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Abstract. Let X be a compact complex manifold and E be a holomorphic

vector bundle on X. Given a deformation (X , E) of the pair (X,E) over a

small polydisk B centered at the origin, we study the jumping phenomenon
of the cohomology groups dimC Hq(Xt, Et) near t = 0. Generalizing previous

results of X. Ye [8, 9] (for the tangent bundle E = TXt and exterior powers

of the cotangent bundle E = Ωp
Xt

), we show that there are precisely two

cohomological obstructions to the stability of dimC Hq(Xt, Et), which can be

expressed explicitly in terms of the Maurer-Cartan element associated to the

deformation (X , E). As an application, we study the jumping phenomenon of
the dimension of the cohomology group H1(Xt,End(TXt )), which is related to

a question raised by physicists [5].
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1. Introduction

Let X be a compact complex manifold and π : X → B be a small deformation of
X = π−1(0) over a small polydisk B centered at the origin in some complex vector
space. Suppose that E is a coherent sheaf on X which is flat over B. Then (X , E)
is a deformation of the pair (X, E|X).

It is known by Grauert’s direct image theorem that the dimension dimCH
q(Xt, Et)

is an upper semi-continuous function in t ∈ B. Moreover, we have the following
characterization for when the dimension dimCH

q(Xt, Et) is locally constant, also
due to Grauert.

Theorem 1.1 (Grauert [2]). Let π : X → B be a flat proper holomorphic map
between complex analytic spaces X , B with B being reduced and connected. Suppose
that E is a coherent sheaf on X that is flat over B. Let k(t) := OB,t/mt be the
residue field at t ∈ B and Et be the pullback of E to Xt. Then the following are
equivalent:
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(a) The function

t 7→ dimCH
q(Xt, Et)

is locally constant in t ∈ B.
(b) The sheaf Rqπ∗E is locally free and the natural map

Rqπ∗E ⊗ k(t)→ Hq(Xt, Et)

is an isomorphism.

However, condition (b) in the theorem above is not easy to check in general even
when E is locally free. In [8, 9], X. Ye studied the jumping phenomenon of the
dimensions dimCH

q(X, •) under small deformations of X, where • = ΩpX , TX . He

found two explicit obstructions Oqn,n−1, Oq−1n,n−1 and proved that the dimension of

Hq(X, •) does not jump if and only if Oqn,n−1 ≡ 0 and Oq−1m,m−1 ≡ 0 for all n,m ≥ 1.
In this paper, we generalize Ye’s results to a much more general setting, namely,

when X is a compact complex manifold and E is an arbitrary holomorphic vector
bundle on X. Let (X , E) be a small deformation of (X,E) over a polydisk B
centered at the origin in some finite dimensional complex vector space. We assume
that E is flat over B via the proper holomorphic submersion π : X → B. Let Xt :=
π−1(t) and Et := E|Xt

. We are interested in characterizing when the dimension
dimCH

q(Xt, Et) stays constant near t = 0.
Following [8, 9], we formulate the jumping phenomenon of dimCH

q(Xt, Et) as an
extension problem, namely, whether we can extend a nonzero element in Hq(X,E)
to one in a nearby fiber Hq(Xt, Et). In general, such extensions may not exist and it
suffices to find obstructions to this extension problem. We will see that Ye’s explicit
formulae for the obstructions can be generalized to our general setting. On the other
hand, while Ye applied a version of Grauert’s direct image theorem, which states
that Rqπ∗E is a quotient of two locally free sheaves of finite ranks over B, thereby
allowing him to apply an algebraic approach, here we adapt a differential-geometric
approach, following [4, 1].

We will formulate the problem directly as extending E-valued differential forms
over B, which means that, in contrast to [8, 9], we are going to work with sheaves
of infinite rank. A key step is to obtain an explicit description of Rqπ∗E , using an
acyclic resolution (D•, D̄•) of the sheaf E constructed from the differential operators
D̄• studied in [4, 1] (see Section 3). The operators D̄• capture the holomorphic
structures of the deformed pairs {(Xt, Et)}t∈B (see [1] or Section 2 in this paper). It
turns out that essentially the same strategy as in Ye’s proofs works. An advantage of
our geometric approach is that the computation of the obstructions becomes much
neater and more transparent, as compared to the Čech calculations in [8, 9]. Our
main result is as follows (see Section 4, in particular, Theorem 4.11 and Equations
(1) & (2) for the details):

Theorem 1.2. Let {(A(t), ϕ(t))}t∈B be the family of Maurer-Cartan elements as-
sociated to the small deformation (X , E) of (X,E). We define the n-th order ob-
struction maps Oin,n−1 : Hi((π∗D•)0 ⊗ OB,0/mn

0 ) → Hi+1((π∗D•)0 ⊗ OB,0/mn
0 ),

where i = q, q − 1, by

Oin,n−1 ([αn−1]) =

tn−1 n−1∑
j=0

(ϕn−jy∇+An−j)αjn−1

 .
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Then the function t 7→ dimCH
q(Xt, Et) is locally constant if and only if Oqm,m−1 ≡ 0

and Oq−1n,n−1 ≡ 0 for all m,n ≥ 1.

We apply this theorem to study the jumping phenomenon of the dimension
dimCH

1(Xt,End(TXt
)), which is related to a question raised by physicists [5]. It is

conjectured that dimCH
1(Xt,End(TXt

)) does not jump along any deformation of
a Calabi-Yau manifold X. What we obtain is the following weaker statement (see
Section 5):

Theorem 1.3. (=Theorem 5.3) Suppose that X is a Calabi-Yau manifold such that
the deformation of the pair (X,TX) is unobstructed, then dimCH

1(Xt,End(TXt))
does not jump at t = 0 for any small deformation of X .
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2. Deformations of Pairs

In this section, we briefly review the deformation theory of a pair (X,E), where
X is a compact complex manifold and E is a holomorphic vector bundle on X,
following the exposition in [1] (cf. [4]), and recall several useful facts.

Definition 2.1. Let B be a small polydisk in some finite dimensional complex
vector space containing the origin. A deformation of (X,E) over B consists of a
surjective proper holomorphic submersion π : X → B from a complex manifold X
to B, together with a holomorphic vector bundle E on X , such that π−1(0) = X
and E|π−1(0) = E.

Given such a deformation of (X,E), we put Xt := π−1(t) and Et := E|Xt . Since
B is contractible, a theorem of Ehresmann implies that we can choose a diffeomor-
phism F : X → X ×B and a bundle isomorphism F ′ : E → E ×B covering F such
that F, F ′ are holomorphic with respect to t. Notice that there are two complex
structures on X × B: one comes from the push-forward of the complex structure
on X and the other comes from the product structure on X × B; we denote these
complex structures by J and J0, respectively.

Let ϕ(t) ∈ Ω0,1(TX) be the family of Maurer-Cartan elements which corresponds
to the family X → B. In [1], we considered a holomorphic family of differential
operators D̄q

t : Ω0,q(E)→ Ω0,q+1(E) defined locally by

D̄q
t

∑
j

αj ⊗ ej(t)

 :=
∑
j

(∂̄ + ϕ(t)y∂)αj ⊗ ej(t),

where {ej(t)} is the push-forward of a local holomorphic frame on Et by F ′. By
choosing a Hermitian metric on E, one can express the operator D̄t, in terms of
the associated Chern connection ∇, as

D̄q
t = ∂̄E + ϕ(t)y∇+A(t),
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for some A(t) ∈ Ω0,1(End(E)).
Then (one direction of) Theorem 1.2 in [1] says that the family of elements

(A(t), ϕ(t)) ∈ Ω0,1(A(E)) satisfies the Maurer-Cartan equation

∂̄A(E)(A(t), ϕ(t)) +
1

2
[(A(t), ϕ(t)), (A(t), ϕ(t))] = 0

for t ∈ B; here A(E) is the Atiyah extension of E. This in turn is equivalent to the
fact that the family of operators {D̄q

t } satisfies the integrability condition:

D̄q
t D̄

q−1
t = 0.

Another important feature of the operator D̄t, which is going to be useful later,
is that its cohomology computes precisely the Dolbeault cohomology of (Xt, Et):

Proposition 2.2 ([1], Proposition 3.13). For each fixed t ∈ B, we have

Hq(Xt, Et) ∼= Hq((π∗D•)t ⊗ k(t)) ∼= Hq
(
Ω0,•(E), D̄t

)
,

for any q ≥ 0.

3. An acyclic resolution for E

From this point on, for the purpose of simplifying computations and formulae,
we will assume that the base B of the deformation is of complex dimension one.
We also abuse notations by writing X for the complex manifold (X × B,J ) and
E for the vector bundle E × B equipped with the holomorphic structure induced
from E via pushing forward by F ′ : E → E ×B.

In this section, we will construct an acyclic resolution of the sheaf E in order to
get an explicit description of the direct image sheaf Rqπ∗E .

To begin with, we define an operator ∂̄E,B : Ω0,q
J0

(E)→ Ω0,q+1
J0

(E) by

∂̄E,B

(∑
j

sjej(t)

)
:=
∑
j

∂̄Bsj ⊗ ej(t).

Here Ω0,•
J0

is the space of smooth (0, •)-forms on X × B with respect to the prod-
uct complex structure J0. If we choose a different frame fk(t), then ej(t) =∑
k g

k
j (t)fk(t) for some local smooth functions gkj on X ×B which are holomorphic

in t. Hence ∂̄E,B is well-defined.
For each q ≥ 0, we define a sheaf of OX -modules Dq, which plays a key role

throughout this paper: Let πX : X → X be the projection onto X (which is not

necessarily holomorphic). The sheaf U 7→ Ω0,k
J0

(U , E) has a typical direct summand
given by

D̃q,p := π∗Ω0,p
B ⊗ π

∗
XΩ0,q ⊗ E , p+ q = k,

which carries an OX -module structure via multiplication by J -holomorphic func-

tions. The operator ∂̄E,B acts on
⊕

p≥0 D̃q,p, so we obtain a complex (D̃q,•, ∂̄•E,B)
for each q. We then define the sheaf of OX -modules Dq by

Dq : U 7→ {s ∈ Γsmooth(U , D̃q,0) | ∂̄E,Bs = 0}.

Clearly, D• ⊂ D̃•,0 as OX -submodules. Since D̄t varies holomorphically in the
variable t, it induces a sheaf map D̄q : Dq → Dq+1 for each q ≥ 0. Moreover, since
the kernel of D̄t : Ω0(E) → Ω0,1(E) is precisely the space of holomorphic sections



ON THE JUMPING PHENOMENON OF dimCH
q(Xt, Et) 5

of Et, the sheaf E , as a sheaf of OX -modules, can be identified with the following
sheaf of OX -modules:

U 7→ {s ∈ Γsmooth(U , E) | D̄s = ∂̄E,Bs = 0}.

The push-forwards of D̃q,p and Dq by π : X → B carry natural OB-module struc-
tures via multiplication.

Lemma 3.1. For each p, q ≥ 0, the sheaf D̃q,p is fine and the complex (π∗D̃q,•, π∗∂̄•E,B)
has no higher cohomology sheaves, i.e.,

Hp(π∗D̃q,•) = 0

for all p ≥ 1.

Proof. Fineness is clear because we can apply a partition of unity to conclude that

D̃q,p has no higher direct images.

To prove that (π∗D̃q,•, π∗∂̄•E,B) has no higher cohomology, we recall thatHp(π∗D̃q,•)
is the sheafification of

W 7→ Hp(Γ(π−1(W ), D̃q,•)).
It suffices to prove that Hp(Γ(π−1(W ), D̃q,•)) = 0 for any polydisk W ⊂ B and

all p ≥ 1. Let α ∈ Γ(π−1(W ), D̃q,p) and {Ui} be a locally finite open covering of
X ⊂ π−1(W ) by coordinates charts. Let αi be the restriction of α on Ui × W .
Write

αi =
∑
I,J

αIJ,i(z, z̄, t, t̄)dt̄
J ⊗ dz̄I =:

∑
I

αI,i ⊗ dz̄I .

Then ∂̄E,Bα = 0 simply means that, for each I,

0 = ∂̄E,B

(∑
J

αIJ,idt̄
J

)
= ∂̄BαI,i.

Hence, for fixed z, we can apply the Dolbeault lemma on W to conclude that

αI,i = ∂̄BβI,i,

for some βI,i ∈ Ω0,p−1
B (W ). Since αI,i varies smoothly in z and z̄, we see from the

proof of the Dolbeault-Grothendieck lemma that βI,i can be chosen to be smooth
in z as well. Let {ψi} be a partition of unity on X subordinate to the covering
{Ui}. Define

β :=
∑
I,i

ψiβI,i ⊗ dz̄I .

Then β ∈ Γ(π−1(W ), D̃q,p−1) and

∂̄E,Bβ =
∑
I,i

ψi(∂̄BβI,j)⊗ dz̄I =
∑
I,i

ψiαI,i ⊗ dz̄I =

(∑
i

ψi

)
α = α.

We have the first equality simply because {ψi} are all independent of t and t̄,
and the second last equality follows from the fact that α is a global section on
π−1(W ). �

Lemma 3.2. For each q ≥ 0, the sheaf Dq is acyclic with respect to the left-exact
functor π∗.
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Proof. Lemma 3.1 shows that (D̃q,•, ∂̄•E,B) is a fine resolution ofDq and soRqπ∗Dq ∼=
Hp(π∗D̃q,•) = 0 for all q ≥ 1. �

Proposition 3.3. The complex of sheaves (D•, D̄•) is an acyclic resolution of E
with respect to the left-exact functor π∗. In particular, we have

Rqπ∗E ∼= Hq(π∗D•)
as OB-modules.

Proof. By Lemma 3.2, Rpπ∗Dq = 0 for all p ≥ 1. It remains to prove that it defines
a resolution of E . We need to show that for any point (x, t) ∈ X = X × B, the
sequence of stalks

0→ E(x,t) → D0
(x,t) → D

1
(x,t) → · · ·

is exact. The exactness of

0→ E(x,t) → D0
(x,t) → D

1
(x,t)

follows from the fact that D̄0 and ∂̄E share the same kernel. For the remaining
exactness, we will focus on the case t = 0; the same argument works for general
t ∈ B.

Recall that D̄t is locally defined by

D̄t

∑
j

αj ⊗ ej(t)

 :=
∑
j

(∂̄ + ϕ(t)y∂)αj ⊗ ej(t),

so it suffices to prove the exactness for the case E = OX .
We would like to first work over C[[t]] instead of C{t} (where the latter is the

ring of convergent power series). Let U ⊂ X be a polydisk, and denote

Ω0,•(U){t} := Ω0,•(U)⊗C C{t},
Ω0,•(U)[[t]] := Ω0,•(U)⊗C C[[t]] = Ω0,•(U){t} ⊗C{t} C[[t]].

The Maurer-Cartan element ϕ(t) is gauge equivalent to 0 on U . Hence

∂̄ + ϕ(t)y∂ = ev(t)∂̄e−v(t)

for some v(t) ∈ Ω0(TU )[[t]], where ev(t) acts on Ω0,q(U)[[t]] by

ev(t)α(t) =

∞∑
n=0

(v(t)y∂)n

n!
α(t).

We can then apply the Dolbeault-Grothendieck lemma with analytic parameter
(the t-variable) to conclude that (Ω0,•(U)[[t]], D̄•t ) is an exact complex.

Now, as C[[t]] is a flat-C{t} module (because C[[t]] is torsion free and C{t} is a
PID), we have

Hq(Ω0,•(U)[[t]]) = Hq(Ω0,•(U){t} ⊗ C[[t]]) ∼= Hq(Ω0,•(U){t})⊗ C[[t]].

But we have shown that Hq(Ω0,•(U)[[t]]) = 0. Therefore, Hq(Ω0,•(U){t})⊗C[[t]] =
0. If we can show that Hq(Ω0,•(U){t}) is torsion free, we see that Hq(Ω0,•(U){t})
vanishes. Assuming this, we conclude that every D̄t-closed (0, q)-form valued power
series on U is locally exact.

Now, for any D̄q
(x,0)-closed element α ∈ Dq(x,0), we can represent it by a D̄t-

closed element α(t) ∈ Ω0,q(U){t}, for some polydisk U ⊂ X. The vanishing of
Hq(Ω0,•(U){t}) shows that α(t) = D̄tβ(t) for some β(t) ∈ Ω0,q−1(U){t}. This β(t)
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defines an element β ∈ Dq−1(x,0) such that D̄q−1β = α. This proves the exactness of

the complex (D•, D̄•).
To complete the proof of the proposition, we need to prove that Hq(Ω0,•(U){t})

is a torsion free C{t}-module for q > 1. In other words, we need to show that if
[α(t)] ∈ Hq(Ω0,•(U){t}) is a nonzero element, then f(t) · [α(t)] is nonzero for all
f(t) ∈ C{t} − {0}. Since f(t) is invertible if f(0) 6= 0, we may assume f(t) ∈ (tN )
for some N ≥ 1. We may assume N is chosen such that f(t) = tNg(t) with g(0) 6= 0.
Again, we can invert g(t), so we can further assume f(t) = tN . Then the vanishing
of f(t) · [α(t)] = [f(t) · α(t)] means

tNα(t) = D̄tβ(t) = (∂̄ + ϕ(t)y∂)β(t),

for some β(t) ∈ Ω0,q−1(U){t}. Since both α(t) and β(t) are holomorphic in t, the
equation shows that β(t) is in fact D̄t-closed up to order N − 1.

We first prove the following

Lemma 3.4. For any ∂̄-closed β ∈ Ω0,q−1(U), q > 1, there exists β(t) ∈ Ω0,q−1(U){t}
such that

β(0) = β and D̄tβ(t) = 0.

Proof of Lemma 3.4. Since β is ∂̄-closed on the polydisk U , it must be ∂̄-exact.
Write β = ∂̄α for some α ∈ Ω0,q−2(U). Define

β(t) := β + ϕ(t)y∂α ∈ Ω0,q−1(U){t}.
Then β(0) = β. Since D̄2

t = 0, we have

D̄tβ(t) = ∂̄ϕ(t)y∂α+ ϕ(t)y∂̄∂α+ ϕ(t)y∂β +
1

2
[ϕ(t), ϕ(t)]y∂α

=

(
∂̄α+

1

2
[ϕ(t), ϕ(t)]

)
y∂α+ (ϕ(t)y∂∂̄α− ϕ(t)y∂∂̄α)

= 0,

as desired. �

With this lemma in hand, we see that α(t) is D̄t-exact and this proves that
Hq(Ω0,•(U){t}) is torsion free.

Since β0 is ∂̄-closed, we can choose β1(t) ∈ Ω0,q−1(U){t} such that

β1(0) = β0 and D̄tβ1(t) = 0.

Then we have

tN−1α(t) = D̄t

(
β(t)− β1(t)

t

)
= D̄tγ1(t).

If N = 1, we are done. Otherwise, by evaluating at t = 0, we see that γ1(0) is
∂̄-closed. Hence we can find β2(t) such that

β2(0) = γ1(0) and D̄tβ2(t) = 0.

Hence

tN−2α(t) = D̄t

(
γ1(t)− β2(t)

t

)
.

Repeating this process, we will arrive at the conclusion that

α(t) = D̄tγN (t)

for some γN (t) ∈ Ω0,q−1(U){t}. This completes the proof of the proposition. �
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4. Obstructions

In this section, we will find out explicitly the obstruction maps for extending a
given element of Hq(X,E). In [8, 9], X. Ye used Grauert’s direct image theorem
to obtain a complex of locally free OB-modules of finite ranks to compute the
obstruction maps; here we will instead use the infinite-dimensional complex of OB-
modules (π∗D•, D̄•). We will see that more or less the same strategy of proofs in
[8, 9] is going to work in our infinite-dimensional setting as well. We will give most
of the details of the proofs in order to make this paper more self-contained.

Recall that Proposition 3.3 gives an isomorphism of OB-modules:

Rqπ∗E ∼= Hq(π∗D•).

Together with Proposition 2.2, we see that it is equivalent to work with the sheaf
Hq(π∗D•) and the cohomology group Hq((π∗D•)0 ⊗ k(0)). Tensoring the stalk
(π∗D•)0 with OB,0/mn+1

0 over OB,0, we obtain a complex

((π∗D•)0 ⊗OB,0/mn+1
0 , D̄•n),

where D̄•n is naturally induced from D̄•.
Given α ∈ ker(∂̄qE), and supposing that we have a local extension αn−1 ∈

Γ(U, π∗Dq) of α such that

jn−10 (D̄qαn−1)(t) = 0,

we define the obstruction map

Oqn,n−1 : Hq((π∗D•)0 ⊗OB,0/mn
0 )→ Hq+1((π∗D•)0 ⊗OB,0/mn

0 )

by

Oqn,n−1[jn−10 (αn−1)(t)] := [tn−1 · (jn0 (D̄qαn−1)(t)/tn)](1)

Remark 4.1. The (n−1)-st jet can be viewed as an element in (π∗Dq)0⊗OB,0/mn
0 .

The map Oqn,n−1 factors through a map

Oqn : Hq((π∗D•)0 ⊗OB,0/mn
0 )→ Hq+1((π∗D•)0 ⊗OB,0/m0),

given by

Oqn[jn−10 (αn−1)(t)] := [jq0(D̄qαn−1)(t)/tn].

This is well-defined because the cohomology class of jq0(dqαn−1)(t)/tn only depends
on the cohomology class of the (n− 1)-st jet jn−10 (αn−1)(t).

For later use, we also define

Oqn,i[j
n−1
0 (αn−1)(t)] := [ti · (jq0(D̄qαn−1)(t)/tn)],

for i ≥ 0 and n ≥ 1

The following proposition characterizes when an extension exists up to order
n ≥ 1.

Proposition 4.2. For a fixed n ≥ 1, the following are equivalent:

(1) For any local section αn−1 around t = 0 such that jn−10 (D̄qαn−1)(t) = 0,
there exists a local section αn around t = 0 such that j00(αn − αn−1) = 0
and jn0 (D̄qαn)(t) = 0.

(2) For any cn−1 ∈ Hq((π∗Dq)0 ⊗OB,0/mn
0 ), there exists cn ∈ Hq((π∗Dq)0 ⊗

OB,0/mn+1
0 ) such that cn|t=0 = cn−1|t=0 ∈ Hq((π∗Dq)0 ⊗ k(0)).
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(3) For any local section αn−1 around t = 0 such that jn−10 (D̄qαn−1)(t) = 0,
Oqn,n−1[jn−10 (αn−1)(t)] = 0.

Proof. We shall prove that (1)⇔ (2) and (1)⇔ (3).
For (1) ⇒ (2) : Let cn−1 ∈ Hq((π∗D•)0 ⊗ OB,0/mn

0 ) and αn−1 be a local sec-

tion around t = 0 such that jn−10 (αn−1)(t) ∈ ker(D̄q
n−1) represents the class cn−1.

Then jn−10 (D̄qαn−1)(t) = 0. By assumption, we can extend αn−1 to a local sec-
tion αn around t = 0 such that j00(αn − αn−1)(t) = 0 and jn0 (D̄qαn)(t) = 0.
Then D̄q

n(jn0 (αn)(t)) = 0 ∈ (π∗Dq+1)0 ⊗ OB,0/mn+1
0 . Set cn := [jn0 (αn)(t)] ∈

Hq((π∗D•)0⊗OB,0/mn+1
0 ). Since j00(αn−αn−1) = 0, we have cn|t=0 = [j00(αn−1)(t)] =

cn−1|t=0 = 0.
For (2) ⇒ (1) : Let αn−1 be such that jn−10 (D̄qαn−1)(t) = 0. Extend cn−1 :=

[jn−10 (αn−1)(t)] to a class cn ∈ Hq((π∗D•)0⊗OB,0/mn+1
0 ). Let αn be local section

around t = 0 such that jn0 (αn)(t) represents the class cn. Then jn0 (D̄qαn)(t) = 0.
Since cn|t=0 = cn−1|t=0, we have

j00(αn − αn−1) = D̄q−1
0 γ,

for some γ ∈ (π∗Dq−1)0 ⊗ k(0). Choose any representative γ′ of γ and define

α′n := αn − D̄q−1γ′.

Then jn0 (D̄qα′n)(t) = jn0 (D̄qαn)(t) = 0 and j00(α′n − αn−1) = 0.
For (1)⇒ (3) : Let γ := αn−1 − αn. Then

D̄q
nγ = jn0 (D̄q(αn−1 − αn))(t) = tn · (jn0 (D̄qαn−1)(t)/tn),

since jn−10 (D̄qαn−1)(t) = jn0 (dqαn)(t) = 0. By assumption, j00(γ)(t) = 0, so γ = tβ
for some local section β around t = 0. Hence

D̄q
n−1j

n−1
0 (β)(t) = tn−1 · (jn0 (D̄qαn−1)(t)/tn),

which means that Oqn,n−1[jn−10 (αn−1)(t)] = 0.

For (3) ⇒ (1) : The vanishing of Oqn,n−1[jn−10 (αn−1)(t)] gives an element β ∈
(π∗Dq)0 ⊗OB,0/mn

0 such that

tn−1 · (jn0 (D̄qαn−1)(t)/tn) = D̄q
nβ.

Let β′ be a local section around t = 0 representing the germ β and set αn :=
αn−1 − tβ′. Then

jn0 (D̄qαn)(t) = jn0 (D̄qαn−1)(t)− t · jn−10 (D̄qβ′)(t)

= tn · (jn0 (D̄qαn−1)(t)/tn)− t · D̄q
nβ = 0.

Hence αn defines an n-th order extension of α. �

Therefore, if Oqn,n−1 ≡ 0 for all n ≥ 1, then by (1) above we obtain a formal

element α(t) such that D̄tα(t) = 0. In Appendix A, we show that after a gauge
fixing, α(t) is analytic in a neighborhood around 0 ∈ B.

Remark 4.3. The radius of convergence of each extension α(t) may be different
as α = α(0) varies. However, since Hq(X,E) is finite dimensional, we can simply
choose a basis, for instance, one consisting of harmonic forms with respect to a
fixed hermitian metric. Then we obtain a minimum radius of convergence, uniform
in all [α] ∈ Hq(X,E).
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Next we shall demonstrate that there is another obstruction for an extension to
be nonzero.

Proposition 4.4. A non-exact element β ∈ ker(∂̄qE) admits a local extension β(t) ∈
Γ(U, π∗Dq) such that β(t) is exact for t 6= 0 if and only if there exist n ≥ 1 and
[jn−10 (αn−1)(t)] ∈ Hq−1((π∗D•)0 ⊗OB,0/mn

0 ) such that

Oq−1n [jn−10 (αn−1)(t)] = [β].

Proof. Suppose that Oq−1n [jn−10 (αn−1)(t)] = [β]. Then

β = jn0 (D̄q−1αn−1)(t)/tn + ∂̄q−1E γ

for some γ ∈ Ω0,q−1(E). Define β(t) by

β(t) := D̄q−1(αn−1(t)/tn) + D̄q−1γ(t), t 6= 0,

where γ(t) is any extension of γ. Clearly β(t) can be extended through the origin
by setting β(0) = β. Then β(t) is a D̄q−1-exact class and equals β at t = 0. Hence
β(t) serves as an extension of β which is D̄q−1-exact for t 6= 0.

Conversely, if β(t) is an extension of β such that

β(t) = D̄q−1γ(t)

for t 6= 0. Then γ(t) can be chosen to be meromorphic in t with pole order n ≥ 1
at t = 0. Let αn−1(t) := tnγ(t). Then αn−1(t) is holomorphic in t and

Oq−1n [jn−10 (αn−1)(t)] = [jn0 (D̄q−1(tnγ(t))/tn] = [jn0 (tnβ(t))/tn] = [β].

This completes the proof. �

Proposition 4.5. Let [jn−10 (αn−1)(t)] ∈ Hq−1((π∗D•)0 ⊗ OB,0/mn
0 ) such that

Oq−1n [jn−10 (αn−1)(t)] 6= 0. Then there exist n′ ≤ n and [jn
′−1

0 (αn′−1)(t)] ∈ Hq−1((π∗D•)0⊗
OB,0/mn′

0 ) such that

Oq−1n,n′−1[jn−10 (αn−1)(t)] = Oq−1n′,n′−1[jn
′−1

0 (αn′−1)(t)] 6= 0.

Proof. If Oq−1n,n−1[jn−10 (αn−1)(t)] 6= 0, we can simply take n′ = n and αn′−1 = αn−1.

Otherwise, there exists α′1 such that

D̄q−1
n−1α

′
1 = Oq−1n,n−1[jn−10 (αn−1)(t)].

Then we have

Oq−1n−1,n−2[α′1] = Oq−1n,n−2[jn−10 (αn−1)(t)].

Since Oq−1n [jn−10 (αn−1)(t)] 6= 0, we finally arrive at some n′ such that

Oq−1n,n′−1[jn−10 (αn−1)(t)] = Oq−1n′,n′−1[jn
′−1

0 (αn′−1)(t)] 6= 0.

�

These two propositions together prove the following

Corollary 4.6. Every local extension of every non-exact element β ∈ ker(∂̄qE) is

non-exact if and only if Oq−1n,n−1 ≡ 0 for all n ≥ 1.
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Proof. For a fixed non-exact β ∈ ker(∂̄qE), if any extension of β is non-exact, then

[β] /∈ Im(Oq−1n,n−1) for all n ≥ 1. Hence Oq−1n,n−1 ≡ 0.
Conversely, if there is an extension of β such that it is exact for t 6= 0, then there

exist n ≥ 1 and [jn−10 (αn−1)(t)] ∈ Hq−1((π∗D•)0 ⊗OB,0/mn
0 ) such that

Oq−1n [jn−10 (αn−1)(t)] = [β] 6= 0.

But we can also choose n′ ≤ n and [jn
′−1

0 (αn′−1)(t)] ∈ Hq−1((π∗D•)0⊗OB,0/mn′

0 )
such that

Oq−1n,n′−1[jn−10 (αn−1)(t)] = Oq−1n′,n′−1[jn
′−1

0 (αn′−1)(t)] 6= 0.

This proves the corollary. �

Lemma 4.7. For each q ≥ 0, π∗Dq is a flat OB-module.

Proof. This follows from the fact that (π∗Dq)t is torsion free and OB,t ∼= C{x− t}
is a PID for every t ∈ B. �

We will need the following fact from homological algebra, whose proof can be
found, e.g. in [3].

Proposition 4.8. Let A be a Noetherian ring and C• be a finite cochain complex
of flat A-modules whose cohomology Hi(C•) is finitely generated for all i. Then
there exists a cochain complex of finitely generated flat A-modules K• and a cochain
map C• → K•, which is a quasi-isomorphism. Moreover, for any A-module M ,
the natural map C• ⊗M → K• ⊗M is a quasi-isomorphism. Furthermore, if the
dimension

dimk(p)H
q(K• ⊗ k(p))

is locally constant in p ∈ Spec(A), then for i = q, q − 1, the δ-functors T i(M) :=
Hi(K• ⊗M) commute with base change.

We apply this proposition to the case A = OB,0, C• = (π∗D•)0 to prove the
following:

Proposition 4.9. If dimk(t)H
q((π∗D•)t ⊗ k(t)) is locally constant around 0 ∈ B,

then the canonical map

Hq((π∗D•)0)⊗ k(0)→ Hq((π∗D•)0 ⊗ k(0))

is an isomorphism.

Proof. Since (π∗D•)0 is a flat OB,0-module, using Proposition 4.8, we obtain a
complex of finitely generated flat OB,0-modules K• such that

H•((π∗D•)0 ⊗M) ∼= H•(K• ⊗M)

for any OB,0-module M . We claim that the dimension

dimk(p)H
q(K• ⊗ k(p))

is locally constant in p ∈ Spec(OB,0).
First of all, since dimk(t)H

q((π∗D•)t⊗ k(t)) is locally constant, by Theorem 1.1
and Proposition 3.3, the sheaf Hq(π∗D•) ∼= Rqπ∗E is a locally free OB-module.
Hence

Hq((π∗D•)0)⊗ k(0) ∼= (Rqπ∗E)0 ⊗ k(0) ∼= Hq(X,E) ∼= Hq((π∗D•)0 ⊗ k(0)).
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In particular

dimk(0)H
q(K• ⊗ k(0)) = dimk(0)H

q((π∗D•)0 ⊗ k(0))

= dimk(0)H
q((π∗D•)0)⊗ k(0)

= dimk(0)H
q(K•)⊗ k(0).

Note that Spec(OB,0) = Spec(C{x}) = {(0), (x)}. Let Q := (OB,0)(0) be the
localization of OB,0 at the ideal (0), which is the field of quotients of OB,0. We
obtain

Hq(K• ⊗ k((0))) = Hq(K• ⊗Q) ∼= Hq(K•)⊗Q,
since localization is flat. On the other hand, as (OB,0)(x) ∼= OB,0, we have

Hq(K• ⊗ k((x))) ∼= Hq(K• ⊗OB,0/m0) = Hq(K• ⊗ k(0)),

and so

dimk((x))H
q(K• ⊗ k((x))) = dimk(0)H

q(K• ⊗ k(0)) = dimk(0)H
q(K•)⊗ k(0).

As Hq(K•) ∼= Hq((π∗D•)0) is a free OB,0-module and OB,0 is a local integral
domain, we have

dimQH
q(K•)⊗Q = dimk(0)H

q(K•)⊗ k(0).

In summary, we conclude that

dimQH
q(K• ⊗Q) = dimk((x))H

q(K• ⊗ k((x))),

which means that dimk(p)H
q(K• ⊗ k(p)) is constant in p ∈ Spec(OB,0). Hence T q

commutes with base change. The required isomorphism now follows from taking
M = k(0) in Proposition 4.8. �

Remark 4.10. By replacing 0 ∈ B by nearby t ∈ B, we note that the isomorphism
holds in a neighborhood of 0.

We are now ready to prove our main result.

Theorem 4.11. dimk(t)H
q(Xt, Et) is locally constant if and only if Oqm,m−1 ≡ 0

and Oq−1n,n−1 ≡ 0 for all m,n ≥ 1.

Proof. If dimk(t)H
q(Xt, Et) = dimk(t)H

q((π∗D•)t ⊗ k(t)) is locally constant, then
Proposition 4.9 shows that the natural map

Hq((π∗D•)0)⊗ k(0)→ Hq((π∗D•)0 ⊗ k(0))

is an isomorphism.
Now, let c ∈ Hq((π∗D•)0 ⊗ k(0)). We can extend it to a nonzero local holo-

morphic section of Hq(π∗D•) since Hq(π∗D•) is locally free. Denote this ex-
tension by c̃. Consider the germ of this section c̃0 ∈ Hq((π∗D•)0). Choose a
representative α̃0 ∈ (π∗D•)0 in this cohomology class. For each m ≥ 1, α̃0

is mapped to (π∗D•)0 ⊗ OB,0/mm+1
0 via the quotient map pm. Then the class

[pm(α̃0)] ∈ Hq((π∗D•)0 ⊗ OB,0/mm+1
0 ) is an m-th order extension of c. Hence

Oqm,m−1 ≡ 0 by Proposition 4.2. Since m is arbitrary, Oqm,m−1 ≡ 0 for all m ≥ 1.

For the obstruction map Oq−1n,n−1, if Oq−1n,n−1[jn−10 (αn−1)(t)] 6= 0 for some n ≥ 1

and [jn−10 (αn−1)(t)] ∈ Hq((π∗D•)0 ⊗ OB,0/mn
0 ), then we can find some nonzero

[β] ∈ Hq(π∗D•0 ⊗ k(0)) and a local holomorphic extension β̃ of β such that it is
exact only when t 6= 0. But since Hq(π∗D•) is locally free, any extension is locally

nonzero by continuity. Therefore, Oq−1n,n−1 ≡ 0 for all n ≥ 1 by Proposition 4.6.
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Conversely, if both obstruction maps vanish, then for each [α] ∈ Hq((π∗D•)0 ⊗
k(0)), we obtain α(t) ∈ Γ(U, π∗Dq) such that D̄tα(t) = 0 in some neighborhood

U ⊂ B containing 0 and [α(0)] = [α]. Moreover, α(t) is non-exact since Oq−1n,n−1 ≡ 0
for all n ≥ 1. Hence for fixed t ∈ U we obtain an injective linear map

Hq((π∗D•)0 ⊗ k(0))→ Hq((π∗D•)t ⊗ k(t)), [α] 7→ [α(t)].

Therefore,

dimk(0)H
q((π∗D•)0 ⊗ k(0)) ≤ dimk(t)H

q((π∗D•)t ⊗ k(t)).

By upper semi-continuity, dimk(t)H
q((π∗D•)t⊗k(t)) = dimk(t)H

q(Xt, Et) is locally
constant. �

Recall that by choosing a Hermitian metric on E and using the associated Chern
connection, we can write

D̄t = ∂̄ + ϕ(t)y∇+A(t),

where {(A(t), ϕ(t))}t∈B is the family of Maurer-Cartan elements which controls
the deformations of (X,E). Hence the n-th order obstruction maps Oin,n−1 :

Hi((π∗D•)0 ⊗OB,0/mn
0 )→ Hi+1((π∗D•)0 ⊗OB,0/mn

0 ), for i = q, q − 1, defined in
(1) can be rewritten as

(2) Oin,n−1 ([αn−1]) =

tn−1 n−1∑
j=0

(ϕn−jy∇+An−j)αjn−1

 .
as claimed in Theorem 1.2.

Example 4.12. We first consider the case when E = TX , the holomorphic tangent
bundle of X. We deform the pair (X,TX) to (Xt, TXt

), where TXt
is the holomorphic

tangent bundle to Xt (note that TX may have other deformations which are not
isomorphic to the holomorphic tangent bundle on Xt). In this case, the End(TX)-
part of the Maurer-Cartan element (A(t), ϕ(t)) is given by

A(t) = −T (ϕ(t), •)−∇•ϕ(t),

where T : Ω0,•(TX)×Ω0,•(TX)→ Ω0,•(TX) is the graded torsion on TX defined by

T (ϕ,ψ) := ϕy∇ψ − (−1)|ϕ||ψ|ψy∇ϕ− [ϕ,ψ].

So we have

D̄•t = ∂̄•TX
+ [ϕ(t),−].

For αn−1 ∈ Ω0,q(TX)⊗OB,0 such that D̄q
tαn−1 = 0 mod tn−1, we have

tn−1(jn0 (D̄q
tαn−1)/tn) = tn−1

∂̄TX
αnn−1 +

n−1∑
j=0

[ϕn−j , αjn−1]

 .

As a class in Hq+1(Ω0,•(TX)⊗OB,0/mn
0 , D̄

•
n−1), it is equal totn−1 n−1∑

j=0

[ϕn−j , αjn−1]

 .
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Hence the obstruction is given by

Oqn,n−1[jn−10 (αn−1)(t)] =

tn−1 n−1∑
j=0

[ϕn−j , αjn−1]

 .
Example 4.13. For the case E = T ∗X , we have

D̄•t = ∂̄•T∗X + [ϕ(t),−]∗,

where [ϕ(t),−]∗ : Ω0,q(T ∗X)→ Ω0,q+1(T ∗X) is given by

[ϕ(t), η]∗(v) := [ϕ(t), η(v)]− (−1)qη([ϕ(t), v]) = ϕ(t)y∂(η(v))− (−1)qη([ϕ(t), v])

for v ∈ Ω0(TX). Since

ϕ(t)y∂(η(v))− (−1)qη([ϕ(t), v]) = (ϕ(t)y∂η)(v) + vy∂(ϕ(t)yη),

the obstruction is given by

Oqn,n−1[jn−10 (αn−1)(t)] =

tn−1 n−1∑
j=0

(ϕn−jy∂αjn−1 + ∂(ϕn−jyαjn−1))

 .
For E = ∧qT ∗X , we have

D̄t(α1 ∧ · · · ∧ αp) =

p−1∑
j=1

(−1)j−1α1 ∧ · · · ∧ D̄tαj ∧ · · · ∧ αp

= ∂̄(α1 ∧ · · · ∧ αp) +

p∑
j=1

(−1)j−1α1 ∧ · · · ∧ [ϕ(t), αj ]
∗ ∧ · · · ∧ αp,

where αj ∈ Ω0(T ∗X). Then

p−1∑
j=1

(−1)j−1α1 ∧ · · · ∧ (ϕ(t)y∂αj) ∧ · · · ∧ αp +

p−1∑
j=1

(−1)j−1α1 ∧ · · · ∧ ∂(ϕ(t)yαj) ∧ · · · ∧ αp

=ϕ(t)y(∂(α1 ∧ · · · ∧ αp)) + ∂(ϕ(t)y(α1 ∧ · · · ∧ αp)).
Hence the obstruction map is given by

Oqn,n−1[jn−10 (αn−1)(t)] =

tn−1 n−1∑
j=0

(ϕn−jy∂αjn−1 + ∂(ϕn−jyαjn−1))

 .
These two examples recover the obstruction formulae in [8, 9].

5. An application: jumping of dimCH
1(Xt,End(TXt

))

Physicists are interested in knowing whether the dimension of the cohomology
group H1(Xt,End(TXt

)) is locally constant under small deformations X [5]. The
expectation is that dimCH

1(Xt,End(TXt
)) does not jump along any deformation

of a Calabi-Yau manifold X.
In this section, we apply our results to prove a weaker statement, namely, the

constancy of this dimension when the Calabi-Yau manifold X satisfies an extra
unobstructedness assumption. We will first prove that, in some nice (but restrictive)
cases, the dimension dimCH

1(Xt, A(Et)) does not jump at t = 0 for any deformation
of the pair (X,E).
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To do this, we choose a harmonic basis {(Ai, ϕi)}mi=1 for H1(X,A(E)). In [1],
we proved that the obstruction map Ob(X,E) : H1(X,A(E))→ H2(X,A(E)) of the
deformation theory of (X,E) is given by

Ob(X,E) :

m∑
i=1

ti(Ai, ϕi) 7→ H[(A(t), ϕ(t)), (A(t), ϕ(t))],

where H is the harmonic projection and (A(t), ϕ(t)) satisfies

(A(t), ϕ(t)) =

m∑
i=1

ti(Ai, ϕi)−
1

2
∂̄∗A(E)GE [(A(t), ϕ(t)), (A(t), ϕ(t))],

where GE is the Green’s operator and ∂̄∗A(E) is the formal adjoint of ∂̄A(E). More-

over, (A(t), ϕ(t)) satisfies the Maurer-Cartan equation if and only if Ob(X,E) = 0.
Suppose now Ob(X,E) = 0. Then we have

∂̄A(E)(A(t), ϕ(t)) +
1

2
[(A(t), ϕ(t)), (A(t), ϕ(t))] = 0.

Differentiating (A(t), ϕ(t)) with respect to ti and setting t = 0, we get

∂

∂ti
|t=0(A(t), ϕ(t)) = (Ai, ϕi).

Hence, for each i = 1, . . . ,m, if we define (B(t), ψ(t))i to be

(B(t), ψ(t))i =
∂

∂ti
(A(t), ϕ(t)),

then (B(t), ψ(t))i satisfies

∂̄A(E)(B(t), ψ(t))i + [(A(t), ϕ(t)), (B(t), ψ(t))i] = 0

and {(B0, ψ0)i}mi=1 forms a basis for H1(X,A(E)).
Note that the differential operator D̄A(Et) defined by

D̄A(Et) := ∂̄A(E) + [(A(t), ϕ(t)),−]

satisfies D̄2
A(Et) = 0 and the Leibniz rule

D̄A(Et)(fs) = (∂̄ + ϕ(t)y∂)f ⊗ s+ fD̄A(Et)s.

It follows that D̄A(Et) defines a deformation {(Xt, A(Et))}t∈Def(X,E) of the pair
(X,A(E)). In fact, A(Et) is the Atiyah extension of the deformed bundle Et on
Xt.

Lemma 5.1. Suppose Ob(X,E) = 0. Then for any [(B,ψ)] ∈ H1(X,A(E)), there

exists (B(t), ψ(t)) such that D̄A(Et)(B(t), ψ(t)) = 0 and [(B0, ψ0)] = [(B,ψ)]. Hence

any element in H1(X,A(E)) admits an extension to H1(Xt, A(Et)) for any defor-
mation of (X,E). In particular O1

n,n−1 ≡ 0 for all n ≥ 1.

Proof. Since this is true for the harmonic basis {(B0, ψ0)i}mi=1, it is true for any
element in H1(X,A(E)). �

Lemma 5.2. Let X be a compact complex manifold and E → X be a holomorphic
vector bundle. Suppose the deformation of the pair (X,E) is always unobstructed
and dimCH

0(Xt, A(Et)) does not jump at t = 0 along any deformations of (X,E).
Then dimCH

1(Xt, A(Et)) does not jump at t = 0 along any deformation of (X,E).
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Proof. SinceOb(X,E) = 0, Lemma 5.1 allows us to extend any element inH1(X,A(E))

to H1(Xt, A(Et)). Since

H0(Xt, A(Et)) = ker(∂̄A(Et) : Ω0(A(E))→ Ω0,1
t (A(E)))

= ker(D̄A(Et) : Ω0(A(E))→ Ω0,1(A(E))),

the assumption that dimCH
0(Xt, A(Et)) does not jump at t = 0 implies O0

n,n−1 ≡ 0
for all n ≥ 1. Now apply Theorem 4.11. �

We are now going to prove that under certain assumptions, dimCH
1(Xt,End(TXt

))
does not jump at t = 0 along any deformation of Xt.

First, when E = TX , we have a canonical lift L : H1(X,TX) → H1(X,A(TX)),
defined by

L : ϕ 7→ (−∇•ϕ− T (ϕ, •), ϕ),

where T : Ω0,p(TX)⊗ Ω0,q(TX)→ Ω0,p+q(TX) is the graded torsion, defined by

T (ϕ,ψ) = ϕy∇ψ − (−1)pqψy∇ϕ− [ϕ,ψ].

Moreover, if ObX = 0, then we have a Maurer-Cartan element ϕ(t) ∈ Ω0,1(TX) and
we obtain a deformation of (X,TX) by

D̄t = ∂̄TX
+ ϕ(t)y∇−∇•ϕ(t)− T (ϕ(t), •) = ∂̄TX

+ [ϕ(t), •].
In fact, the deformation induced by this operator is isomorphic to the family
{(Xt, TXt

)}t∈Def(X), where TXt
is the holomorphic tangent bundle of Xt. There-

fore, L induces a natural embedding

Def(X) ⊂ Def(X,TX).

By a Calabi-Yau n-fold we mean an n-dimensional compact Kähler manifold X
with trivial canonical line bundle KX

∼= OX and also H0,p(X) = 0 for all p 6= 0, n.

Theorem 5.3. Suppose that X is a Calabi-Yau manifold such that deformations
of the pair (X,TX) are unobstructed. Then dimCH

1(Xt,End(TXt
)) does not jump

at t = 0 for any deformation of X .

Proof. Let E = TX . Since the pair (X,E) admits unobstructed deformations,
Lemma 5.1 allows us to extend any element inH1(X,A(E)) to element inH1(Xt, A(Et)),
where t ∈ Def(X,E). Consider the Atiyah exact sequence of Et (note: this may not
be the tangent bundle of Xt in general!) over Xt:

0→ End(Et)→ A(Et)→ TXt
→ 0,

which gives rise to the injective map ι∗t : H0(Xt,End(Et)) → H0(Xt, A(Et)). Since
the tangent bundle of a Calabi-Yau manifold is stable, we have H0(X,End0(TX)) =
0 and so

H0(X,A(E)) ∼= H0(X,End(TX)) ∼= H0(X,OX) = C.
Since the identity map idEt is always a non-zero holomorphic section ofH0(Xt,End(Et))
and ι∗t : H0(Xt,End(Et)→ H0(Xt, A(Et)) is injective, we get

1 ≤ dimCH
0(Xt, A(Et)) ≤ dimCH

0(X,A(E)) = 1

for |t| small. By Lemma 5.2, we conclude that dimCH
1(Xt, A(Et)) does not jump at

t = 0 along any deformation of (X,TX), and in particular, along any deformation
of X itself.

For t ∈ Def(X) ⊂ Def(X,TX), we have a family of canonical lifts Lt : H1(Xt, TXt
)→

H1(Xt, A(Et)), since A(Et) is the Atiyah extension of TXt
for t ∈ Def(X). So the
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map π∗t : H1(Xt, A(Et)) → H1(Xt, TXt
) is surjective and we obtain the following

exact sequence

0→ H1(Xt,End(TXt))→ H1(Xt, A(Et))→ H1(Xt, TXt)→ 0.

Since dimCH
1(Xt, TXt) = dimCH

n−1,1(Xt) does not jump at t = 0 for t ∈ Def(X)
with |t| small, we see that dimCH

1(Xt,End(TXt
)) does not jump at t = 0 for any

deformation of X. �

Appendix A. Convergence

Consider an element α ∈ ker(∂̄q). Suppose that the obstruction maps Oqn,n−1
vanish for all n ≥ 1. Then we obtain a formal extension α(t) of α, that is, as a
formal power series in Ω0,q(E),

D̄q
tα(t) = 0.

In this appendix, we show that one can always choose an extension α(t) with a
nonzero radius of convergence. To achieve this, we shall work on the Kuranishi
family of (X,E) [7], following the approach of the book [6].

We choose a hermitian metric for E and consider the equation

α(t) + ∂̄∗EGE(ϕ(t)y∇+A(t))α(t) = 0, α(0) = α ∈ ker(∂̄qE),

with α(t) holomorphic in the variable t. Then α(t) can be solved by the recursive
relations:

αn +

n−1∑
i=0

∂̄∗EGE(ϕn−iy∇+An−i)α
i = 0, n ≥ 1.

We shall prove that α(t) :=
∑∞
n=0 α

ntn converges uniformly in the Hölder norm
‖ · ‖k+α. First of all, let us recall the obvious estimates

‖[(A,ϕ), (B,ψ)]‖k+α ≤ Ck,α‖(A,ϕ)‖k+α+1‖(B,ψ)‖k+α+1,

‖(ϕy∇+A)δ‖k+α ≤ C ′k,α‖(A,ϕ)‖k+α+1‖δ‖k+α+1

for any (A,ϕ), (B,ψ) ∈ Ω•(E) and δ ∈ Ω0,•(E), where Ck,α, C
′
kα are positive con-

stants which depend only on k, α. We may assume that Ck,α is larger so that

‖[(A,ϕ), (B,ψ)]‖k+α ≤ Ck,α‖(A,ϕ)‖k+α‖(B,ψ)‖k+α,
‖(ϕy∇+A)δ‖k+α ≤ Ck,α‖(A,ϕ)‖k+α‖δ‖k+α

for any (A,ϕ), (B,ψ) ∈ Ω•(A(E)) and δ ∈ Ω0,•(E). Next, we have the estimates

‖∂̄∗EGEδ‖k+α ≤ C̃k,α‖δ‖k−1+α,

‖∂̄∗A(E)GA(E)(A,ϕ)‖k+α ≤ C̃ ′k,α‖(A,ϕ)‖k−1+α

for all (A,ϕ) ∈ Ω0,•(A(E)) and δ ∈ Ω0,•(E), where GA(E), GE are Green’s op-

erators correspond to A(E), E, respectively, and C̃k,α, C̃
′
k,α are positive constants

depending only on k, α. Again we assume that C̃k,α is larger.

Proposition A.1. For |t| small, α(t) =
∑∞
n=0 α

ntn converges in the norm ‖ ·‖k+α
and α(t) is a smooth solution.
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Proof. The proof is rather standard, and we follow the book [6] very closely.
First we observe that δ(t) := t · α(t) also satisfies the equation

δ(t) + ∂̄∗EGE((ϕ(t)y∇+A(t))δ(t)) = 0.

Denote δn(t) = δ(t) mod tn+1 (similar meaning for An(t) and ϕn(t)). Let

B(t) :=
β

16γ

∞∑
n=1

γn

n2
tn :=

∞∑
n=1

Bntn,

where β, γ are positive constants which are to be chosen. We want to choose
β, γ such that ‖δn‖k+α ≤ Bn for all n ≥ 1 (this condition will be denoted by
‖δn(t)‖k+α � B(t)). This is of course possible for n = 1. Hence we assume that
this is possible up to order n− 1, for some n > 1.

For any (A,ϕ) and δ, we have

‖∂̄∗EGE((ϕy∇+A)δ)‖k+α ≤ C̃k,α‖(ϕy∇+A)δ‖k−1+α ≤ C̃k,αCk,α‖(A,ϕ)‖k+α‖δ‖k+α,

so the induction hypothesis gives

‖δn(t)‖k+α ≤ C̃k,αCk,α‖(An(t), ϕn(t))‖k+α‖δn−1(t)‖k+α
� C̃k,αCk,α‖(An(t), ϕn(t))‖k+αB(t).

It follows from Proposition 2.4, p.162 in [6] that, when β, γ are chosen such that

C̃k,αCk,α
β

γ
< 1 and ‖(A1(t), ϕ1(t))‖k+α � B(t),

we have ‖(An(t), ϕn(t))‖k+α � B(t) for any n ≥ 1. Hence

‖δn(t)‖k+α � C̃k,αCk,α(B(t))2.

It can also be proved (see Lemma 3.6, p. 50 in [6]) that

(B(t))2 � β

γ
B(t).

Therefore, for the above choices of β, γ, we have

‖δn(t)‖k+α � B(t).

Since B(t) converges on |t| < γ−1, we see that δ(t), and hence α(t), also converges
there.

Finally, α(t) satisfies(
∂2

∂t∂t̄
+ ∆E + ∂̄∗E(ϕ(t)y∇+A(t))

)
α(t) = 0.

Since the operator
∂2

∂t∂t̄
+ ∆E + ∂̄∗E(ϕ(t)y∇+A(t))

is elliptic for |t| small, regularity guarantees smoothness of α(t). �

Next we have the following

Proposition A.2. The α(t) defined above satisfies

D̄tα(t) = (∂̄E + ϕ(t)y∇+A(t))α(t) = 0 mod tn

if and only if H((ϕ(t)y∇+A(t))α(t)) = 0 mod tn.
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Proof. If D̄tα(t) = 0 mod tn, then it is clear that H((ϕ(t)y∇ + A(t))α(t)) =
0 mod tn since H∂̄E = 0.

Conversely, suppose that H((ϕ(t)y∇ + A(t))α(t)) = 0 mod tn. Let ψ(t) :=
D̄tα(t). Since α(t) satisfies

α(t) + ∂̄∗EGE(ϕ(t)y∇+A(t))α(t) = 0,

applying ∂̄E gives

∂̄Eα(t) = −∂̄E ∂̄∗EGE(ϕ(t)y∇+A(t))α(t).

Then

ψ(t) = −∂̄E ∂̄∗EGE(ϕ(t)y∇+A(t))α(t) + (ϕ(t)y∇+A(t))α(t).

Since (ϕ(t)y∇+A(t))α(t) mod tn has no harmonic part, we have

ψ(t) = ∂̄∗E ∂̄EGE(ϕ(t)y∇+A(t))α(t)

= ∂̄∗EGE [(∂̄TX
ϕ(t)y∇+ ϕ(t)yF∇ + ∂̄End(E)A(t))α(t)

− (ϕ(t)y∇+A(t))∂̄Eα(t)]

= ∂̄∗EGE

[
− 1

2
[(A(t), ϕ(t)), (A(t), ϕ(t))] · α(t)

− (ϕ(t)y∇+A(t))(ψ(t)− (ϕ(t)y∇+A(t))α(t))
]

= −∂̄∗EGE [(ϕ(t)y∇+A(t))ψ(t)] mod tn,

where the Lie bracket acts by

[(A(t), ϕ(t)), (A(t), ϕ(t))] · α(t) := (2ϕ(t)y∇+ [A(t), A(t)] + [ϕ(t), ϕ(t)]y∇)α(t).

Since the leading order term of (A(t), ϕ(t)) is at least 1, the leading order of
∂̄∗EGE [(ϕ(t)y∇ + A(t))ψ(t)] is of order at least 2. Hence ψ(t) has no first order
term. Inductively, we conclude ψ(t) = 0 mod tn.

�

Finally, we claim that the harmonic part of (ϕ(t)y∇+A(t))α(t) vanishes under
the assumption that Oqn,n−1 ≡ 0 for all n ≥ 1.

Proposition A.3. The obstructions Oqn,n−1 ≡ 0 for all n ≥ 1 if and only if for

any α(t) satisfying

α(t) + ∂̄∗EGE(ϕ(t)y∇+A(t))α(t) = 0

and ∂̄Eα(0) = 0, we have D̄tα(t) = 0.

Proof. If H((ϕ(t)y∇ + A(t))α(t)) = 0 for any α = α(0) ∈ ker(∂̄qE), then α(t) is an
extension of α. Hence Oqn,n−1 ≡ 0 for all n ≥ 1.

For the converse direction, we proceed by induction on n. For n = 1, we have

j10(D̄tα0)(t) = D̄0(j00(β)(t)) = j00(D̄tβ)(t)

for some local section β =
∑∞
n=0 βnt

n, i.e.

(ϕ1y∇+A1)α0 = ∂̄Eβ0.

Hence H((ϕ(t)y∇ + A(t))α(t)) = 0 mod t. Assume H((ϕ(t)y∇ + A(t))α(t)) =
0 mod tn−1. Then α(t) is an (n− 1)-th order extension of α0. By assumption, we
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have On,n−1[jn−10 (α(t))] = 0. Therefore,

tn−1
n−1∑
j=0

(ϕn−jy∇+An−j)α
j = D̄n−1(jn−10 (β)(t)) = jn−10 (D̄tβ)(t).

Hence

n−1∑
j=0

(ϕn−jy∇+An−j)α
j = ∂̄Eβ

n−1 +

n−2∑
j=0

(ϕn−1−jy∇+An−1−j)β
j

and

∂̄Eβ
k +

k−1∑
j=0

(ϕk−jy∇+Ak−j)β
j = 0

for k ≤ n− 2.
The last (n−2) equations simply mean that β defines an extension of β0 of order

n− 2. By assumption, we have Oqn−1,n−2[jn−20 (β)(t)] = 0, and so

n−2∑
j=0

(ϕn−1−jy∇+An−1−j)β
j = ∂̄Eγ

n−2 +

n−3∑
j=0

(ϕn−2−jy∇+An−2−j)γ
j

for some γ =
∑∞
n=0 γ

ntn. Repeating the previous argument, this reduces to the
n = 1 case, and so

n−1∑
j=0

(ϕn−jy∇+An−j)α
j

is ∂̄E-exact, and therefore, has no harmonic part. This completes the induction
argument. �
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