
Math 1010C Term 1 2015
Supplementary exercises 6

1. The following theorem is often useful in computing Taylor polynomials of products / quotients / compo-

sitions of functions.

Theorem 1. Let n be a non-negative integer. Suppose f is a function defined on an open interval I

containing a point c, and that f is n-times differentiable on I. Assume that there exists a polynomial Pn
of degree ≤ n, and a function En defined on I, such that

f(x) = Pn(x) + En(x) for all x ∈ I, with lim
x→c

En(x)

xn
= 0.

Then Pn(x) is the degree n Taylor polynomial of f centered at c.

The goal of this question is to establish this result.

(a) Let k be a positive integer. Suppose f is a function defined on an open interval I containing 0, and

that f is k-times differentiable on I. Show that

lim
x→0

f(x)−
∑k−1
j=0

f(j)(0)
j! xj

xk
exists, and is equal to

f (k)(0)

k!
.

(Hint: Apply L’Hopital’s rule (k − 1) times, and then use the definition of f (k)(0).)

(b) Let n be a non-negative integer. Suppose f is a function defined on an open interval I containing 0,

and that f is n-times differentiable on I. Assume that there exists a polynomial Pn of degree ≤ n,

and a function En defined on I, such that

f(x) = Pn(x) + En(x) for all x ∈ I, with lim
x→0

En(x)

xn
= 0.

Show that

(i) lim
x→0

En(x)

xk
= 0 for any non-negative integer k ≤ n.

(ii) f (k)(0) = P
(k)
n (0) for any non-negative integer k ≤ n. (Hint: We proceed by induction on k.

For k = 0, just recall f(x) = Pn(x) + En(x), and let x → 0. Assume now for some positive

integer k ≤ n, we have 
f(0) = Pn(0),

f ′(0) = P ′n(0),
...

f (k−1)(0) = P
(k−1)
n (0).

We want to prove that f (k)(0) = P
(k)
n (0). But then by induction hypothesis,

f(x)−
∑k−1
j=0

f(j)(0)
j! xj

xk
=
Pn(x)−

∑k−1
j=0

P (j)
n (0)
j! xj

xk
+
En(x)

xk

for all x ∈ I \ {0}. Since both f and Pn are k-times differentiable, letting x→ 0 and using (a),

we get our desired conclusion.)

(iii) Pn is the degree n Taylor polynomial of f centered at 0. (Hint: It suffices to show that for any

polynomial P of degree n, we have

n∑
k=0

P (k)(0)

k!
xk = P (x).
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But if P (x) =
∑n
k=0 akx

k for some coefficients a0, a1, . . . , an, then differentiating both sides k

times and setting x = 0, we get

ak =
P (k)(0)

k!

for any non-negative integer k ≤ n. This concludes the proof.)

2. Below we see some applications of the earlier question to the computation of some Taylor polynomials.

(a) The goal in this part is to compute the degree 23 Taylor polynomial of cosh(x3) centered at 0.

(i) Show that there exists a function A, defined on R, such that

cosh(x) = 1 +
x2

2!
+
x4

4!
+
x6

6!
+A(x) for all x ∈ R, with lim

x→0

A(x)

xα
= 0 for any α < 8.

(ii) Show that there exists a function B, defined on R, such that

cosh(x3) = 1 +
x6

2!
+
x12

4!
+
x18

6!
+B(x) for all x ∈ R, with lim

x→0

B(x)

x23
= 0.

Hence find the degree 23 Taylor polynomial of cosh(x3) centered at 0.

(b) The goal in this part is to compute the degree 4 Taylor polynomial of e−2x sinx centered at 0.

(i) Show that there exists a function A, defined on R, such that

e−2x = 1− 2x+ 2x2 − 4x3

3
+A(x) for all x ∈ R, with lim

x→0

A(x)

x3
= 0.

(ii) Show that there exists a function B, defined on R, such that

sinx = x− x3

6
+B(x) for all x ∈ R, with lim

x→0

B(x)

x4
= 0.

(iii) Show that there exists a function C, defined on R, such that

e−2x sinx =

(
1− 2x+ 2x2 − 4x3

3

)(
x− x3

6

)
+ C(x) for all x ∈ R, with lim

x→0

C(x)

x4
= 0.

Hence find the degree 4 Taylor polynomial of e−2x sinx centered at 0.

(c) The goal in this part is to compute the degree 5 Taylor polynomial of secx =
1

cosx
centered at 0.

(i) Show that there exists a function A, defined on R, such that

cosx = 1− x2

2!
+
x4

4!
+A(x) for all x ∈ R, with lim

x→0

A(x)

x5
= 0.

(ii) Show that there exists a function B, defined on R, such that

1

cosx
= 1 +

(
x2

2!
− x4

4!

)
+

(
x2

2!
− x4

4!

)2

+B(x) for all x ∈ R, with lim
x→0

B(x)

x5
= 0.

Hence find the degree 5 Taylor polynomial of secx centered at 0.

(d) Can you now combine the techniques in parts (b) and (c), to compute the degree 5 Taylor polynomial

of tanx =
sinx

cosx
centered at 0?

Remark. The above may not be the fastest way of computing the Taylor polynomial of secx or tanx

centered at 0. One may want to take instead the identities secx cosx = 1 and tanx cosx = sinx,

differentiate them using Leibniz’s rule, and evaluate at 0 to compute the higher order derivatives of secx

and tanx at 0, thereby yielding the Taylor polynomial of secx and tanx centered at 0.
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