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. (a) Find the Fourier sine series of ¢(x) = z on the interval [0, 1].
(b) Find the Fourier cosine series of ¢(z) = x on the interval [0, [].
(¢) Find the full Fourier series of ¢(x) = 2 on the interval [—[,[].

Solution: (a)The Fourier sine series of ¢(x) = x is
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(b)The Fourier cosine series of ¢(z) = x is
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Hence

(c) The full Fourier series of ¢(z) = x is
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Remark: The full Fourier series and Fourier sine series of x are same, since x is odd.

. Gram-Schmidt orthogonalization procedure

If X;, X5, -+ is an sequence (finite or infinite) of linearly independent vectors in
any vector space with an inner product, it can be replaced by a sequence of linear
combinations that are mutually othorgonal. The idea is that at each step one
subtracts off the components parallel to the previuos vectors. More precisely,
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(a) Show that all the vectors Zy, Zy, Z3, - - - are orthoganal to each other.

(b) Apply the procedure to the pair of functions cos x4 cos 2z and 3 cos x —4 cos 2z
in the interval (0,7) to get an orthogonal pair.

Solution:



(a) Note that (Z1, Z) = = (Z1, Xo — (X2, Z1)Z;) = 0.
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Assume that any 71, --- , Z, are mutually orthogonal. Then for any k& < n,
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(b) Here X; = cosx + cos 2z and Xy = 3cosx — 4 cos2z. Then
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3. Show that Robin boundary conditions are symmetric.

Solution: Suppose f and g are two functions satisfying Robin conditions
X'(0) —apX(0) =0, X"(I) + ;X(I) =0

then
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= —arf()g(l) + arf(1)g(l) — a0 f(0)g(0) + ao f(0)g(0) = 0.




