Math 1010C Term 1 2015 Supplementary exercises 10

1. (a) Let
$$f(x) = \int_{\frac{1}{x}}^{x} \sin \sqrt{t} \, dt$$
 for $x > 0$. Find $f'(1)$.

(b) Let
$$g(x) = \int_{\frac{1}{x}}^{x} \sin \sqrt{xt} dt$$
 for $x > 0$. Find $g'(1)$.

2. (a) Evaluate
$$\frac{d}{du} \int_0^u (\sqrt{2})^{t^2} dt$$
.

(b) Define
$$F(x) = \int_{\tan x}^{\sec x} (\sqrt{2})^{t^2} dt$$
 for $-\frac{\pi}{2} < x < \frac{\pi}{2}$
Solve $F'(x) = 0$.

3. Let
$$f(x) = \int_1^x \sin(\cos t) dt$$
, where $x \in [0, \frac{\pi}{2})$.

(a) Show that f is strictly increasing on
$$[0, \frac{\pi}{2})$$
.

(b) If
$$g$$
 is the inverse function of f , find $g'(0)$.

4. (a) Let
$$f$$
 be a non-negative continuous function on $[a,b]$. Define

$$F(x) = \int_0^x f(t) dt \quad \text{for } x \in [a, b].$$

Show that F is an increasing function on [a, b].

Hence deduce that if
$$\int_a^b f(t) dt = 0$$
, then $f(x) = 0$ for all $x \in [a, b]$.

(b) Let
$$g$$
 be a continuous function on [a,b]. If $\int_a^b g(x)u(x) dx = 0$ for any continuous function u on $[a,b]$, show that $g(x) = 0$ for all $x \in [a,b]$.

(c) Let
$$h$$
 be a continuous function on $[a,b]$. Define $A=\frac{1}{b-a}\int_a^b h(t)\,dt.$

(i) If
$$v(x) = h(x) - A$$
 for all $x \in [a, b]$, show that $\int_a^b v(x) dx = 0$.

(ii) If
$$\int_a^b h(x)w(x)\,dx=0$$
 for any continuous function w on $[a,b]$ satisfying $\int_a^b w(x)\,dx=0$, show that $h(x)=A$ for all $x\in [a,b]$

5. Let f be a real-valued function continuous on [0,1] and differentiable in (0,1). Suppose f satisfies

A.
$$f(0) = 0$$

B. $f(1) = \frac{1}{3}$
C. $0 < f'(t) < 1$ for $t \in (0,1)$.

Define
$$F(x) = 2 \int_0^x f(t) dt - [f(x)]^2$$
 for $x \in [0, 1]$.

- (a) Show that F'(x) > 0 for $x \in (0,1)$.
- (b) Show that $\int_{0}^{1} f(t) dt > \frac{1}{18}$.
- 6. Let

$$f(t) = \begin{cases} \frac{e^t - 1}{t} & \text{if } t \neq 0, \\ 1 & \text{if } t = 0 \end{cases}.$$

Find
$$\lim_{x\to 0} \frac{\int_0^x f(t) dt - x}{x^2}$$
.

7. (a) Let $u: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function satisfying the following conditions:

(1)
$$u''(x) = -u(x)$$
 for all $x \in \mathbb{R}$
(2) $u(0) = 0$
(3) $u'(0) = 1$

$$(2) \quad u(0) = 0$$

$$(3) \quad u'(0) = 1$$

Define $v(x) = u(x) - \sin x$ for all $x \in \mathbb{R}$.

By differentiating $w(x) = (v(x))^2 + (v'(x))^2$, prove that $u(x) = \sin x$ for all $x \in \mathbb{R}$

- (b) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be continuous functions such that f(x) = f(x) $e^{-x} \int_0^x e^t g(t) dt$ and $g(x) = e^{-x} - e^{-x} \int_0^x e^t f(t) dt$ for all $x \in \mathbb{R}$.
 - (i) Prove that f(x) + f'(x) = g(x) for all $x \in \mathbb{R}$.
 - (ii) (A) Prove that f''(x) + 2f'(x) + 2f(x) = 0 for all $x \in \mathbb{R}$.

(B) Let
$$h(x) = e^x f(x)$$
 for all $x \in \mathbb{R}$
Prove that $h''(x) = -h(x)$. Using (a), find $f(x)$.

(iii) Find g(x).