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Suggested Solution to Assignment 2

Exercise 2.1

1. By d’Alembert’s formula, the solution is

u(x, t) =
1

2
[ex+ct + ex−ct] +

1

2c

∫ x+ct

x−ct
sin sds

=
1

2
[ex+ct + ex−ct] +

1

2c
[cos(x− ct)− cos(x+ ct)]. �

2. By d’Alembert’s formula, the solution is

u(x, t) =
1

2
{log[1 + (x+ ct)2] + log[1 + (x− ct)2]}+ 1

2c

∫ x+ct

x−ct
(4 + s)ds

=
1

2
{log[1 + (x+ ct)2] + log[1 + (x− ct)2]}+ 4t+ xt. �

4. Define v = ut + cux, then vt − cvx = 0. By the Geometric Method or Coordinate Method in Section
1.2, we obtain v(x, t) = a(x + ct) and ut + cux = a(x + ct), which is a nonhomogeneous transport
equation. Change variables t′ = x + ct, x′ = x − ct, then ut′ = (ut + cux)/(2c) = a(t′)/(2c). Thus
u =

∫
a(t′)/(2c)dt′ + b(x′) = f(x+ ct) + g(x− ct).

5. By d’Alembert’s formula, the solution is

u(x, t) =
1

2c

∫ x+ct

x−ct
ψ(s)ds =

1

2c
[length of (x− ct, x+ ct) ∩ (−a, a)].

So we have

u(x, a/2c) =



0 x ∈ (−∞,−3a

2
] ∪ [

3a

2
,∞);

1

2c
(
3a

2
− x) x ∈ [

a

2
,
3a

2
];

a

2c
x ∈ [−a

2
,
a

2
];

1

2c
(
3a

2
+ x) x ∈ [−3a

2
,−a

2
];

u(x, a/c) =


0 x ∈ (−∞,−2a] ∪ [2a,∞);

1

2c
(2a− x) x ∈ [0, 2a];

1

2c
(2a+ x) x ∈ [−2a, 0];

u(x, 3a/2c) =



0 x ∈ (−∞,−5a

2
] ∪ [

5a

2
,∞);

1

2c
(
5a

2
− x) x ∈ [

a

2
,
5a

2
];

a

c
x ∈ [−a

2
,
a

2
];

1

2c
(
5a

2
+ x) x ∈ [−5a

2
,−a

2
];

u(x, 2a/c) =



0 x ∈ (−∞,−3a] ∪ [3a,∞);

1

2c
(3a− x) x ∈ [a, 3a];

a

c
x ∈ [−a, a];

1

2c
(3a+ x) x ∈ [−3a,−a];

u(x, 5a/c) =



0 x ∈ (−∞,−6a] ∪ [6a,∞);

1

2c
(6a− x) x ∈ [4a, 6a];

a

c
x ∈ [−4a, 4a];

1

2c
(6a+ x) x ∈ [−6a,−4a];

Here we omit the figures. �
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6.

max
x

u(x, t) =

 t 0 ≤ t ≤ a

c
;

a

c
t ≥ a

c
.

�

7. Since ϕ and ψ are odd function of x,

u(−x, t) = 1

2
[ϕ(−x+ ct) + ϕ(−x− ct)] +

1

2c

∫ −x+ct

−x−ct
ψ(s)ds

=
1

2
[−ϕ(x− ct)− ϕ(x+ ct)] +

1

2c

∫ x−ct

x+ct
ψ(−s)d(−s)

= −{1
2
[ϕ(x− ct) + ϕ(x+ ct)] +

1

2c

∫ x+ct

x−ct
ψ(s)d(s)} = −u(x, t).

Thus u(x, t) is odd in x for all t. �

8. (a) Change variables v = ru, then

vtt = rutt, vrr = (rur + u)r = rurr + 2ur,

which implies

vtt = rc2(urr +
2

r
ur) = c2vrr

(b) Using the same skill related to the wave equation(1), we have v(r, t) = f(r + ct) + g(r − ct), where
f and g are two arbitrary functions of a single variable. Hence u = 1

rf(r + ct) + 1
rg(r − ct).

(c) Since v(r, 0) = rϕ(r) and vt(r, 0) = rψ(r) are both odd, we can extend v to all of R by odd reflection.
That is, we set

ṽ(r, t) =


v(r, t), r > 0;

0, r = 0;

−v(−r, t), r < 0.

Hence d’Alembert’s formula implies

ṽ(r, t) =
1

2
[(r + ct)ϕ(r + ct) + (r − ct)ϕ(r − ct)]− 1

2c

∫ r+ct

r−ct
sψ(s)ds.

Therefore for r > 0,

u(r, t) =
1

r
v(r, t) =

1

2r
[(r + ct)ϕ(r + ct) + (r − ct)ϕ(r − ct)]− 1

2cr

∫ r+ct

r−ct
sψ(s)ds. �

10. Using the same way above, since ( ∂
∂x − 4 ∂

∂t)(
∂
∂x + 5 ∂

∂t)u = 0, we can obtain that the general solution is
u(x, t) = f(x+ 1

4 t) + g(x− 1
5 t). The initial conditions implies

f(x) =
1

9
[4ϕ(x) + 20

∫ x

0
ψ(s)ds+ C], g(x) =

1

9
[5ϕ(x)− 20

∫ x

0
ψ(s)ds− C].

Therefore, the solution is

u(x, t) =
1

9
[4ϕ(x+

1

4
t) + 5ϕ(x− 1

5
t)] +

20

9

∫ x+ 1
4
t

x− 1
5
t
ψ(s)ds. �
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Exercise 2.2

1. By the law of conservation of energy, E = 1
2

∫∞
−∞(ρu2t + Tu2x) dx is a constant independent of t. Since

ϕ ≡ 0 and ψ ≡ 0, we have E ≡ 0. Thus, the first vanishing theorem implies ut ≡ 0 and ux ≡ 0. So u ≡ 0
since ϕ ≡ 0. �

2. (a) By the chain rule,

∂e/∂t = ututt + uxuxt, ∂e/∂x = ututx + uxuxx,

∂p/∂t = utuxt + uttux, ∂p/∂x = utuxx + utxux.

Since utt = uxx and uxt = utx,

∂e/∂t = ∂p/∂x, ∂e/∂x = ∂p/∂t.

(b) From the result of (a),
ett = pxt = ptx = exx, ptt = ext = etx = pxx.

So both e(x, t) and p(x, t) satisfy the wave equation. �

3. (a) (u(x− y, t))tt = utt(x− y, t) = c2uxx(x− y, t) = c2 (u(x− y, t))xx.

(b) (ux(x, t))tt = uxtt(x, t) = c2uxxx(x, t) = c2 (ux(x, t))xx.

(c) (u(ax, at))tt = a2utt(ax, at) = a2c2uxx(ax, at) = c2 (u(ax, at))xx. �

5. For damped string, utt − c2uxx + rut = 0, where c =
√

T
ρ , the energy is

E =
1

2

∫ ∞

−∞
ρ(u2t + c2u2x)dx.

Hence,

dE/dt =
1

2

∫ ∞

−∞
ρ(2ututt + 2c2uxuxt)dx

=

∫ ∞

−∞
ρ(c2utuxx − ru2t + c2uxuxt)dx

=

∫ ∞

−∞
ρ(c2utuxx − ru2t − c2uxxut)dx+ (c2utux)

∣∣∣∞
−∞

= −
∫ ∞

−∞
ρru2tdx ≤ 0. �

6. (a)We compute that utt = αf ′′, ur = α′f − αβ′f ′, urr = α′′f − (2α′β′ + αβ′′)f ′ + α(β′)2f ′′. Plugging in
the equations, we get

(α′′ +
n− 1

r
α′)f − (2α′β′ + αβ′′ +

n− 1

r
αβ′)f ′ + (α(β′)2 − α

c2
)f ′′ = 0

(b)Setting the coefficients of f,f’,f” to zero, we get α′′+n−1
r α′ = 0, 2α′β′+αβ′′+n−1

r αβ′ = 0, α(β′)2− α
c2

= 0.
(c)From the third equation, we get (β′)2 = 1/c2. Hence β′ = ±1/c, β′′ = 0. Then second equation
simplifies to 2α′ + (n − 1)α/r = 0. It has general solutions α(r) = Cr(1−n)/2, where C is a constant.
Plugging back into the first equation, we get

1− n

2
(
1− n

2
− 1) + (n− 1)(

1− n

2
) = 0.

This implies n = 1 or n = 3. (d)If n = 1, α(r) = Cr(1−n)/2 ≡ Constant.
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Exercise 2.3

2. By the definition of maximum and minimum, M(T ) increases(i.e. nondecreasing) and m(T ) decreases(i.e.
nonincreasing). �

3. (a) Use the strong minimum principle, we omit the details here.

(b) Use the minimum principle. Since u(0, t) = u(1, t) = 0, u(x, t) ≥ u(x, t0) for ∀t0 ≤ t < 1. So µ(t) is
dereasing.
Or let the maximum occur at point X(t), so that µ(t) = u(X(t), t). Differentiale µ(t), assuming that
X(t) is differentiable, we have

µ′(t) = ux(X(t), t)X ′(t) + ut(X(t), t)

Note at point (X(t), t) we have ux = 0, uxx ≤ 0. Hence, µ′(t) = uxx(X(t), t) ≤ 0 and µ(t) is
decreasing.

(c) Here we omit the figure. Note that u(0, t) = u(1, t) = 0 and the result in (b). �

4. (a) Note that u(0, t) = u(1, t) = 0 and u(x, 0) = 4x(1− x) ∈ [0, 1]. Then the conclusion can be verified
by strong maximum principle.

(b) Let v(x, t) = u(1 − x, t), then v(0, t) = v(1, t) = 0 and v(x, 0) = 4x(1 − x) = u(x, 0). Then the
uniqueness theorem for the diffusion theorem implies u(x, t) = u(1− x, t).

(c)
d

dt

∫ 1

0
u2dx =

∫ 1

0
2uutdx = 2

∫ 1

0
uuxxdx = −2

∫ 1

0
u2xdx.

Since u(x, t) > 0 for all t > 0 and 0 < x < 1, so ux is not zero function. Hence, d
dt

∫ 1
0 u

2dx < 0 and∫ 1
0 u

2dx is a strictly decreasing function of t. �

5. (a) We omit the details to verify that u = −2xt − x2 is a solution. When t is fixed, u attains its
maximum at (−t, t) and u(−t, t) = t2. So u attains its maximum at (−1, 1) in the closed rectangle
{−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.

(b) In our proof the maximum principle for the diffusion equation, the key point is that v(x, t) =
u(x, t) + ϵx2 satisfies vt − kvxx < 0. However, here vt − kvxx = ut − x(u+ ϵx2)xx = −2ϵx so that the
sign of vt − kvxx is not unchanged in the closed rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}. �

6. Let w = u− v and use maximum principle for the diffusion equation. We omit the details. �

7. (a) Let w(x, t) = u(x, t)− v(x, t) and wϵ(x, t) = w(x, t) + ϵx2. Since wt − kwxx = f − g ≤ 0, we can use
the same method in the text book to derive the maximum principle for w. So u ≤ v at x = 0, x = l
and t = 0 implies w ≤ 0 in the rectangle, i.e. u ≤ v for 0 ≤ x ≤ l, 0 ≤ t < ∞. Here we omit the
details of the method in the text book.

(b) Let u(x, t) = (1 − e−t) sinx, and then ut − uxx = sinx and u = 0 at x = 0, x = π and t = 0.
Therefore, the result above implies v(x, t) ≥ (1− e−t) sinx. �.

Extra 1. (1) Define v(x, t) := e−atu(x, t), then vt = kvxx, V (0, t) = v(1, t) = 0, v(x, 0) = sin(πx). By the Strong
Maximum Principle, 0 < v(x, t) < 1, ∀t > 0, 0 < x < 1. Thus, 0 < u(x, t) = eatv(x, t) < 1, ∀t > 0, 0 < x <
1

(2)Define v(x, t) := u(1 − x, t), then we can easily check that v solves the same problem as u. By the
uniqueness of the solution, u = v
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Extra 2. (a)Follow the proof of the Maximum Principle in the textbook. We only need to change the diffusion
inequality (2) in Page 42 to be

vt − kvxx = ut − kuxx − 2εk ≤ −2εk < 0

(b)Define u(x, t) := v(x, t)− tmax−∞<x<+∞,0<t<T f(x, t), then

ut − kuxx = vt − max
−∞<x<+∞,0<t<T

f(x, t)− kvxx = f − max
−∞<x<+∞,0<t<T

f(x, t) ≤ 0

⇒ max
−∞<x<+∞,0≤t≤T

u(x, t) = max
−∞<x<+∞,t=0

u(x, t) = 0, by(a)

⇒ v(x, t) ≤ t max
−∞<x<+∞,0<t<T

f(x, t) ≤ T max
−∞<x<+∞,0<t<T

f(x, t)

Exercise 2.4

1. By the general formula,

u(x, t) =
1√
4πkt

∫ l

−l
e−(x−y)2/4ktdy

=
1√
π

∫ (l−x)/
√
4kt

(−l−x)/
√
4kt

e−p2dp

=
1

2
{E rf [ x+ l√

4kt
]− E rf [

x− l√
4kt

]}. �

2. By the general formula,

u(x, t) =
1√
4πkt

∫ ∞

0
e−(x−y)2/4ktdy +

1√
4πkt

∫ 0

−∞
3e−(x−y)2/4ktdy

=
1

2
+

1

2
E rf [

x√
4kt

] +
3

2
− 3

2
E rf [

x√
4kt

]

= 2− E rf [
x√
4kt

]. �

3. By the solution formula (8)

u(x, t) =
1√
4πkt

∫ ∞

−∞
e−(x−y)2/(4kt)e3ydy

=
e9kt+3x

√
4πkt

∫ ∞

−∞
e−(y−6kt−x)2/(4kt)dy

=e9kt+3x

Exercise 7 is used in the last equality.

5. Similar to Exercise 2.2.3.

8. By the definition of S(x, t),

max
δ≤x<∞

=
1√
4πkt

e−δ2/4kt,

so

lim
t→0+

max
δ≤x<∞

= lim
t→0+

1√
4πkt

e−δ2/4kt = lim
x→+∞

√
x√

4πk
e−xδ2/4k = 0. �
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11. (a) Since u(x, t) and −u(−x, t) are the solutions and u(x, 0) = ϕ(x) = −ϕ(−x) = −u(−x, 0), it follows
from the uniqueness theorem that u(x, t) = −u(−x, t).

(b) Similar to (a).

(c) Similar to (a). �

14. Since

|e−(x−y)2/4ktϕ(y)| ≤ Ce−(x−y)2/4kt+ay2 = Ce(a−
1

4kt
)y2+ x

2kt
y− x2

4kt ,

u(x, t) =
1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktϕ(y) dy

makes sense for a − 1
4kt < 0, i.e. 0 < t < 1/(4ak), but not necessarily for large t, for example, ϕ(x) =

eax
2
. �

15. Suppose that both u and v are solution of the diffusion problem with the same Neumann boundary
condition. Let w(x, t) = u(x, t)− v(x, t), then w satisfies

wt = kwxx, w(x, 0) = wx(0, t) = wx(l, t) = 0.

Thus by the integration by part and the Neumann boundary condition,

d

dt

∫ l

0

1

2
w2(x, t)dx = −k

∫ l

0
w2
x(x, t)dx ≤ 0.

Hence, the initial condition implies∫ l

0

1

2
w2(x, t)dx ≤

∫ l

0

1

2
w2(x, 0)dx = 0.

Therefor, w = 0, i.e. u = v for all t > 0. �

16. Let v(x, t) = ebtu(x, t), then v satisfies

vt − kvxx = 0, v(x, 0) = u(x, 0) = ϕ(x).

Hence, the general solution of v is

v(x, t) =
1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktϕ(y) dy,

and the general solution of u is

u(x, t) =
e−bt

√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktϕ(y) dy. �

18. Let v(x, t) = u(x+ V t, t), then v satisfies

vt − kvxx = 0, v(x, 0) = u(x, 0) = ϕ(x).

Since

v(x, t) =
1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktϕ(y) dy,

u(x, t) =
1√
4πkt

∫ ∞

−∞
e−(x−V t−y)2/4ktϕ(y) dy. �
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Exercise 2.5

1. Let u(x, t) = −x2 − (t− 1)2 be the unique solution of the wave equation with boundary conditions:

utt = uxx, for − 1 < x < 1, 0 < t <∞,

u(x, 0) = −x2 − 1, ut(x, 0) = 2,

u(−1, t) = u(1, t) = −t2 + 2t− 2.

But u attains its maximum 0 at (0, 1). �
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