+1)}(0) = -2(2n-1)f^{(2(n-1)+1)}(0) = (-2)^2(2n-1)(2n-3)f^{(2(n-2)+1)}(0)$ $= \cdots = (-2)^n (2n-1)(2n-3) \cdots 1 \cdot f'(0) = (-2)^n \frac{(2n)!}{2n-1}$ $2^n n!$ $=\frac{(-1)^n(2n)!}{\cdot}$

A Maclaurin series expansion (i.e. Taylor series centered at 0) for \int_0^x 0 e^{-t^2} dt

$$
= \sum_{n=0}^{\infty} \frac{f^{(2n+1)}(0)}{(2n+1)!} x^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}.
$$

n!

Supplementary Exercises

1. Now sup $x \in (0,b)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ x^n n $=\frac{b^n}{n}$ $\frac{b^n}{n}$. If $b < 1$, we have $0 < \frac{b^n}{n}$ $\frac{b}{n} \leq b^n \forall n \in \mathbb{N}$, and \sum^{∞} $n=1$ $b^n = \frac{b}{1}$ $\frac{b}{1-b}$, hence by Comparison Test, $\sum_{n=1}^{\infty}$ $n=1$ b^n $\frac{1}{n}$ converges. It follows from Weierstrass's M-test that $\sum_{n=0}^{\infty} \frac{x^n}{n}$ $\frac{c^n}{n}$ converges uniformly on $(0, b)$ if $b < 1$. Now if $b > 1$, the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ $\frac{e^{nt}}{n}$ does not even converge pointwisely for all $x \in (0, b)$ (it diverges whenever $x \geq 1$, by comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$

 $\frac{1}{n}$. Hence the series certainly does not converge uniformly on $(0, b)$ if $b > 1$. The only case that remains is when $b = 1$. We claim that the series also fail to converge uniformly on $(0, 1)$, because it is not Cauchy in sup-norm on $(0, 1)$. Assume otherwise.

Then for any
$$
\varepsilon > 0
$$
, there exists $N \in \mathbb{N}$ such that
 $\|x^m - x^n\|$

$$
\left\|\frac{x^m}{m} + \dots + \frac{x^n}{n}\right\|_{(0,1)} < \frac{1}{2}
$$

whenever $n \geq m \geq N$. But

$$
\left\| \frac{x^m}{m} + \dots + \frac{x^n}{n} \right\|_{(0,1)} = \frac{1}{n} + \dots + \frac{1}{m},
$$

so the above implies that $\{\sum_{k=1}^{n} \frac{1}{k}\}$ $\frac{1}{k}$ _{n∈N} is a Cauchy sequence of real numbers, which in turn implies that $\sum_{k=1}^{\infty} \frac{1}{k}$ $\frac{1}{k}$ is convergent, a contradiction.

(The cases $b < 1$ and $b > 1$ follow also from the general discussion of power series, once we observe that the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ $\frac{v^n}{n}$ is 1.)

2. Note that

$$
\frac{1}{1+x} = \sum_{n=0}^{\infty} (-x)^n
$$

whenever $|x| < 1$. Hence

$$
\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}
$$
 (3)

whenever $|x| < 1$. The series on the right hand side of (3) diverges when $|x| > 1$. Hence (3) is the power series representation of $1/(1+x^2)$, and it is valid precisely when $|x| < 1$.

3. If the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is r, then the series converges whenever $|x| < r$, and diverges whenever $|x| > r$. Now this implies

$$
\sum_{n=0}^{\infty} a_n x^{2n}
$$

converges whenever $|x| < r^{1/2}$, and diverges whenever $|x| > r^{1/2}$. Hence the radius of convergence of this new power series must be $r^{1/2}$.