Math 1010C Term 1 2015 Supplementary exercises 1

- 1. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be even if f(x) = f(-x) for all $x \in \mathbb{R}$, and odd if f(x) = -f(-x) for all $x \in \mathbb{R}$.
 - (a) Suppose $p: \mathbb{R} \to \mathbb{R}$ is the polynomial function

$$p(x) = \sum_{n=0}^{d} a_n x^n.$$

Show that p is even if and only if $a_n = 0$ for all odd integers n.

- (b) Let p be as in part (a). Find a necessary and sufficient condition on the coefficients of p, such that p is odd.
- (c) Is there a function $g: \mathbb{R} \to \mathbb{R}$ that is neither even nor odd?
- (d) Is there a function $h: \mathbb{R} \to \mathbb{R}$ that is both even and odd?
- (e) Show that every function $f : \mathbb{R} \to \mathbb{R}$ can be written as the sum of an odd function and an even function.
- (f) Show that the derivative of an odd function is even, and the derivative of an even function is odd.
- (g) For those who know some linear algebra: Does the set of all even functions from \mathbb{R} to \mathbb{R} form a vector space over \mathbb{R} ? What about the set of all odd functions?
- 2. The following generalizes the concept of odd and even functions defined above.

Suppose X is a set, and $\theta: X \to X$ is an *involution*, in the sense that $\theta \circ \theta$ is the identity function on X (i.e. $\theta(\theta(x)) = x$ for all $x \in X$).

- (a) Show that for any $y \in X$, there exists one and only one $x \in X$ such that $\theta(x) = y$. (We say that $\theta: X \to X$ is a *bijection*.)
- (b) A function $f: X \to \mathbb{R}$ is said to be even with respect to θ if $f(\theta(x)) = f(x)$ for all $x \in X$. A function $f: X \to \mathbb{R}$ is said to be odd with respect to θ if $f(\theta(x)) = -f(x)$ for all $x \in X$.
 - (i) Find all functions $F: X \to \mathbb{R}$ that is both even with respect to θ , and odd with respect to θ .

- (ii) Show that every function $f: X \to \mathbb{R}$ can be written as the sum g+h, where $g: X \to \mathbb{R}$ is odd with respect to θ , and $h: X \to \mathbb{R}$ is even with respect to θ .
- (c) How is all this relevant to Question 1?
- (d) For those who know complex numbers already: Did it matter that we considered functions that took values in \mathbb{R} ? What if we considered complex-valued functions?
- 3. (a) Let L be a real number. Show that if $\lim_{x \to a} f(x) = L$, then $\lim_{x \to a} |f(x)| = |L|$. (Hint: Use $||f(x)| - |L|| \le |f(x) - L|$.)
 - (b) Show that the converse of the above implication is not true.
 - (c) Show that the converse of the implication in (a) is true if L = 0. As a result,

$$\lim_{x \to a} f(x) = 0, \quad \text{if and only if} \quad \lim_{x \to a} |f(x)| = 0.$$

(Hint: Use $-|f(x)| \le f(x) \le |f(x)|$.)

4. (a) Using the rules for computing limits, prove the product rule for derivatives. (Hint: Use

$$\frac{f(x)g(x) - f(c)g(c)}{x - c} = f(x)\frac{g(x) - g(c)}{x - c} + g(c)\frac{f(x) - f(c)}{x - c}).$$

(b) Prove the quotient rule for derivatives.

5. Suppose
$$a_0 = \frac{10}{3}$$
 and $a_k = a_{k-1}^2 - 2$ for all $k \ge 1$.

- (a) Show that $a_k = 3^{2^k} + 3^{-2^k}$ for all $k \ge 0$.
- (b) Show that $\prod_{k=0}^{n} a_k = \frac{3^{2^{n+1}} 3^{-2^{n+1}}}{3 3^{-1}}$ for all $n \ge 0$.
- (c) Show that $\prod_{k=0}^{n} (a_k 1) = \frac{3^{2^{n+1}} + 3^{-2^{n+1}} + 1}{3 + 3^{-1} + 1}$ for all $n \ge 0$.
- (d) Compute $\lim_{n \to \infty} \prod_{k=0}^n \left(1 \frac{1}{a_k}\right)$.