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Abstract. In this paper, we study the geometry of the SYZ transform on

a semi-flat Lagrangian torus fibration. Our starting point is an investigation
on the relation between Lagrangian surgery of a pair of straight lines in a

symplectic 2-torus and extension of holomorphic vector bundles over the mirror

elliptic curve, via the SYZ transform for immersed Lagrangian multi-sections
defined in [5, 34]. This study leads us to a new notion of equivalence between

objects in the immersed Fukaya category of a general compact symplectic

manifold (M,ω), under which the immersed Floer cohomology is invariant; in
particular, this provides an answer to a question of Akaho-Joyce [4, Question

13.15]. Furthermore, if M admits a Lagrangian torus fibration over an integral

affine manifold, we prove, under some additional assumptions, that this new
equivalence is mirror to isomorphism between holomorphic vector bundles over

the dual torus fibration via the SYZ transform.
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1. Introduction

Mirror symmetry was discovered by string theorists around 1990. It first caught
the attention of the mathematical community when Candelas, de la Ossa, Green
and Parkes [11] showed that mirror symmetry could be used to predict the number
of rational curves in a quintic Calabi-Yau 3-fold. This mysterious phenomenon has
continued to attract the attention of numerous mathematicians.

Mirror symmetry is a duality between the symplectic geometry and the complex
geometry of two different Calabi-Yau manifolds, which form a so-called mirror pair.
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The first mathematical approach towards understanding mirror symmetry was due
to Kontsevich [31] in 1994. He suggested that mirror symmetry could be phrased
as an equivalence between two triangulated categories, namely, the derived Fukaya
category on the symplectic side and the derived category of coherent sheaves on the
complex side; this is known as the homological mirror symmetry (HMS) conjecture.

Two years later, Strominger, Yau and Zaslow proposed an entirely geometric
approach to explain mirror symmetry, which is now known as the SYZ conjecture
[36]. Roughly speaking, the SYZ conjecture states that mirror symmetry can be
understood as a fiberwise duality between two special Lagrangian torus fibrations;
moreover, symplectic-geometric (resp. complex-geometric) data on one side can be
transformed to complex-geometric (resp. symplectic-geometric) data on the mirror
side by a fiberwise Fourier–Mukai-type transform, which we call the SYZ transform.

The SYZ transform has been constructed and applied to understand mirror sym-
metry in the semi-flat case [5, 34, 33, 20] and the toric case [1, 3, 22, 23, 24, 12,
14, 16, 13, 19, 18, 17, 21]. But in all of these works the primary focus was on
Lagrangian sections and the mirror holomorphic line bundles the SYZ program
produces. Applications of the SYZ transform for Lagrangian multi-sections, which
should produce higher rank holomorphic vector bundles over the mirror, is largely
unexplored.

In this paper we study the geometry of the SYZ transform on a semi-flat La-
grangian torus fibration, focusing on immersed Lagrangian multisections. Con-
struction of the semi-flat SYZ transform will be reviewed in Section 2.

In view of the HMS conjecture, Fukaya [25], Seidel and Thomas [37], among
others, have suggested that Lagrangian surgeries between (graded) Lagrangian sub-
manifolds should be mirror dual to extensions between coherent sheaves over the
mirror side. We refer to this as the surgery-extension correspondence. In Section 3,
we investigate this correspondence for the simplest nontrivial example, namely, the
2-torus T 2. We will equip the Lagrangian submanifolds with U(1)-local systems,
which will play a key role in the proof of our correspondence theorem.

More precisely, we consider two Lagrangian straight lines

L1 := Lr1,d1 [c1] := {(e2πir1x, e2πi(d1x+c1)) ∈ T 2 : x ∈ R},

L2 := Lr2,d2 [c2] := {(e2πir2x, e2πi(d2x+c2)) ∈ T 2 : x ∈ R}

in T 2, which are equipped, respectively, with the U(1)-local systems

Lb1 : d+ 2πi
b1
r1
dx, Lb2 : d+ 2πi

b2
r1
dx, b1, b2 ∈ R.

We write L1,b1 = (L1,Lb1),L2,b2 = (L2,Lb2) for the A-branes obtained in this
way, and denote their SYZ transforms, which are holomorphic vector bundles over
the mirror elliptic curve X̌, by Ľ1,b1 , Ľ2,b2 respectively. We prove the following
surgery-extension correspondence theorem in Section 3:

Theorem 1.1. (=Theorem 3.4) Let r1, d1, r2, d2 be integers satisfying r1d2 > r2d1

and the gcd conditions gcd(r1, d1) = gcd(r2, d2) = gcd(r1 + r2, d1 + d2) = 1. Let
K ⊂ L1 ∩ L2 be a set of intersection points of L1 and L2 such that the (graded)
Lagrangian surgery produces an immersed Lagrangian

LK := L2]KL1
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with connected domain, which we then equip with the U(1)-local system

Lb : d+ 2πi
b

r1 + r2
dx, b ∈ R.

Then the SYZ mirror bundle ĽK,b of the Lagrangian A-brane (LK ,Lb) is an exten-

sion of Ľ1,b1 by Ľ2,b2 , i.e., we have a short exact sequence:

0→ Ľ2,b2 → ĽK,b → Ľ1,b1 → 0

if and only if b satisfies the integrality condition

b1 + b2 − b−
1

2
∈ Z.

In particular, this theorem implies the intriguing phenomenon that the surgery-
extension correspondence cannot hold unless we equip Lagrangian submanifolds
with suitable nontrivial local systems (even in the case when we equip L1, L2 with
trivial local systems).

In Floer-theoretic terms, the integrality condition in Theorem 1.1 can be re-
garded as a generalization of degree −1 marked points in Abouzaid’s work. More
precisely, in [2], Abouzaid considered immersed curves in Riemann surfaces with
one marked point of prescribed degree −1, and proved that mapping cones in the
Fukaya category can be geometrically realized as Lagrangian surgeries. One may
think of the prescribed −1 degree for a marked point as the holonomy of a flat
U(1)-connection concentrated at that point. Our integrality condition recovers
Abouzaid’s condition by taking b1 = b2 = b = 1

2 .

Remark 1.2. Our theorem is a generalization of a recent result of K. Kobayashi
[30] to any rank and degree that satisfy the gcd assumptions.

Remark 1.3. We believe that the above theorem is known to experts; see in par-
ticular [37, Section 6].

Figure 1. Two non-Hamiltonian equivalent immersed Lagrangian
multi-sections in T 2.

By our surgery-extension correspondence theorem, we observe that as long as
the two sets of intersection points K,K ′ ⊂ L1 ∩L2 are chosen so that the surgeries
LK and LK′ satisfy the assumptions in Theorem 1.1, their SYZ mirror bundles
ĽK,b and ĽK′,b are isomorphic as holomorphic vector bundles. This is because
both bundles are indecomposable and they share the same determinant line bundle
det(Ľ1,b1)⊗det(Ľ2,b2), so they must be isomorphic in view of Atiyah’s classification
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of indecomposable vector bundles over elliptic curves [6]. For example, Figure 1
shows two immersed Lagrangian multi-sections L1,L3 in T 2 which share the same
SYZ mirror bundles.

A natural question is then:

Question 1.4. What is the symplecto-geometric relation between LK and LK′?
First of all, the relation cannot be the ordinary Hamiltonian equivalence be-

cause LK and LK′ may have a different number of self-intersection points (like in
the above example). A näıve guess is a weaker notion, called local Hamiltonian
equivalence (Definition 4.6). However, Akaho and Joyce [4] pointed out, in view of
the Lagrangian h-principle [28, 32], local Hamiltonian equivalence is only a weak
homotopical notion. It cannot detect ‘quantum’ information, and is therefore too
coarse for the immersed Floer cohomology to be invariant. On the other hand,
since the SYZ mirror bundles of LK and LK′ are isomorphic, the Floer cohomology
of LK and LK′ should also be isomorphic in view of HMS.

This leads us to digress away from SYZ mirror symmetry to study the invariance
property of immersed Floer cohomology in Section 4, in which we introduce a new
equivalence relation on immersed Lagrangian submanifolds called lifted Hamiltonian
equivalence.

Definition 1.5. (=Definition 4.8) Let π : M̃ → M be a finite unramified cov-
ering of a symplectic manifold (M,ω). For two Lagrangian immersions L1 =

(L1, ξ1),L2 = (L2, ξ2) of M , we say L1 is (M̃, π)-lifted Hamiltonian isotopic to
L2 if there exists a diffeomorphism φ : L1 → L2 and Lagrangian immersions

ξ̃1 : L1 → M̃ , ξ̃2 : L2 → M̃ such that ξ1 = π ◦ ξ̃1, ξ2 = π ◦ ξ̃2 and (L1, ξ̃1) is globally

Hamiltonian isotopic (see Definition 4.5 or [4, Definition 13.14]) to (L1, ξ̃2 ◦ φ) in

(M̃, π∗ω).

We also make the following

Definition 1.6. (=Definition 4.9) Let (M,ω) be a symplectic manifold. For two
Lagrangian immersions L1 = (L1, ξ1),L2 = (L2, ξ2) of M , we say L1 is lifted
Hamiltonian isotopic to L2 if there exists an integer l > 0 and Lagrangian immer-

sions L(1) := L1,L(2), . . . ,L(l−1),L(l) := L2 of M , such that L(j) is (M̃j , πj)-lifted

Hamiltonian isotopic to L(j+1), for some finite unramified covering πj : M̃j → M ,
j = 1, . . . , l − 1.

This new notion of equivalence is weaker than the usual Hamiltonian equivalence
but stronger than local Hamiltonian equivalence (as proved in Corollary 4.11). In
Section 4, the following invariance property of immersed Floer cohomology under
lifted Hamiltonian equivalences is proved:

Theorem 1.7. (=Theorem 4.16) Let L1,L2 be Lagrangian immersions in (M,ω).
The Floer cohomology HF (L1,L2) is invariant under lifted Hamiltonian isotopy,
i.e., if L2 is lifted Hamiltonian isotopic to L′2, then there is a quasi-isomorphism

(CF (L1,L2),m1) ' (CF (L1,L′2),m1).

In particular, this gives an answer to a question of Akaho and Joyce [4, Question
13.15], asking for restricted classes of local Hamiltonian equivalences under which
the immersed Lagrangian Floer cohomology is invariant.

In the final Section 5, we go back to SYZ mirror symmetry and Question 1.4; in
fact, we would like to ask an even more general question:
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Question 1.8. Let X → B be a Lagrangian torus fibration and X̌ → B be the dual
torus fibration. What is the mirror analog of isomorphism between holomorphic
vector bundles over X̌?

We prove that, under certain conditions, the answer is, again, given by lifted
Hamiltonian equivalence:

Theorem 1.9. (=Theorem 5.3) Suppose that B is compact. Let L1,L2 be immersed
Lagrangian multi-sections of X → B with the same connected domain L and un-
ramified covering map cr : L→ B. Assume that the group of deck transformations
Deck(L/B) acts transitively on fibers of cr : L → B. Then L1 is (L ×B X,πX)-
lifted Hamiltonian isotopic to L2 if and only if their SYZ mirrors Ľ1 and Ľ2 are
isomorphic as holomorphic vector bundles over X̌.

Combining this with Theorem 3.4, we obtain an answer to the earlier Question
1.4:

Corollary 1.10. (=Corollary 5.4) Let L1 = Lr1,d1 [c1] and L2 = Lr2,d2 [c2] be
as in Theorem 1.1. If K,K ′ ⊂ L1 ∩ L2 are sets of intersection points such that
the Lagrangian surgeries LK = L2]KL1 and LK′ = L2]K′L1 have connected do-
main and satisfy the gcd assumption gcd(r1 + r2, d1 + d2) = 1, then LK and LK′
are (S1 ×S1 T 2, πT 2)-lifted Hamiltonian equivalent, and hence have isomorphic im-
mersed Lagrangian Floer cohomologies.
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2. Semi-flat mirror symmetry

In this section, we review the SYZ transform in the semi-flat setting, following
[5] and [34] (see also [33], [15, Section 2] or [13, Section 2]).

2.1. SYZ mirror construction. Let B be an n-dimensional integral affine mani-
fold, meaning that the transition functions of B belong to the group RnoGL(n,Z)
of Z-affine linear maps. Let Λ ⊂ TB and Λ∗ ⊂ T ∗B be the natural lattice bun-
dles defined by the integral affine structure. More precisely, on a local affine chart
U ⊂ B, we define

Λ(U) :=

n⊕
j=1

Z · ∂

∂xj
, Λ∗(U) :=

n⊕
j=1

Z · dxj ,

where (xj) are affine coordinates of U .
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We set

X := T ∗B/Λ∗ and X̌ := TB/Λ

and let (yj), (y̌j) be fiber coordinates (which are dual to each other) of X and

X̌ respectively. Then (xj , yj) and (xj , y̌j) define a set of local coordinates on

T ∗U/Λ∗ ⊂ X and TU/Λ ⊂ X̌ respectively. We also let πB : X → B and π̌B :
X̌ → B be the natural projections.

Equip X with the standard symplectic structure

ω~ := ~−1
∑
j

dyj ∧ dxj ,

where ~ > 0 is a small real parameter. This defines a family of symplectic manifolds
(X,ω~). As ~ → 0, the symplectic volume of (X,ω~) approaches infinity, which is
the so-called large volume limit of the family {(X,ω~)}~>0.

On the other hand, there is a natural almost complex structure J̌~ on X̌ given
by

J̌~

(
∂

∂xj

)
= −~−1 ∂

∂y̌j
and J̌~

(
∂

∂y̌j

)
= ~

∂

∂xj
.

It is easy to see that J̌~ is indeed integrable with local complex coordinates given
by zj = y̌j + ixj . Hence (X̌, J̌~) defines a family of complex manifolds approaching
the so-called large complex structure limit as ~→ 0.

Definition 2.1. (X̌, J̌~) is called the SYZ mirror of (X,ω~).

As the above limiting processes do not play any role in this paper, by absorbing
~−1 into the (xj)-coordinates, we will simply assume that ~ = 1 throughout this
paper. Hence we just write ω for ω~ and J̌ for J̌~.

2.2. The SYZ transform of branes. In order for homological mirror symmetry
to make sense, one needs to complexify the Fukaya category by equipping La-
grangian submanifolds with unitary local systems [31]. Here, we just consider rank
1 local systems on Lagrangian submanifolds.

Definition 2.2. A Lagrangian immersion L of (X,ω) is a pair (L, ξ), where L
is an n-dimensional smooth manifold and ξ : L → X is an immersion with the
following properties

a) ξ∗ω = 0.
b) There is a discrete set of points S ⊂ L such that ξ : L\S → X is injective.
c) For all p ∈ X, the set ξ−1(p) ∩ S ⊂ L is either empty or consists of two

points.

An A-brane of X is a pair (L,L), where L is an immersed Lagrangian submanifold
of X and L is a rank 1 unitary local system on L.

We shall focus on the case where L is an immersed Lagrangian multi-section of
the fibration πB : X → B.

Definition 2.3. An immersed Lagrangian multi-section of rank r is a triple L :=
(L, ξ, cr), where ξ : L→ X is a Lagrangian immersion and cr : L→ B is an r-fold
unramified covering map such that πB ◦ ξ = cr. We also assume that the image of
L intersects transversally with each torus fiber.

Remark 2.4. We remark that L is not necessarily connected.
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We now define the SYZ transform of an immersed Lagrangian multi-section in
a semi-flat Lagrangian torus fibration, following [5, 34] (see also [9, 10] for a very
similar exposition).

Let P → X ×B X̌ be the Poincaré line bundle, whose total space is defined as
the quotient

P := ((T ∗B ⊕ TB)× C) / (Λ∗ ⊕ Λ) ,

where the fiberwise action of Λ∗ ⊕ Λ on (T ∗B ⊕ TB)× C is given by

(λ, λ̌) · (y, y̌, t) :=
(
y + λ, y̌ + λ̌, eiπ(〈y,λ̌〉−〈λ,y̌〉) · t

)
.

Define a connection ∇P on P by

∇P := d+ iπ(〈y, dy̌〉 − 〈y̌, dy〉).

The section eiπ(y,y̌) is invariant under the {0} ⊕ Λ action:

(0, λ̌) · (y, y̌, t) =
(
y, y̌ + λ̌, eiπ〈y,λ̌+y̌〉

)
.

Hence it descends to a section on T ∗B ×B X̌. With respect to this frame, the
connection ∇P can be written as

∇P = d+ 2πi〈y, dy̌〉.

The remaining action of Λ∗ ⊕ {0} then becomes

λ · [(y, y̌, eiπ〈y,y̌〉)]Λ = [y + λ, y̌, e−iπ〈λ,y̌〉 · eiπ〈y,y̌〉]Λ
= e−2πi〈λ,y̌〉[y + λ, y̌, eiπ〈y+λ,y̌〉]Λ.

Let L = (L, ξ, cr) be an immersed Lagrangian multi-section of rank r and L be
a U(1)-local system on L. Define

Ľ := (πX̌)∗ ((ξ × idX̌)∗(P)⊗ (π∗LL)) .

Note that as the projection map πX̌ : L×B X̌ → X̌ is an unramified r-fold covering

map, Ľ is a vector bundle of rank r. The connection on P induces a natural
connection ∇Ľ on Ľ. The following proposition is standard (see the original papers
[5, 34] or [15, Section 2], [13, Section 2]):

Proposition 2.5. The connection ∇Ľ satisfies (∇2
Ľ)0,2 = 0 if and only if the im-

mersion ξ : L→ X is Lagrangian.

Hence Ľ carries a natural holomorphic structure.

Definition 2.6. (Ľ,∇Ľ) is called the SYZ mirror bundle of the A-brane (L,L).

We simply write Ľ for short.

Let us give a more detailed local description of Ľ and ∇Ľ for the case r = 1.
We first suppose that L → L is the trivial line bundle equipped with the trivial

connection. Let U be an affine chart of B. Take a lift of L ∩ T ∗U/Λ∗ ⊂ X to

L̃U ⊂ T ∗U , and let ξU be the defining equation of L̃U . The section eiπ(ξU ,y̌) on

L̃U ×B TU induces a section 1̌U of Ľ on L̃U ×B X̌ by taking its Λ-equivalence class.
With respect to this local frame, the connection ∇Ľ becomes

∇Ľ = d+ 2πi〈ξU , dy̌〉.
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We can also compute the unitary and holomorphic transition functions of (Ľ,∇Ľ).
Let V be another affine chart of B such that U ∩ V 6= φ. Let ξV be the defining

equation of the lift L̃V ⊂ T ∗V . Since

[〈ξU , dxU 〉]Λ∗ = [〈ξV , dxV 〉]Λ∗ ,

there exists λUV ∈ Λ∗|U∩V such that

〈ξU , dxU 〉 = 〈ξV , dxV 〉+ 〈λUV , dxV 〉.

Then we have

1̌V = e−2πi〈λUV ,y̌V 〉1̌U .

Therefore the unitary transition functions are given by

(1) τUV (xV ) = e2πi〈λUV ,y̌V 〉.

To compute the holomorphic one, let fU : U → R be a primitive of ξU . Then it
is easy to check that

(2) ěU = e−2πfU 1̌U

defines a local holomorphic frame of Ľ. Since fU , fV are primitives of 〈ξU , dxU 〉, 〈ξV , dxV 〉
respectively, we have

fU (xU ) = fV (xV ) + 〈λUV , xV 〉+ cUV

for some cUV ∈ R. The holomorphic transition functions are then given by

(3) gUV (zV ) = e−2πcUV e2πi〈λUV ,zV 〉,

where zV = y̌V + ixV is a holomorphic coordinate of TV/Λ.
Now, suppose L → L is an arbitrary U(1)-local system. Then L carries a natural

flat connection ∇L. Write

∇L = d+ 2πiβ, β ∈ Γ(L, T ∗L).

Since ∇2
L = 0, dβ = 0. Let bU (xU ) be a primitive of β on U . Then a local

holomorphic frame is given by

e−2π(fU+ibU )1̌U .

When U ∩ V 6= φ, we have

dbU (xU ) = β = dbV (xV )⇒ bU (xU )− bV (xV ) = bUV ∈ R.

The holomorphic transition functions then become

gUV (zV ) = e−2π(cUV +ibUV )e2πi(λUV ,zV ).

The connection ∇Ľ becomes

∇Ľ = d+ 2πi〈ξU , dy̌〉+ 2πiβ|U .
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For a general r, one can also write down the connection ∇Ľ in terms of the data
coming from the Lagrangian brane:

∇Ľ =d+ 2πi

n∑
j=1


ξU1,j (x1) 0 0 . . . 0

0 ξU2,j (x2) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ξUr,j (xr)

 dy̌jU

+ 2πi

n∑
j=1


βU1,j

(x1) 0 0 . . . 0

0 βU2,j
(x2) 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . βUr,j (xr)

 dx̌jU ,

(4)

where c−1
r (U) =

∐r
k=1 Uk and xk ∈ Uk, k = 1, . . . , r are the preimages of x ∈ U ⊂

B.

3. Surgery-extension correspondence for T 2

Let L1 and L2 be two graded immersed Lagrangian multi-sections and Ľ1 and Ľ2

be their mirror bundles. It is believed that performing Lagrangian surgeries at index
1 intersection points of L1 and L2 corresponds to forming a nontrivial extension of
Ľ1 and Ľ2. More precisely, let K := {p1, · · · , pk} ⊂ CF (L1,L2) be a collection of
index 1 intersection points of L1 and L2. We perform Lagrangian surgery at each
point in K (see Figure 2) to obtain another graded immersed Lagrangian multi-
section LK := L2]KL1. Then the mirror bundle ĽK of LK should fit in an exact
sequence:

0→ Ľ2 → ĽK → Ľ1 → 0.

In this section, we study this relation on the symplectic torus T 2 with standard
symplectic structure and its mirror elliptic curve. We will see that the Lagrangian
surgery and extension correspondence cannot be true in general if we do not equip
the Lagrangians with U(1)-local systems.

Figure 2. 1-dimensional Lagrangian surgery at an index 1 inter-
section point.
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Let X := T 2 = S1×S1 be the product torus with standard symplectic structure
given by

ω := dy ∧ dx.

We begin with describing the SYZ transform of a general immersed Lagrangian
multi-section in X.

Let B = S1 and π1 : X → S1 be the projection onto the first factor. Let
ϕ : R→ R be a smooth function such that

ϕ(x+ r) = ϕ(x) + d,

where d ∈ Z and r ∈ Z>0. Then ϕ descends to an immersed Lagrangian multi-
section Lϕ of π1 : X → B which intersect the zero section |d| times and each fiber
r times. Since ϕ is smooth, the immersed Lagrangian multi-section Lϕ intersects
the fibers of π1 : X → B transversally. Clearly, every immersed Lagrangian multi-
section with connected domain and which intersects the fibers transversally arises
in this manner.

Let {U, V } be the following affine cover of the base B = S1:

(0, 1)→ V ⊂ S1, x 7→ e2πix,

(0, 1)→ U ⊂ S1, x′ 7→ e2πi(x′+ε),

where ε ∈ (0, 1) is fixed. Write U ∩ V = W1 qW2. The SYZ mirror bundle Ľϕ of
Lϕ is a rank r vector bundle with U(r)-connection (cf. (4))

∇Ľϕ = d+ 2πi


ϕ(x) 0 0 . . . 0

0 ϕ(x+ 1) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ϕ(x+ r − 1)

 dy̌, (x, y̌) ∈ TV/Λ.

With the complex structure z = y̌ + ix, the degree of Ľϕ is given by

i

2π

∫ 1

0

∫ 1

0

d

dx

2πi

r−1∑
j=0

ϕ(x+ j)

 dx ∧ dy̌ = −
∫ r

0

d

dx
ϕ(x)dx

= ϕ(0)− ϕ(r) = −d.

Let us write down the unitary and holomorphic transition functions of Ľϕ from
TV/Λ to TU/Λ. Let

c−1
r (U) =

r∐
j=1

Uj and c−1
r (V ) =

r∐
j=1

Vj .

By renaming, we can assume that U1∩V1, V1∩U2, U2∩V2, . . . , Vr∩U1 are non-empty
connected subsets of L×B X̌. Then we can assume that

c−1
r (W1) =

r∐
j=1

Uj ∩ Vj and c−1
r (W2) =

r∐
j=1

Vj ∩ Uj+1,
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where we put Ur+1 = U1. The unitary transition function is given by the identity
matrix on TW1/Λ and by

τUV (x, y̌) =

 O e2πidy̌

I(r−1)×(r−1) O


on TW2/Λ (cf. (1)).

Choose a point x0 ∈W1 ⊂ V . For each j = 0, . . . , r− 1, let fj : R→ R be given
by

(5) fj(x) :=

∫ x+j

x0

ϕ(u)du,

which is a primitive of ϕ(x + j). A local holomorphic frame for Ľϕ on the chart
TV/Λ is then given by (cf. (2)):

{e−2πf0(x)1̌0(x, y̌), . . . , e−2πfr−1(x)1̌r−1(x, y̌)},
where (x, y̌) ∈ TV/Λ.

On the U -chart, we have

(6) f ′j(x
′) =

∫ x′+ε+j

x′0+ε

ϕ(u)du.

On W1, x′ and x are related by x′(x) = x− ε. Applying this coordinate change to
(6) and using (5), we obtain

f ′j(x
′) =

∫ x′+ε+j

x′0+ε

ϕ(u)du =

∫ x+j

x0

ϕ(u)du = fj(x).

On W2, we have x′(x) = x− ε+ 1, so for j = 0, . . . , r − 2, (6) becomes

f ′j(x
′) =

∫ x+j+1

x0

ϕ(u)du = fj+1(x),

while for j = r − 1, we have

(7) f ′r−1(x′) =

∫ x+r

x0

ϕ(u)du = f0(x) +

∫ x+r

x

ϕ(u)du.

Since
d

dx

∫ x+r

x

ϕ(u)du = ϕ(x+ r)− ϕ(x) = d,

we have

(8)

∫ x+r

x

ϕ(u)du = dx+

∫ r

0

ϕ(u)du.

By substituting (8) to (7), we see that the holomorphic transition functions are
given by the identity matrix on TW1/Λ and by

gUV (z) =

 O e−2πae2πidz

I(r−1)×(r−1) O


on TW2/Λ (cf. (3)), where a is given by

a =

∫ r

0

ϕ(u)du.
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Suppose now we enrich L by a U(1)-local system (L,∇L). Since the domain of
L is a circle, the connection ∇L can always be written as

d+ 2πi
b

r
dx,

for some b ∈ R. Hence the transition functions of the SYZ mirror bundle of (L,L)
are given by

gUV (z) =

 O e−2π(a+ib)e2πidz

I(r−1)×(r−1) O

 .

Example 3.1. Let r, d ∈ Z with gcd(r, d) = 1. Let ϕ : R→ R be the straight line

ϕ(x) =
d

r
x+

c

r
, r > 0, c ∈ R.

Then it descends to the Lagrangian multi-section

Lr,d[c] = {(e2πirx, e2πi(dx+c)) ∈ X : x ∈ R}.

One computes that ∫ r

0

ϕ(x)dx =
rd

2
+ c.

The transition function of the SYZ mirror bundle is given by

gUV (z) =

 O e−πdre−2πce2πidz

I(r−1)×(r−1) O

 .

Let

L1 := Lr1,d1 [c1] := {(e2πir1x, e2πi(d1x+c1)) ∈ X : x ∈ R},

L2 := Lr2,d2 [c2] := {(e2πir2x, e2πi(d2x+c2)) ∈ X : x ∈ R}

be two distinct (embedded) Lagrangian multi-sections of X, where r1, r2, d1, d2 are
integers such that gcd(r1, d1) = gcd(r2, d2) = 1 and c1, c2 ∈ R. They intersect at
|r1d2 − r2d1| points. Let us assume that r1d2 > r2d1. The base coordinates of the
intersection points are given by the equivalence classes of

xk,k′ :=
r2(c1 + k)− r1(c2 + k′)

r1d2 − r2d1
, k, k′ ∈ Z.

We orientate L1,L2 such that both of them are pointing towards “right” in a
fundamental domain of X. Since r1d2 > r2d1, using the degree convention of [2],
all generators of CF (L1,L2) are of index 1.

Let K be a subset of L1 ∩L2. Then we can perform Lagrangian surgery at each
point in K to obtain a (graded) Lagrangian multi-section LK := L2]KL1 (possibly
with disconnected domain).

Remark 3.2. For each surgery point, we have a parameter ε > 0 which controls
the size of the surgery. The surgery LK we discuss here of course consists of the
surgery parameters. However, these parameters do not play a role as we will see in
the proof of our main theorem (Theorem 3.4).
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Now, we equip the domains of L1,L2,LK with the U(1)-local systems

Lb1 : d+ 2πi
b1
r1
dx,

Lb2 : d+ 2πi
b2
r2
dx,

Lb : d+ 2πi
b

r1 + r2
dx

respectively. Here b1, b2, b ∈ R. We denote the Lagrangian A-branes (L1,Lb1), (L2,Lb2),
(LK ,Lb) by L1,b1 ,L2,b2 ,LK,b respectively. There is a simple obstruction for the SYZ

mirror bundle ĽK,b of LK,b to be an extension of Ľ1,b1 and Ľ2,b2 . Note that if ĽK,b
is an extension of Ľ1,b1 by Ľ2,b2 , then det(ĽK,b) ∼= det(Ľ1,b1) ⊗ det(Ľ2,b2) as holo-
morphic line bundles.

Proposition 3.3. Let (Lr1,d1 [c1],L1) and (Lr2,d2 [c2],L2) be Lagrangian A-branes
with local systems

Lb1 : d+ 2πi
b1
r1
dx, Lb2 : d+ 2πi

b2
r2
dx.

Let L′1, . . . ,L′M be the components of an immersed Lagrangian multi-section L of
rank r1 + r2 and degree −d1 − d2, equipped with U(1)-local systems

L′1 : d+ 2πi
b′1
r′1
dx, . . . ,L′M : d+ 2πi

b′M
r′M

dx.

Let ϕ′j : R→ R be the defining equation of L′j. Put

a′j =

∫ r′j

0

ϕ′j(x)dx, j = 1, . . . ,M,

Then det(Ľb′) ∼= det(Ľr1,d1 [c1]b1)⊗ det(Ľr2,d2 [c2]b2) as holomorphic line bundles if
and only if

M∑
j=1

a′j −
r1d1

2
− r2d2

2
− c1 − c2 ∈ Z and b1 + b2 −

M

2
−

M∑
j=1

b′j ∈ Z.

Proof. Note that
M∑
j=1

r′j = r1 + r2,

M∑
j=1

d′j = d1 + d2.

Using the above computations of the holomorphic transition functions, we see that
the factor of automorphy of det(L) ⊗ det(Ľ1)−1 ⊗ det(Ľ2)−1 over C× (instead of
over C) is generated by

A(1, u) = (−1)Me−2π(
∑M
j=1 a

′
j−

r1d1
2 −

r2d2
2 −c1−c2)e2πi(

∑M
j=1 bj−b1−b2)

= e−2π(
∑M
j=1 a

′
j−

r1d1
2 −

r2d2
2 −c1−c2)e2πi(

∑M
j=1 bj+

M
2 −b1−b2),

where u = e2πiz (see e.g. Section 4.3 in [29] for the precise relation between tran-
sition functions and factors of automorphy over C×).

By Theorem 4.11 in [29], A(1, u) is gauge equivalent to 1 if and only if

(9) B(e−2πu) = A(1, u)B(u)
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for some non-zero holomorphic function B : C× → C×. Let
∑∞
−∞Bku

k be the
Laurent series expansion of B. Then (9) holds if and only if

Bk(e−2πk −A(1, u)) = 0, for all k.

Since B(u) is nonzero, (9) holds if and only if A(1, u) = e−2πN for some integer N
and Bk = 0 for all k 6= N , which is equivalent to saying that

M∑
j=1

a′j −
r1d1

2
− r2d2

2
− c1 − c2 = N ∈ Z and b1 + b2 −

M

2
−

M∑
j=1

b′j ∈ Z.

�

We refer to the conditions

M∑
j=1

a′j −
r1d1

2
− r2d2

2
− c1 − c2 ∈ Z and b1 + b2 −

M

2
−

M∑
j=1

b′j ∈ Z

as the first and second integrality condition for the triple (Lr1,d1 [c1]b1 ,Lr2,d2 [c2]b2 ,Lb′)
respectively.

Proposition 3.3 gives a necessary condition for the surgery-extension correspon-
dence to hold. Next, we prove that under certain assumptions on the surgery LK ,
the second integrality condition is also sufficient.

Theorem 3.4. Let r1, d1, r2, d2 be integers satisfying r1d2 > r2d1 and

gcd(r1, d1) = gcd(r2, d2) = gcd(r1 + r2, d1 + d2) = 1.

Let L1 := Lr1,d1 [c1], L2 := Lr2,d2 [c2] and K ⊂ L1 ∩ L2 such that the (graded)
Lagrangian surgery LK := L2]KL1 has connected domain and is equipped with the
U(1)-local system

Lb : d+ 2πi
b

r1 + r2
dx, b ∈ R.

Then the SYZ mirror bundle ĽK,b of the Lagrangian A-brane LK,b is an extension

of Ľ1,b1 by Ľ2,b2 if and only if b satisfies

b1 + b2 +
1

2
− b ∈ Z.

To prove this theorem, we need some results on semistable vector bundles on
algebraic curves from [8]:

Lemma 3.5 (Lemma 1.4 and Proposition 2.3 in [8]). Let F,G be polystable vector
bundles over an elliptic curve X with rk(F ) ≥ rk(G) and µ(F ) < µ(G). Assume
that no two among the indecomposable factors of F (resp. of G) are isomorphic.
Define

U := {f ∈ Hom(F,G) : rk(Im(f)) = t,deg(Im(F )) = h},
t := max

f∈Hom(F,G)
rk(Im(f)),

h := max
f∈Hom(F,G),rk(Im(f))=t

deg(Im(F )).

Then U is an open dense subset of Hom(F,G). Moreover, if rk(F ) > rk(G), then
each f ∈ U is surjective.
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Lemma 3.6 (Corollary 1.3 in [8])). Fix a flat family {X(t) : t ∈ T} of smooth
compact Riemann surfaces with T integral. Let H,Q be vector bundles on X = X(0)
such that Hom(Q(0), H(0)) = 0. Then any extension

0→ H(0)→ E → Q(0)→ 0

is the limit of a flat family of extensions

0→ H(t)→ E(t)→ Q(t)→ 0

with H(t) and Q(t) semi-stable and t in some open subset of T containing 0.

Proof of Theorem 3.4. Let ϕ : R → R be the defining equation of LK such that
ϕ(0) = a1/r1. The first integrality condition:∫ r1+r2

0

ϕ(x)dx =
r1d1

2
+
r2d2

2
+ c1 + c2 +N, for some N ∈ Z

will be proved in Lemma 3.7. The second integrality condition follows by taking
M = 1.

Conversely, we need to show that ĽK,b fits into the exact sequence assuming the
first and second integrality conditions. First of all, these conditions imply that

det(ĽK,b) ∼= det(Ľ1,b1)⊗ det(Ľ2,b2).

Since r1d2 > r2d1, we have

µ(ĽK,b) = −d1 + d2

r1 + r2
< −d1

(
1 + r2/r1

r1 + r2

)
= −d1

r1
= µ(Ľ1,b1).

Also, the domains of L1,L2 and LK are connected and gcd(r1, d1) = gcd(r2, d2) =
gcd(r1 + r2, d1 + d2) = 1, so Ľ1, Ľ2, ĽK as well as Ľ1,b1 , Ľ2,b2 , ĽK,b are all stable

bundles. Hence we can apply Lemma 3.5 to find a surjective map f : ĽK,b → Ľ1,b1 .
Letting K := ker(f), we obtain the exact sequence

0→ K→ ĽK,b → Ľ1,b1 → 0.

Since every vector bundle over an elliptic curve is the flat limit of a family
of semi-stable bundles with the same determinant (see [8, Remark 1.1]), we can
choose families K(t) and Ľ1,b1(t) such that K(0) = K and Ľ1,b1(0) = Ľ1,b1 . By the
classification result of Atiyah [6], any indecomposable vector bundle on an elliptic
curve with gcd(rk,deg) = 1 is determined by its determinant line bundle. Hence
we have Ľ1,b1(t) ∼= Ľ1,b1 for all t near 0 by the openness of semistability.

Since ĽK,b is stable, we have Hom(Ľ1,b1 ,K) = 0 (see [35, Lemma 1.1]). Then we
can apply Lemma 3.6 to obtain an exact sequence

(10) 0→ K(t)→ ĽK,b(t)→ Ľ1,b1(t)→ 0

with ĽK,b(0) = ĽK,b. Also, ĽK,b(t) is semi-stable for all t near 0 again by openness
of semistability. But

det(ĽK,b(t)) ∼= det(K(t))⊗ det(Ľ1,b1(t)) = det(K)⊗ det(Ľ1,b1) ∼= det(ĽK,b),

so we must have ĽK,b(t) ∼= ĽK,b for all t near 0.
Finally, note that

det(K(t)) = det(K) ∼= det(ĽK,b)⊗ det(Ľ1,b1)−1 ∼= det(Ľ2,b2)
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and K(t) is semi-stable, so we have K(t) ∼= Ľ2,b2 . Therefore, for small t 6= 0, the
exact sequence (10) reads

0→ Ľ2,b2 → ĽK,b → Ľ1,b1 → 0.

This completes the proof of the theorem. �

Next we prove the integral formula that we need in the proof of Theorem 3.4.

Lemma 3.7. Let LK be as in Theorem 3.4 Then∫ r1+r2

0

ϕ(x)dx =
r1d1

2
+
r2d2

2
+ c1 + c2 +N, for some N ∈ Z,

where ϕ : R→ R is the defining equation of LK .

Proof. First of all, by adding a sufficiently large integer, we may assume that ϕ ≥ 0
on the interval [0, r1 + r2].

Observe that ∫ r1+r2

0

ϕ(x)dx

is nothing but the area bounded by ϕ and the x-axis, from 0 to r1 + r2. Since
Lagrangian surgery is symmetric, the integral is the same as the area bounded
by the piecewise linear function, obtained by replacing the non-linear portions by
piecewise linear functions, with the x-axis, from 0 to r1 + r2.

We cut the area into several pieces as in Figure 3.

Figure 3

Denote the area of the red, blue, yellow, green, orange and white region by
R,B, Y,G,O and W respectively. Then we have∫ r1+r2

0

ϕ(x)dx = R+B + Y +G+W.
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Note that we have the following

R =

∫ r2

0

(
d2

r2
x+

c2
r2
− c1
r1

)
dx =

r2d2

2
+ c2 −

c1r2

r1
,

Y = (d1 +
c1
r1

)r2 = d1r2 +
c1r2

r1
,

O +G =

∫ r1

0

(
d1

r1
x+

c1
r1

)
dx =

r1d1

2
+ c1,

B = O.

Hence ∫ r1+r2

0

ϕ(x)dx =
r1d1

2
+ c1 +

r2d2

2
+ c2 + d1r2 +W.

To see that W is an integer, take a look at Figure 4.

Figure 4

The red and blue lines can be viewed as two continuous maps fj : [0, 1] → X,
j = 1, 2 with the same image L1 ∪ L2. They define the same homology class in
H1(X;Z), namely, (r1 + r2, d1 + d2) ∈ Z2 ∼= H1(X;Z). The white region serves as
a 2-chain ∆ such that

∂∆ = f1 − f2.

But f1, f2 also define the same image, so ∆ is indeed a 2-cycle, i.e., [∆] ∈ H2(X;Z).

Pulling back the symplectic form to R2, we then have ω = d(ydx). Let f̃1, f̃2 :
[0, 1]→ R2 denote the lifts of f1, f2 starting at c1/r2, c2/r2 respectively. Then

W =

∫
f̃1−f̃2

ydx =

∫
∆

ω ∈ Z,

as [ω] is an integral class. This completes the proof of the lemma. �
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Let us remark that the surgery-extension correspondence is not true for self-
extension. For example, let L0 be the zero section and L′0 be the Lagrangian

{(e2πix, e2πi sin(2πix)) : x ∈ R},

which is Hamiltonian equivalent to L0. Hence both L0 and L′0 have OX̌ , the trivial
line bundle, as the SYZ mirror bundle. We perform a Lagrangian surgery at the
index 1 intersection point p to obtain an immersed Lagrangian multi-section Lp of
rank 2. See Figure 5.

Figure 5

For any choice of local system d + 2πi b2dx on the domain of Lp, the transition

function of Ľp,b is given by 0 e2πib

1 0


Since it is a constant matrix, it is gauge equivalent to its diagonalization:eiπb 0

0 −eiπb

 .

If Ľp,b is a self-extension of OX̌ , then we have e2iπb = −1, which is equivalent to

the condition that b ∈ 1
2 + Z. In this case, it is easy to see that Ľp,b is isomorphic

to a non-trivial decomposable holomorphic vector bundle of rank 2. However, it
is known that the only self-extensions of OX̌ are O⊕2

X̌
and the Atiyah bundle Ǎ2,

which is indecomposable. Therefore Ľp,b cannot be a self-extension of OX̌ for any
choice of b.

Accordingly we expect that Lp,b is not a mapping cone of p : L0 → L′0. Note
that this does not violate the result of Abouzaid [2] because he required two curves
to be intersecting minimally within their isotopy class. In our example, L′0 does
not intersect L0 minimally within its isotopy class (the minimal intersection is in
fact empty).

Remark 3.8. As we have mentioned in the introduction, the integrality condition

b1 + b2 − b−
1

2
∈ Z
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suggests that given two Lagrangian A-branes (L1,L1), (L2,L2) in a symplectic man-
ifold (M,ω), if L1, L2 have holonomies e2πib1 , e2πib2 respectively, then the holonomy
e2πib of L should be chosen to satisfy

e2πibe−2πib1e−2πib2 = −1.

We believe that this relation can be understood in terms of Floer theory.

4. Invariance of immersed Floer cohomology

As we have seen in the introduction, the surgery-extension correspondence theo-
rem (Theorem 3.4) gives us a pair of non-Hamiltonian equivalent Lagrangian immer-
sions that share the same SYZ mirror bundle. By homological mirror symmetry, we
expect that the two Lagrangian immersions should be equivalent in the immersed
Fukaya category. Indeed it was pointed out by Akaho and Joyce in their work [4]
on immersed Floer theory that the immersed Floer cohomology should have an in-
variance property under some equivalence which is weaker than global Hamiltonian
equivalence. In this section, we will define a new notion called lifted Hamiltonian
equivalence and prove that the immersed Floer cohomology is invariant under this
new equivalence. So let us digress from mirror symmetry for a moment and turn
our attention to symplectic geometry.

Throughout this section, the notation (M,ω) will stand for a 2n-dimensional
compact symplectic manifold equipped with a symplectic form ω. The notion of
Lagrangian immersions is defined as in Definition 2.2. We always assume that the
domain of a Lagrangian immersion is compact. We first recall the definition of
immersed Floer cohomology for a pair of Lagrangian immersions introduced in [4]
by Akaho and Joyce.

4.1. Maslov index and the immersed Floer cohomology. To have good Floer
theory, Akaho and Joyce made the following assumption:

Assumption 4.1. The intersection points of ξ1(L1) and ξ2(L2) are finite and do
not coincide with their self-intersection points.

The Floer complex of two transversally-intersecting immersed Lagrangians L1 =
(L1, ξ1) and L2 = (L2, ξ2) is defined by

CF (L1,L2) :=
⊕

p∈ξ1(L1)∩ξ2(L2)

Λnov · p,

where Λnov is the Novikov field given by

Λnov :=

{ ∞∑
i=1

aiT
λi : ai ∈ k, lim

i→∞
λi =∞

}
and k is a field (R, C or Z2).

Let {Jt}t∈[0,1] be a family of almost complex structure on M which are com-
patible with ω. Let gt(·, ·) := ω(Jt·, ·) be the Riemannian metric associated to the
pair (ω, Jt). The Floer differential m1 is defined by counting Jt-holomorphic strips
u : R× [0, 1]→M :

∂u

∂s
+ Jt(u)

∂u

∂t
= 0
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with finite energy ∫
R×[0,1]

|du(s, t)|gtdsdt < +∞

and boundary data

u(R× {0}) ⊂ ξ1(L1), u(R× {1}) ⊂ ξ2(L2),

lim
s→−∞

u(s, t) = q, lim
s→+∞

u(s, t) = p.

Since L1,L2 are immersed, they require that there are continuous liftings u−1 :
R×{0} → L1, u+

2 : R×{1} → L2 such that ξ1 ◦u−1 = u|R×{0} and ξ2 ◦u+
2 = u|R×{1}

(see Figure 6).

Figure 6. A Jt-holomorphic strip bounded by L1 and L2.

Let π2(M ; ξ1(L1), ξ2(L2); p, q) be the space of all homotopy classes of strips u :
R × [0, 1] → M that satisfy the above boundary conditions and lifting properties.

Fix a homotopy class β ∈ π2(M ; ξ1(L1), ξ2(L2); p, q). Let M̃(p, q;β) be the moduli
space of all Jt-holomorphic disks that represent the class β and satisfy the above
boundary data. Quotienting by the action of translation in the s-direction, we
obtain the moduli space

M(p, q;β) := M̃(p, q;β)/R.
In [26, 27], the authors proved that M(p, q;β) is a Kuranishi space and can

be compactified. Moreover, if the Lagrangian immersions are relatively spin, then
the compactified moduli space can be oriented. To describe the dimension of the
moduli space, one needs to introduce the Maslov index; an excellent introduction of
Maslov index can be found in Auroux’s article [7]. Choose a symplectic trivialization
Φ : u∗TM ∼= (R× [0, 1])× TpM . Consider the Lagrangian paths

γ−1 : s 7→ Φ(dξ1(Tu−1 (−s,0)L1)) ⊂ TpM,

γ+
2 : s 7→ Φ(dξ2(Tu+

2 (s,1)L2)) ⊂ TpM

in the Lagrangian Grassmanian LGr(TpM,ωp). Since p is not a self-intersection
point for either L1,L2, it has unique preimage points l1 ∈ L1 and l2 ∈ L2. We
identify (TpM,ωp) with (Cn, ωstd). There exists A ∈ Sp(2n,R) such that

A(dξ1(Tl1L1)) = Rn, A(dξ2(Tl2L2)) = iRn.
The canonical short path λp : [0, 1]→ LGr(TpM,ωp) is defined to be

λp(t) := A−1(e−
πi
2 t(iRn)).
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Then by concatenating the paths, γ := λ−1
p ∗ γ−1 ∗ Φ(λq) ∗ γ+

2 defines a loop in
LGr(TpM,ωp), based at dξ1(Tl1L1). Recall that π1(LGr(TpM,ωp)) ∼= Z.

Definition 4.2. The Maslov index µ(u) of the strip u : R× [0, 1]→ M is defined
as the degree of the loop γ ⊂ LGr(TpM,ωp).

It is a well-known fact that the Maslov index only depends on the homotopy
class of the strip u : R× [0, 1]→M . The (virtual) dimension ofM(p, q;β) is given
by µ(β)− 1.

The Floer differential m1 : CF (L1,L2)→ CF (L1,L2) is defined by

m1(p) :=
∑

q∈ξ1(L1)∩ξ2(L2)

∑
β:µ(β)=1

∑
u∈M(p,q;β)

(−1)sign(u)Tω(u) · q,

where the sign (−1)sign(u) is determined by the orientation of the moduli space
M(p, q;β) and

ω(u) :=

∫
R×[0,1]

u∗ω

is the symplectic area of u. By Gromov compactness, the sum converges in Λnov.

Definition 4.3. If m2
1 = 0, then the immersed Floer cohomology is defined as

HF (L1,L2) := H(CF (L1,L2),m1).

We assume all Lagrangian immersions we consider here are unobstructed, mean-
ing that the Floer differential m1 satisfies (m1)2 = 0.

Remark 4.4. Usually, the notion of unobstructed Lagrangian immersion involves a
bounding cochain b on the domain of the immersion. In this paper, we will consider
those Lagrangian immersions with b = 0.

It is well known that the two limits

lim
s→−∞

u(s, t) = q, lim
s→+∞

u(s, t) = p

converge uniformly in t ∈ [0, 1]. Indeed, one has

dist(u(s, t), p) < Ce−µ|s| for all t ∈ [0, 1],

where C, µ > 0 are constants depending only on the energy E(u) of u. By iden-
tifying R × [0, 1] with the closed unit disk ∆ with punctures at ±1, the limits
limz→−1 u(z), limz→+1 u(z) exist and are equal to q, p respectively. Therefore, it
makes sense to write u(−1) = q and u(1) = p.

From now on, we replace the strip model by the disk model with finite energy
and boundary data

u(∂−∆) ⊂ ξ1(L1), u(∂+∆) ⊂ ξ2(L2),

u(−1) = q, u(1) = p.

Here, we put ∂−∆ = S1∩{z ∈ C : Im(z) ≤ 0} and ∂+∆ = S1∩{z ∈ C : Im(z) ≥ 0}.
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4.2. Three types of equivalences. First, we recall the notion of global Hamil-
tonian equivalence introduced in [4].

Definition 4.5. Let (L1, ξ2), (L2, ξ2) be two Lagrangian immersions in a symplec-
tic manifold (M,ω). They are said to be globally Hamiltonian equivalent if there
exists a diffeomorphism φ : L1 → L2 and a 1-parameter family of Hamiltonian
diffeomorphism ψt : M →M such that ψ0 = idM and ψ1 ◦ ξ1 = ξ2 ◦ φ.

Akaho and Joyce proved that HF (L1,L2) is indeed a global Hamiltonian invari-
ant, that is, if L2 is globally Hamiltonian isotopic to L′2, then there is a quasi-
isomorphism

(CF (L1,L2),m1) ' (CF (L1,L′2),m′1).

In the immersed situation, there is another equivalence called local Hamiltonian
equivalence. Let us recall its definition.

Definition 4.6. Let (L1, ξ1), (L2, ξ2) be two Lagrangian immersions in a symplectic
manifold (M,ω). They are said to be locally Hamiltonian equivalent if there exists
a diffeomorphism φ : L1 → L2 and a smooth 1-parameter family Ξ : [0, 1]×L1 →M
such that Ξ(0,−) = ξ1, Ξ(1,−) = ξ2 ◦ φ and the 1-form

Ξ∗(ω)(
d

dt
,−)

on {t} × L1, is exact for all t ∈ [0, 1].

Note that local Hamiltonian equivalence can be implied by global Hamiltonian
equivalence by pulling back the Hamiltonian function on M to the domain L via
the immersion ξ but not the converse in general, as shown by the example below.

Example 4.7. Consider the Lagrangian immersions L,L′ in the standard symplec-
tic 2-torus T 2 as shown in Figure 7.

Figure 7

Clearly, L and L′ are not globally Hamiltonian equivalent as they share a different
number of self-intersection points. Nevertheless, the blue curve can be Hamiltonian
deformed into a horizontal Lagrangian section, namely, the red line. Hence L and
L′ are in fact locally Hamiltonian equivalent.

A natural question is to ask whether HF (L1,L2) is invariant under local Hamil-
tonian equivalence. It was pointed out by Akaho and Joyce that this is not true
for general local Hamiltonian isotopies (see [4, Section 13]). The reason behind this
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is the Lagrangian h-principle [28, 32], which states that two Lagrangian immer-
sions (L, ξ1), (L, ξ2) are locally Hamiltonian equivalent if and only if there exists
a smooth homotopy ξt : L → M from (ξ1, dξ1) to (ξ2, dξ2) and a bundle map

ξ̃t : TL → ξ∗t TM covering ξt which embeds TL as a Lagrangian subbundle in
ξ∗t TM . But HF (L1,L2) consists of quantum data coming from holomorphic disks,
which is invisible to classical algebraic topology, so one would not expect these
quantum data to be preserved under general local Hamiltonian isotopies.

Our goal is to find a new equivalence which is weaker than global Hamiltonian
equivalence, but stronger than local Hamiltonian equivalence, such that HF (L1,L2)
is invariant under this equivalence. Let us start with the following

Definition 4.8. Let π : M̃ → M be a finite unramified covering of a symplectic
manifold (M,ω). For two Lagrangian immersions L1 = (L1, ξ1),L2 = (L2, ξ2) of

M , we say L1 is (M̃, π)-lifted Hamiltonian isotopic to L2 if there exists a diffeo-

morphism φ : L1 → L2 and Lagrangian immersions ξ̃1 : L1 → M̃ , ξ̃2 : L2 → M̃

such that ξ1 = π ◦ ξ̃1, ξ2 = π ◦ ξ̃2 and (L1, ξ̃1) is globally Hamiltonian isotopic to

(L1, ξ̃2 ◦ φ) in (M̃, π∗ω).

We remark that L1, L2 and M̃ can all be disconnected. When L1 is (M̃, π)-lifted
Hamiltonian isotopic to L2, we may assume that the immersions share the same
domain, i.e., L1 = L2. In this case we may take φ to be the identity map.

Note that Definition 4.8 does not define an equivalence relation because the re-

lation that L1 is (M̃, π)-lifted Hamiltonian isotopic to L2 for some finite unramified

covering π : M̃ →M is not transitive. So we need to make the following

Definition 4.9. Let (M,ω) be a symplectic manifold. For two Lagrangian im-
mersions L1 = (L1, ξ1),L2 = (L2, ξ2) of M , we say L1 is lifted Hamiltonian iso-
topic to L2 if there exists an integer l > 0 and Lagrangian immersions L(1) :=

L1,L(2), . . . ,L(l−1),L(l) := L2 of M , such that L(j) is (M̃j , πj)-lifted Hamiltonian

isotopic to L(j+1), for some finite unramified covering πj : M̃j →M , j = 1, . . . , l−1.

Clearly, lifted Hamiltonian isotopy defines an equivalence relation on the set of
Lagrangian immersions. Hence it makes sense to say that L1 is lifted Hamiltonian
equivalent to L2. Note that two Lagrangian immersions L1,L2 are globally Hamil-
tonian equivalent if and only if they are (M, idM )-lifted Hamiltonian isotopic to
each other.

Proposition 4.10. If L1 and L2 are Lagrangian immersions which are lifted
Hamiltonian equivalent, then L1 and L2 are locally Hamiltonian equivalent.

Proof. It suffices to prove that if L1 and L2 are (M̃, π)-lifted Hamiltonian isotopic

for some finite unramified covering π : M̃ →M , then they are locally Hamiltonian

equivalent. Let ξ̃1, ξ̃2 : L→ M̃ be lifts of ξ1, ξ2 respectively. By assumption, there

exists a family of Hamiltonian diffeomorphisms Ξ̃t : M̃ → M̃ such that Ξ̃0 = id and

Ξ̃1 ◦ ξ̃1 = ξ̃2. Since π : M̃ →M is an unramified covering, Ξt := π ◦ Ξ̃t ◦ ξ̃1 : L→M
defines a family of Lagrangian immersions such that

Ξ0 = π ◦ Ξ̃0 ◦ ξ̃1 = ξ1,

Ξ1 = π ◦ Ξ̃1 ◦ ξ̃1 = ξ2.
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We shall prove that

Ξ∗(ω)(
d

dt
,−)

is exact on {t} × L for all t ∈ [0, 1]. Let h : [0, 1]× M̃ → R be a Hamiltonian that

generate Ξ̃t. We claim that

dL(ht ◦ Ξ̃t ◦ ξ̃1) = Ξ∗(ω)(
d

dt
,−).

For any v ∈ Γ(L, TL),

Ξ∗(ω)(
d

dt
, v) = ω(Ξ∗

d

dt
,Ξ∗v)

= (π∗ω)((Ξ̃ ◦ ξ̃1)∗
d

dt
, (Ξ̃t ◦ ξ̃1)∗v)

= (π∗ω)(Xht(Ξ̃t ◦ ξ̃1), (Ξ̃t ◦ ξ̃1)∗v)

= d
M̃
ht((Ξ̃t ◦ ξ̃1)∗v)

= dL(ht ◦ Ξ̃t ◦ ξ̃1)(v),

so we are done. �

As a summary, we have

Corollary 4.11. Let L1, L2 Lagrangian immersions. Consider the following state-
ments:

a) L1 and L2 are globally Hamiltonian equivalent.
b) L1 and L2 are lifted Hamiltonian equivalent.
c) L1 and L2 are locally Hamiltonian equivalent.

Then we have the implications a)⇒ b)⇒ c).

Remark 4.12. When L1,L2 are embedded and locally Hamiltonian equivalent, they
are Hamiltonian isotopic to each other if we can choose the isotopy Ξt to be an
embedding for all t ∈ [0, 1]. Hence the statements a), b), c) in Corollary 4.11 are all
equivalent in this case.

4.3. The invariance theorem. We study the invariance property of the immersed
Floer cohomology under lifted Hamiltonian deformations.

Let L1,L2 be a pair of compact, unobstructed Lagrangian immersions of (M,ω).

Let ξ̃1 : L1 → M̃1 and ξ̃2 : L2 → M̃2 be liftings of L1,L2 to some finite unramified

coverings π1 : M̃1 → M and π2 : M̃2 → M of M respectively. Note that (M̃j , πj)
may be equal to (M, idM ), that is, the trivial covering of M .

Consider the following commutative diagram:

L1 ×M M̃2

πL1

��

ξ̃1×id // M̃1 ×M M̃2

πM
��

oo id×ξ̃2
M̃1 ×M L2

πL2

��
L1

ξ̃1 // M̃1 −→M ←− M̃2
oo ξ̃2

L2

Note that all the vertical maps are finite unramified covering maps (the domains
of them can be disconnected in general, but they are still smooth manifolds).
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Since (L1, ξ1) and (L2, ξ2) are Lagrangian immersions, by equipping M̃1 ×M M̃2

with the pullback symplectic structure via πM , it is easy to see that (L1×M M̃2, ξ̃1×
id) and (M̃1×M L2, id× ξ̃2) are Lagrangian immersions of M̃1×M M̃2, whose images

are given by ξ̃1(L1)×M M̃2 and M̃1 ×M ξ̃2(L2) respectively.

To simplify the notation, we let M̃ = M̃1 ×M M̃2, L̃1 = ξ̃1(L1) ×M M̃2 and

L̃2 = M̃1 ×M ξ̃2(L2). Points in M̃ are denoted by p̃.

Lemma 4.13. Under Assumption 4.1, we have

a) πM : L̃1 ∩ L̃2 → ξ1(L1) ∩ ξ2(L2) is a 1-1 correspondence.

b) The map (πM )∗ : π2(M̃ ; L̃1, L̃2; p̃, q̃) → π2(M ; ξ1(L1), ξ2(L2); p, q) is bijec-
tive.

c) (πM )∗ preserves the Maslov index, i.e., µ(β̃) = µ((πM )∗β̃).
d) If (M,ω, J) is a Calabi-Yau manifold, then πM preserves grading, i.e., for

any p̃ ∈ L̃1 ∩ L̃2, deg(πM (p̃)) = deg(p̃).

Proof. a) Suppose p ∈ ξ1(L1) ∩ ξ2(L2). Then there exists l1 ∈ L1 and l2 ∈ L2

such that ξ1(l1) = p = ξ2(l2). Since (π1◦ ξ̃1)(l1) = ξ1(l1) = p = (π2◦ ξ̃2)(l2),
we have

(ξ̃1(l1); p; ξ̃2(l2)) ∈ L̃1 ∩ L̃2

and πM (ξ̃1(l1); p; ξ̃2(l2)) = p. This proves surjectivity. For injectivity, note

that any intersection point of L̃1 and L̃2 is of the form (ξ̃1(l1); p; ξ̃2(l2)) for
some l1 ∈ L1, l2 ∈ L2 and ξ1(l1) = p = ξ(l2). If

πM (ξ̃1(l1); p; ξ̃2(l2)) = πM (ξ̃1(l′1); p′; ξ̃2(l′2)),

then p = p′ and so

ξ1(l1) = p = p′ = ξ1(l′1),

ξ2(l2) = p = p′ = ξ2(l′2).

Since p is not a self-intersection point of ξ1(L1) nor ξ2(L2), we have l1 = l′1
and l2 = l′2. Hence (ξ̃1(l1); p; ξ̃2(l2)) = (ξ̃1(l′1); p′; ξ̃2(l′2)).

b) We first prove that (πM )∗ is well-defined, i.e., the image of each disk under
πM satisfies the required boundary data.

Let ũ : ∆→ M̃ represent β̃ with boundary data

ũ(∂−∆) ⊂ L̃1, ũ(∂+∆) ⊂ L̃2,

ũ(−1) = q̃, ũ(1) = p̃.

Set u := πM ◦ ũ. Then clearly, u has boundary data

u(∂−∆) ⊂ ξ1(L1), u(∂+∆) ⊂ ξ2(L2),

u(−1) = q, u(1) = p.

To obtain the liftings on the boundary, we recall we already have the liftings

ũ−1 : ∂−∆ → L1 ×M M̃2 and ũ+
2 : ∂+∆ → M̃1 ×B L2 of ũ|∂−∆ and ũ|∂+∆

respectively. By definition, they satisfy

(ξ̃1 × id) ◦ ũ−1 = ũ|∂−∆,

(id× ξ̃2) ◦ ũ+
2 = ũ|∂+∆.
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We define

u−1 := πL1
◦ ũ−1 : ∂−∆→ L1,

u+
2 := πL2

◦ ũ+
2 : ∂+∆→ L2.

Then ξ1 ◦ u−1 = ξ1 ◦ πL1
◦ ũ−1 = πM ◦ (ξ̃1 × id) ◦ ũ−1 = πM ◦ ũ|∂−∆ = u|∂−∆.

Similarly, ξ2 ◦u+
2 = u|∂+∆. Hence (πM )∗ is well-defined. Injectivity follows

from the homotopy lifting property.
For surjectivity, let u : ∆ → M be a representative of β with boundary

data

u(∂−∆) ⊂ ξ1(L1), u(∂+∆) ⊂ ξ2(L2),

u(−1) = q, u(1) = p.

Let ũ : ∆→ M̃ be the lift of u with ũ(1) = p̃. We claim that ũ(∂−∆) ⊂ L̃1.

Recall that we have a lift u−1 : ∂−∆→ L1 of u|∂−∆. Since πL1 : L1×MM̃2 →
L1 is an unramified covering of L1 and ξ−1

1 (p) consists of only one point,

there is a lift ũ−1 : ∂−∆→ L1×M M̃2 of u−1 such that ((ξ̃1×id)◦ũ−1 )(1) = p̃.
Note that

π
M̃1
◦ (ξ̃1 × id) ◦ ũ−1 = ξ̃1 ◦ πL1

◦ ũ−1 = ξ̃1 ◦ u−1 .

Hence

πM ◦ (ξ̃1 × id) ◦ ũ−1 =π1 ◦ πM̃1
◦ (ξ̃1 × id) ◦ ũ−1

=ξ1 ◦ u−1
=u|∂−∆ = πM ◦ ũ|∂−∆.

By uniqueness, we have ũ|∂−∆ = (ξ̃1 × id) ◦ ũ−1 . In particular, we have

ũ(∂−∆) ⊂ L̃1. Similarly, we have ũ(∂+∆) ⊂ L̃2. These two inclusions
imply

ũ(−1) ∈ ũ(∂+∆ ∩ ∂−∆) ⊂ L̃1 ∩ L̃2.

Because u(−1) = q, we must have ũ(−1) = q̃ by uniqueness.

c) Since, via the differential dπM : TM̃ → π∗MTM , Tq̃M̃ can be identified sym-

plectically with TqM , the Lagrangian Grassmannians LGr(Tq̃M̃, ω̃q̃) and
LGr(TqM,ωq) are naturally isomorphic via dπM .Clearly, the Lagrangian
paths

s 7→ dξ̃1(Tũ−1 (s,0)(L1 ×M M̃2)),

s 7→ dξ1(Tu−1 (s,0)L1)

can also be identified via dπM . Similarly, dπM also identifies

s 7→ dξ̃2(Tũ+
2 (s,1)(M̃1 ×M L2)),

s 7→ dξ1(Tu+
2 (s,1)L2).

Since πM is an unramified covering map, it is a local symplectomorphism.
It follows that the canonical short paths are also identified via dπM . Hence
the Maslov indices are preserved under (πM )∗.
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d) Since πM is an unramified covering map, (M̃, ω̃, J̃) is naturally a Calabi-

Yau manifold with the pullback structures ω̃ = π∗Mω, J̃ = π∗MJ and so

each intersection point between L̃1 and L̃2 can be graded. Let p̃ ∈ L̃1 ∩ L̃2.

The grading of p̃ only depends on the angles that L̃1 and L̃2 intersect (See

[4], Section 12), which is a local property. Since π is an unramified (J̃ , J)-
holomorphic covering map, we see that the angles of intersection at p̃ is the
same as the angles of intersection at πM (p̃).

�

Next, we show that the immersed Floer cohomology HF (L1,L2) can be com-

puted by the immersed Floer cohomology of the liftings (L1×M M̃2, ξ̃1×id), (M̃1×M
L2, id× ξ̃2). Recall that we have chosen a family of ω-compatible almost complex

structures {Jt}t∈[0,1]. Let {J̃t}t∈[0,1] be the pullback almost complex structure of

{Jt}t∈[0,1] via the unramified covering map πM : M̃ → M . Then we have the
following

Lemma 4.14. For any p, q ∈ ξ1(L1) ∩ ξ2(L2), β ∈ π2(M ;L1, L2; p, q) and u ∈
M(p, q;β), there exist unique p̃, q̃ ∈ L̃1 ∩ L̃2, β̃ ∈ π2(M̃ ; L̃1, L̃2; p̃, q̃) and ũ ∈
M(p̃, q̃; β̃) such that πM (p̃) = p, πM (q̃) = q and πM ◦ ũ = u. Moreover, (πM )∗
induces an orientation preserving isomorphism of oriented Kuranishi spaces

M(p, q;β) ∼=M(p̃, q̃; β̃).

Proof. The existence and uniqueness of p̃, q̃ follow from Lemma 4.13. Also, since

πM is an unramified (J̃t, Jt)-holomorphic covering map, the proof of Part b) of

Lemma 4.13 has already yielded the correspondence between J̃t-holomorphic disks

in M̃ and Jt-holomorphic disks in M with the given boundary data and lifting
properties.

So far, we see that (πM )∗ gives a bijection between the sets M(p, q;β) and

M(p̃, q̃; β̃). By [27], the Kuranishi structure of M(p, q;β) is governed by the lin-
earized Cauchy-Riemann operator

Du∂̄Jt : W 1,p(u∗TM ;u|∗∂−∆dξ1(TL1), u|∗∂+∆dξ2(TL2))→ Lp(u∗TM)

at every u ∈M(p, q;β). In order to prove that we have an isomorphism of Kuranishi
spaces, we need to show that the linearized Cauchy-Riemann operator Dũ∂̄J̃t can

be identified with Du∂̄Jt every point ũ. Since πM : M̃ →M , πL1
: L1×M M̃2 → L1,

πL2 : M̃1 ×M L2 → L2 are all covering maps, the tangent bundles are identified
with the pull-backs:

TM̃ ∼= π∗MTM, T (L1 ×M M̃2) ∼= π∗L1
TL1, T (M̃1 ×M L2) ∼= π∗L2

TL2.

Hence we have the identification between the domain (resp. image) of Dũ∂̄J̃t and

the domain (resp. image) of Du∂̄Jt as Banach spaces. The two linearized Cauchy-

Riemann operators are then identified and M(p̃, q̃; β̃) inherits a natural Kuranishi
structure so that (πM )∗ is an orientation preserving isomorphism. �

Proposition 4.15. Let L1,L2 be Lagrangian immersions of (M,ω). The projection

map πM : M̃ →M induces a canonical isomorphism between Floer complexes

(CF (L̃1, L̃2),m1) ∼= (CF (L1,L2),m1).
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Proof. By Part b) of Lemma 4.13, the projection πM : M̃ → M gives an identifi-
cation between the Floer complexes:

πM : CF (L̃1, L̃2)→ CF (L1,L2).

It suffices to prove that πM is a chain map. By Lemma 4.13, for each p ∈ ξ1(L1) ∩
ξ2(L2), there exists a unique p̃ ∈ L̃1 ∩ L̃2 such that πM (p̃) = p. Furthermore, for

each q ∈ ξ1(L1)∩ ξ2(L2) and u ∈M0(p, q;β) 6= φ, there exists a unique q̃ ∈ L̃1∩ L̃2

with πM (q̃) = q and a unique ũ ∈M0(p̃, q̃; β̃) such that πM ◦ ũ = u. Hence we have

m1(πM (p̃)) =
∑

q∈ξ1(L1)∩ξ2(L2)

∑
β:µ(β)=1

∑
u∈M0(p,q,β)

(−1)sign(u)Tω(u) · q

=
∑

q̃∈L̃1∩L̃2

∑
β̃:µ(β̃)=1

∑
ũ∈M0(q̃,p̃,β̃)

(−1)sign(ũ)T ω̃(ũ) · πM (q̃).

The last summation is exactly πM (m1(p̃)). Note that sign(u) = sign(ũ) here be-
cause (πM )∗ is an isomorphism between oriented Kuranishi spaces by the previous
lemma. �

Theorem 4.16. Let L1,L2 be Lagrangian immersions in (M,ω). The Floer coho-
mology HF (L1,L2) is invariant under lifted Hamiltonian isotopy. That is, if L2 is
lifted Hamiltonian isotopic to L′2, then there is a quasi-isomorphism

(CF (L1,L2),m1) ' (CF (L1,L′2),m1).

Proof. It suffices to prove the theorem in the case when L2 is (M̃2, π2)-lifted Hamil-

tonian isotopic to L′2 for some finite unramified covering π2 : M̃2 → M . Suppose

L2 is (M̃2, π2)-lifted Hamiltonian isotopic to L′2. By definition, there exist liftings

ξ̃2 : L2 → M̃2 and ξ̃′2 : L2 → M̃2 such that (L2, ξ̃2) is globally Hamiltonian equiva-

lent to (L2, ξ̃
′
2). In this case, M̃ = M×M M̃2

∼= M̃2, so we have a quasi-isomorphism

(CF (L̃1, L̃2),m1) ' (CF (L̃1, L̃
′
2),m1).

Together with the isomorphism obtained in Proposition 4.15, we have the quasi-
isomorphism

(CF (L1,L2),m1) ' (CF (L1,L′2),m1).

This completes the proof. �

Theorem 4.16 shows that lifted Hamiltonian equivalence defines an equivalence
relation on objects of the immersed Fukaya category of (M,ω), thus giving an
answer to [4, Question 13.15] which asked for a restricted class of local Hamiltonian
equivalences under which the immersed Lagrangian Floer cohomology is invariant.

In the context of mirror symmetry, one needs to complexify the Fukaya category
by unitary local systems on the domain of the Lagrangian immersion. In this case,
the differential m1 on CF ((L1,L1), (L2,L2)) should be coupled with the holonomy
coming from the local systems L1,L2 on the boundary of the disks. The notion of
lifted Hamiltonian isotopy can be generalized as follows

Definition 4.17. Let L1 = (L1, ξ1),L2 = (L2, ξ2) be two Lagrangian immersions

of M and L1,L2 be local systems on L1, L2 respectively. Let π : M̃ →M be a finite

unramified covering of M . We say (L1,L1) is (M̃, π)-lifted Hamiltonian isotopic
to (L2,L2) if
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(a) There exist a diffeomorphism φ : L1 → L2 and liftings ξ̃1 : L1 → M̃ ,

ξ̃2 : L2 → M̃ such that (L1, ξ̃1) is globally Hamiltonian isotopic to (L1, ξ̃2◦φ)
and

(b) φ∗L2
∼= L1 as unitary bundles.

With a slight modification, one can also prove the invariance of the Floer coho-
mology HF ((L1,L1), (L2,L2)) under this generalized notion of lifted Hamiltonian
isotopy for any pair of immersed Lagrangian branes (L1,L1), (L2,L2). We omit the
detailed proof.

5. Mirror of isomorphism between holomorphic vector bundles

Let us go back to the mirror symmetry between X and X̌. In this section, we will
prove, at least in the semi-flat and caustics-free case, that certain lifted Hamiltonian
equivalence between immersed Lagrangian multi-sections of the fibration X → B
is mirror to isomorphism between holomorphic vector bundles over the mirror X̌.

Let L = (L, ξ, cr) be an immersed Lagrangian multi-section of X → B. Recall
that cr : L→ B is a finite unramified covering, and the projection πX : L×BX → X
is also a finite unramified covering of X. A deck transformation τL ∈ Deck(L/B)
induces a deck transformation τ ∈ Deck(L×B X/X) by

τ : (l, x, y) 7→ (τL(l), x, y).

Hence we get an injective group homomorphism Deck(L/B)→ Deck(L×B X/X).
Let G be the image of this homomorphism. With respect to the pullback symplectic
structure on L×B X, elements in G are symplectomorphisms.

On the mirror side, we also have a finite unramified covering πX̌ : L ×B X̌ →
X̌. One can apply a similar construction to obtain an embedding Deck(L/B) ↪→
Deck(L×B X̌/X̌). Denote the image by Ǧ. With respect to the pullback complex
structure, Ǧ is a subgroup of the group of biholomorphisms of L×B X̌. There is a
natural bijection between G and Ǧ given by G ∼= Deck(L/B) ∼= Ǧ.

Lemma 5.1. If L is connected and Deck(L/B) acts transitively on fibers of cr :
L→ B, then G = Deck(L×B X/X) and Ǧ = Deck(L×B X̌/X̌).

Proof. Since L is connected, L ×B X is also connected, and so Deck(L ×B X/X)
acts freely on the fiber of πX : L×B X → X. Hence G also acts freely on fibers of
πX . Fix (x, y) ∈ X. The fiber of πX over (x, y) is in bijection with the fiber of cr
over x ∈ B. By assumption, Deck(L/B) acts transitively on the fiber of cr. Hence
G also acts transitively on the fiber of πX . Therefore, Deck(L ×B X/X) also acts
transitively on fibers of πX . Since both G and Deck(L ×B X/X) act transitively
and freely on fibers, we must have G = Deck(L×B X/X). �

Remark 5.2. The transitivity of the action of Deck(L/B) on fibers of cr : L→ B
is equivalent to the normality of (cr)∗(π1(L)) as a subgroup of π1(B).

It is known by [20] that when B is compact, the Lagrangian sections L1, L2

are (globally) Hamiltonian equivalent if and only if their SYZ mirrors Ľ1, Ľ2 are
isomorphic as holomorphic line bundles. In the higher rank situation, the following
theorem shows, at least with a transitivity assumption, that (L ×B X,πX)-lifted
Hamiltonian equivalence is the mirror analog of isomorphism between holomorphic
vector bundles.
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Theorem 5.3. Suppose that B is compact. Let L1 = (L, ξ1, cr), L2 = (L, ξ2, cr) be
immersed Lagrangian multi-sections of X → B with the same connected domain L
and unramified covering map cr : L→ B. Assume that Deck(L/B) acts transitively
on fibers of cr : L → B. Then L1 is (L ×B X,πX)-lifted Hamiltonian isotopic to
L2 if and only if Ľ1 is isomorphic to Ľ2 as holomorphic vector bundles.

Proof. Given two immersed Lagrangian multi-sections L1 = (L, ξ1, cr) and L2 =
(L, ξ2, cr) with the same connected domain L and finite unramified covering map

cr : L → B, we can lift Lj , j = 1, 2 to Lagrangian embeddings ξ̃j : L → L̃j ⊂
L×B X, explicitly given by

ξ̃j : l 7→ (l, x, ξj(l)).

Moreover, for any τL ∈ Deck(L/B) and section ξ̃ : L→ L̃ ⊂ L×BX of the fibration
πL : L×B X → L, the composition

τ ◦ ξ̃ ◦ τ−1
L : l 7→ (l, x, ξ̃(τ−1

L (l)))

defines a section of πL.
Suppose L1 is (L×B X,πX)-lifted Hamiltonian isotopic to L2. Then there exist

liftings ξ̃′1, ξ̃
′
2 : L → L ×B X such that (L, ξ̃′1) and (L, ξ̃′2) are globally Hamilton-

ian isotopic to each other. Since both ξ̃1, ξ̃
′
1 are liftings of ξ1, by the transitivity

assumption, there exists τ1 ∈ Deck(L×B X/X) such that

ξ̃′1 = τ1 ◦ ξ̃1.
Similarly, there exists τ2 such that

ξ̃′2 = τ2 ◦ ξ̃2.

In particular, (L, ξ̃′1), (L, ξ̃′2) are embedded Lagrangian submanifolds, and so τ1 ◦
ξ̃1 ◦ τ−1

L,1 and τ2 ◦ ξ̃2 ◦ τ−1
L,2 are globally Hamiltonian equivalent Lagrangian sections

of πL.
Let Ľ1, Ľ2 be the SYZ mirror line bundles of (L, ξ̃1) and (L, ξ̃2) respectively.

Then the correspondence result of [20] gives an isomorphism (τ̌−1
1 )∗Ľ1

∼= (τ̌−1
2 )∗Ľ2

as holomorphic line bundles, where τ̌j ∈ Ǧ corresponds to τj ∈ G under the natural

isomorphism G ∼= Deck(L/B) ∼= Ǧ. We have

Ľj(U) = ((πX̌)∗Ľj)(U) = Ľj(π
−1
X̌

(U)), j = 1, 2.

For j = 1, 2, we have

((πX̌)∗(τ̌
−1
j )∗Ľj)(U) = Ľj(τ̌j(π−1

X̌
(U))) = Ľj((πX̌ ◦ τ̌

−1
j )−1(U)) = (πX̌)∗Ľj(U),

so that

Ľ2 = (πX̌)∗Ľ2
∼= (πX̌)∗(τ̌

−1
2 )∗Ľ2

∼= (πX̌)∗(τ̌
−1
1 )∗Ľ1 = (πX̌)∗Ľ1 = Ľ1.

Conversely, suppose Ľ1
∼= Ľ2. By the correspondence result of [20] again, it

suffices to show that Ľ1
∼= τ̌∗Ľ2 for some τ̌ ∈ Ǧ. Note that since L ×B X is

connected, we have the following decompositions:

π∗
X̌

(πX̌)∗Ľj =
⊕
τ̌∈Ǧ

τ̌∗Ľj , j = 1, 2.

Hence ⊕
τ̌∈Ǧ

τ̌∗Ľ1
∼=
⊕
τ̌∈Ǧ

τ̌∗Ľ2.
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In particular, Ľ1 defines a subbundle of
⊕

τ̌∈Ǧ τ̌
∗Ľ2.

Since Ľ1 is a subbundle, there exists τ̌1 ∈ Ǧ such that the composition

Ľ1 ↪→
⊕
τ̌∈Ǧ

τ̌∗Ľ2 → τ̌∗1 Ľ2

is not identically zero. Similarly, there exists τ̌2 ∈ Ǧ such that the composition
Ľ2 ↪→

⊕
τ̌∈Ǧ τ̌

∗Ľ1 → τ̌∗2 Ľ1 is not identically zero. Therefore we obtain a chain of
bundle maps

Ľ1 → τ̌∗1 Ľ2 → τ̌∗1 τ̌
∗
2 Ľ1 → · · · → (τ̌∗1 τ̌

∗
2 )kĽ1, k ≥ 1,

each of which is not identically zero.
Take k to be the order of τ̌2 ◦ τ̌1. Then we obtain a map Ľ1 → Ľ1, which is again,

not identically zero. Since B is compact, so is X̌. Hence Ľ1 → Ľ1 corresponds to
a nonzero holomorphic function which can only be a nonzero constant. Therefore,
Ľ1 → Ľ1 is an isomorphism and in particular, Ľ1 → τ̌∗1 Ľ2 is injective. Since Ľ1 and
τ̌∗1 Ľ2 are line bundles, Ľ1 → τ̌∗1 Ľ2 is an isomorphism. �

If we combine Theorem 5.3 with the surgery-extension correspondence theorem
(Theorem 3.4), we obtain

Corollary 5.4. Let L1 = Lr1,d1 [c1] and L2 = Lr2,d2 [c2]. If K,K ′ ⊂ L1 ∩ L2 are
sets of intersection points such that the Lagrangian surgeries LK = L2]KL1 and
LK′ = L2]K′L1 have connected domain and satisfy the gcd assumption gcd(r1 +
r2, d1 + d2) = 1, then LK and LK′ are (S1×S1 T 2, πT 2)-lifted Hamiltonian isotopic
to each other, and hence have isomorphic immersed Lagrangian Floer cohomologies.

We give an example to illustrate Corollary 5.4.

Example 5.5. Let

L1 = L1,0[1/2], L2 = L1,3[0]

be Lagrangian straight lines in the standard symplectic torus T 2. Then L1 intersects
L2 at three points, all of which are of index 1. We equip L1 with the local system

d+ 2πi
1

2
dx

and L2 with the trivial one. Consider the Lagrangian immersions L1,L3, as shown
in Figure 8.

Figure 8. Two non-Hamiltonian equivalent but lifted Hamilton-
ian equivalent Lagrangian immersions in T 2.
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Both L1,L3 have connected domain and satisfy the gcd assumption: gcd(1+1, 0+
3) = 1 as in Theorem 3.4 If we equip their domain with the trivial local system,
Theorem 3.4 can be applied to conclude that both Ľ1 and Ľ3 fit into some exact
sequences:

0→ Ľ2 → Ľ1 → Ľ1, 12
→ 0,

0→ Ľ2 → Ľ3 → Ľ1, 12
→ 0.

By Atiyah’s classification of indecomposable bundles on elliptic curves [6], we know
that Ľ1

∼= Ľ3. Hence by Theorem 5.3, L1 and L3 are (S1×S1 T 2, πT 2)-lifted Hamil-
tonian isotopic to each other.

We can also compute the Floer cohomology of L1 and L3 directly. Since L3 is
embedded and bounds no holomorphic disks, we have

HF (L3,L3) ∼= H(S1; Λnov).

For L1, let ξ1 : S1 → T 2 be the immersion map. The Floer complex is given by

H(S1; Λnov)⊕ Λnov{p−, p+, q−, q+},

where H(S1; Λnov) is the Λnov-valued cohomology of S1 and p−, p+, q−, q+ are
points on S1 such that ξ1(p−) = ξ1(p+) and ξ1(q−) = ξ1(q+) are self-intersection
points of L1 (see [4, Corollary 11.4]). Points with a positive (resp. negative) sign
are graded to have degree 0 (resp. 1). There is one holomorphic disk from p+ to
q− and one from q+ to p− (See Figure 9).

Figure 9. The holomorphic disk from p+ (resp. q−) to q+ (resp. p−).

Hence the Floer cohomology of L1 is given by HF (L1,L1) ∼= H(S1; Λnov), which
is canonically isomorphic to HF (L3,L3), as expected by Theorem 4.16. One can
also use Hamiltonian perturbations to obtain the same result.
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MR 1403918

32. J. A. Lees, On the classification of Lagrange immersions, Duke Math. J. 43 (1976), no. 2,
217–224. MR 0410764

33. N. C. Leung, Mirror symmetry without corrections, Comm. Anal. Geom. 13 (2005), no. 2,

287–331. MR 2154821
34. N. C. Leung, S.-T. Yau, and E. Zaslow, From special Lagrangian to Hermitian-Yang-Mills via

Fourier-Mukai transform, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1319–1341. MR 1894858

35. B. Russo and M. Teixidor i Bigas, On a conjecture of Lange, J. Algebraic Geom. 8 (1999),
no. 3, 483–496. MR 1689352

36. A. Strominger, S.-T. Yau, and E. Zaslow, Mirror symmetry is T -duality, Nuclear Phys. B 479
(1996), no. 1-2, 243–259. MR 1429831

37. R. P. Thomas, Moment maps, monodromy and mirror manifolds, Symplectic geometry

and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, pp. 467–498.
MR 1882337

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong

Kong

E-mail address: kwchan@math.cuhk.edu.hk

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong

Kong

Current address: Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang

37673, Republic of Korea
E-mail address: yhsuen@ibs.re.kr


	1. Introduction
	Acknowledgment
	2. Semi-flat mirror symmetry
	2.1. SYZ mirror construction
	2.2. The SYZ transform of branes

	3. Surgery-extension correspondence for T2
	4. Invariance of immersed Floer cohomology
	4.1. Maslov index and the immersed Floer cohomology
	4.2. Three types of equivalences
	4.3. The invariance theorem

	5. Mirror of isomorphism between holomorphic vector bundles
	References

