Section 8. Some Topics in Multidimensional
Conservation Laws

§8.1 Introduction

Oru+div F(u) = S(u, x, t)

teR, xeQCR™ ueR", F=(F,(u), -, Fn(u)), Fi(u) € R" (8.1)

(8.1) is a system of first order quasilinear equations. It is called a
system of balance laws.

u: density vector, F(u): flux vector, S(u; x, t): external forcing. In
the case without external forces,

8tu—|—v F() = O
Jou(x,t)dx = const.

which is called a system of conservation laws.



Example: Compressible Euler System

O¢(pu) + div(pu ® u+ pl) =0  conservation of momentum  (8.2)

Orp + div(pu) =0 conservation of mass
Or(pE) + div(puE + pu) =0  conservation of energy

p(x,t): density, u(x,t): velocity vector, p: pressure, E: total
2
energy, E=e+ %\UF, e: internal energy, %: kinetic energy

Equation of states: T: temperature, S: entropy
TdS = de — p/p?dp
In particular, for ideal polytropic fluid

p T —
e(p,p) = = e =pp
(0.F) pv—1) -1




Definition 8.1 Set A;j(u) = VFj(u), n x n matrix, and let
w € R"\ {0} be any given direction. (8.1) is said to be hyperbolic

in the direction w, if
> wiAj(w)
j=1

has n real eigenvalues
A(w,u) < Xo(w,u) < - < Ap(w, u)
with a complete right eigenvectors
ri(w,u), n(w,u),---, r(w,u)

If (8.1) is hyperbolic in all directions, then (8.1) is said to be
hyperbolic.



Example: The compressible Euler system (8.2) is always hyperbolic
Yw € R"\ {0}.

Sound wave family Ay (u,w) = u-w = c|w|, where ¢ = , /~v(2):
sound speed.
Entropy wave family \o(u,w) = v - w

(Vorticity wave family)



Definition 8.2 A bounded, measurable function u is called a weak
solution of (8.1) iff

//{qbtu + V- F(u)pstdxdt =0 Vo € c°

in 1-D without external force:

t
// (Orpu + OxpF (u))dxdt =0
R0
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fJ X(t)

Then
x(t)[u] = [F(u)]

Rankine-Hugeniet condition



§8.2 Friedrichs Theory for Symmetric Hyperbolic System

Consider

8tu+ZAj8Xju:0, t>0, xeR"”
j=1

u e R", A;:nxnsmooth matrix.

Definition 8.3 System (8.3) is said to be symmetrizable, if 3
smooth positive definite matrix Ag, such that

(1) Ao >0, A5 =A
(2) Aj = AgA; is symmetric, i.e. Af=A;j=1,---m
(3) Ao Oru + ijzl Aj 8Xju =0

(8.3)



Remark 8.1 If a system is symmetrizable, then it must be
hyperbolic, i.e. for any w € R™\ {0}, A= A(w) =Y., wj A;
has n real eigenvalues

Ar(w) < Aa(w) < -+ An(w)
with a full set of right eigenvector

ri(w), n(w), -, r(w)
Aw)vi(w) = Xi(w)ri(w), i=1,---,n

Let the corresponding left eigenvector /(w) be normalized so that

kW)AW) = M(W)l(w),  le(w)rj(w) = oy



Example: Consider the 3-D compressible Euler System

Dip+pdivu=0
pDiu+pVT +TVp=0
D:T+(v—1)Tdivu=0

D; = 0y + u - V material derivate.

If we linearize the system around any non-vacuum state, e.g.
(00,0, To), then the linearized system is symmetrizable.

potTo O 0

- 0 I 0
AO(pO; 07 TO) - 100 3 ,0 Tfl

0 o %




Energy Principle: Consider the Cauthy problem

Z/N\j Oxu+B(x,tJu=F, xo=t
=0
u(xo =0,x1, -+ ,Xm) = Uo(x1, - ,Xm) = tg(x)

(8.4)

Assumptions:
(1) A= (Ao, A1, ---,Ap) and B are smooth, F is also smooth.

(2) A; is symmetric, and Ay is positive definite.
E(t) = (Aou, u)
n
(w.0) = [ W) 0()dk =3 [ wylx)uylx)ae
Q - Q
Jj=1

1
[lwllo = (w, w)2



Theorem 8.1 3 uniform constant ¢ = ¢(Ap) > 0, such that for
any smooth solution u(x, t), the following stability estimate holds

™) (ilwlio+ [ 1F(@)10et) (85)

021ax [Ju(t)|lo < c™ exp( ‘dIVA+B+B*

here div A = 9;Aq + Z Z10x Aj

Remark 8.2 This simple energy principle guarantees the
well-posedness theory for such a linear system (Friedrichs).



Proof of (8.3)

d d - . - .
EE(t) = E(AOU’ u) = (Aou, Oru) + (Ag Oru, u) + (0t Aou, u)
2(A~o Oru, u) + (atﬂou, u)

2(u, Ay Osu) + (9 Agu, u)

m
= =2 U,ZAjﬁxju — 2(u, Bu) + 2(u, F) + (8:Aou, u)
j=1

Ox < u,Aju> = <8Xju,/5ju>+< U,Ajﬁxju>+< u,@xjﬂju>
2 < u, AjOxu > + < u, 0 Aju >



so,

Thus
%E(t) = (u,div Au) — 2(u, Bu) + 2(u, F)
= (u,(divA— (B + B*))u) +2(u, F)
c(u,u) < E(t) < ¢ Yu,u)

Then (8.3) is a consequence of Gronwall's inequality.



§8.3 Local Smooth Solutions

Consider
Oru+ V- F(u) = S(u, x, t)

Oru + Z@XJFJ(U) = S(u, x, t)
j=1
u(x,t =0) = up(x)

F(u) = (Fi(u),- -, Fm(u)) smooth over D domain in R".

Let D; be a bounded open subset of D, D; CC D < D; C D,

uo(x) € D1 (8.7)



Question: If ug € H*(R™), S(uo,x, t) € H*, s > 37 + 1. Then can
we find u(x,t) € C1([0, T] x R™)?

Definition 8.4 The system (8.6) is said to be admit a convex
entropy extension if 3 a convex entropy 7(u) with corresponding
entropy flux g(u) = (g1(u),- -, gm(v)) such that for all smooth
solutions u(x, t) to the system (8.6).

Orn(u) + V- q(u) =Vn(u) - S(u,x, t)

vu qj(u) = VUT/(U) : quj(u)v J: 17' M



Remark 8.3 If the system in (8.3) admits a convex entropy
extension, then it is symmetrizable. In term of entropy variable,
U = Vn(u), the system (8.6) is symmetric.

For smooth solution, the system (8.6) is equivalent to
8tu+ZA )0 u = S(u, x, t)

Aj(u) =V, Fj(u), j=1,---/m; nXx nmatrix

So instead of considering (8.1), we will consider the following
Cauchy problem

8tu+ZA u) Oxu = S(u,x,t)

u(x,t =0) = UO(X)



where A = (Ao, A1, -+, An) satisfies the property that

Ap > 0, AjZAj j=01---'m (89)
Notations:
H*(R™) = {u e L*(R™), such that ||u||2 :/ Z |D*u(x))? dx < oo}
BT |al<s

(. i (™) = {u(x, 0 1) € K lallr = max [luC 0l < oo



So the basic well-posedness theory is the

Theorem 8.2 Assume that
(1) (8.8) is symmetric, (8.9) holds.
(2) up € H*, s> 2 +1, up(x) € Dy CC D, Vx.

Then

(i) 3T = T(||uo||s, D1) such that the Cauchy problem (8.8) has
a unique classical solution u(x,t) € CY([0, T] x R™). With
the properties that

u(x,t) € Dy c D, VY(x,t) € R™x [0, T]

u(x, t) € C([0, T], H) n CY([o, T], HSY) (8.10)



(ii) (Continuation principle) Let T* be the maximal time of
existence of regular solution as in (i). Suppose T, < 4o0.
Then, either

|in'lt_>T3k (|DU(7 t)’Loo + ’atu(-, t)|L<>o) = +00
(8.11)
(shock formation)

or for any compact subset k CC D, then u(-, t) escapes from
k as t — T, (shell singularity).



Remark 8.4 There are two approaches. One is by T. Kato, ARMA
(1952) p.181-205. Another one is due to P. Lax, elementary
iteration scheme.

Proposition 8.1 Under the same assumptions in Theorem 8.2,
there exists a unique classical solution u(x, t) € CY(R™ x [0, T])
to the problem (8.8) such that

ue L>®([0, T]; H(R™))N Cu([0, T]; H*(R™)) N Lip([0, T]; H*™') (8.12)

Remark 8.5 C,([0, T]; H°(R™)) means continuous in time with
values in H® by weak topology, i.e. u € Cy,([0, T]; H®) < [u(s), ¥]
is continuous on [0, T| for any given ¢ € H™*.



Proof of Proposition 8.1: The uniqueness is a simple
consequence of the energy principle, so we omit it. We will
concentrate on the existence and regularity.

Let J.(x) be a Friedrichs mollifier, i.e. J.(x) =¢~"j(%),
j € C°(R™) supp j C B1(0), [pmi(x)dx =1, j>0.

Yu e H5(R™),
Jeu(x) = Joxu(x) = /]Rm J-(x = y)u(y)dy,

Jeu € HS(R™) N €

Facts:
(1) ||[Jeu — ul|s — 0 as € — 0+.
(2) ||[Jeu— ullo < Cel|ul|1, € < e, C is a generic positive constant.




Step 1: Preparation of Initial data

Setting
e =2 ey, uf = Joug, k=0,1,2,--- (8.13)
€o is a suitably small positive constant defined later.
web cD
Thus one can choose another compact subset D, such that

D_l CC D», D_z ccD (8.14)



Claim: One can choose R and &g such that

(a) lu—wlls<R=ueD, (8.15)
K R
(b) ||UQ*U0||5§ CZ? k:O717273a"' (816)

here C(< 1) such that



Cl < A(u)<CY,  Yue D,

By sobolev’s imbedding's theorem, |f|j~ < Csl|f|]s.

lu—wolls < [Ju— uflls +[|ug — wolls
[l = uBlls + [[Jzo 0 — wolls

(8.17)



Step 2: Iteration Scheme (By induction)

Set
o 0(x,t) = u§(x).
e suppose t/(x, t) has been defined for j = 0,1, , k, then we
define u¥T1(x, t) to be the solution to the following problem

m
A k o k+1 + A k 8)(- k+1 _ S k’ t
o(u*)oru J:Zl J(U ) G U (U™, x, t) (8.18)

W (x, £ = 0) = uf T (x)



By the linear theory, (8.18) has smooth classical solution
uv*t1(x, t) defined on R™ x [0, Ty, 1] where Ty is such that

|5 — s, 7y SR (8.19)

Two main tasks:

e one has to find a time interval [0, T,] such that all u*(x, t)
can be defined R” x [0, T], i.e. Txp1 > Ty, T >0,
k=01,

o uk(x,t) — u(x, t) in appropriate topology.



Step 3: A priori estimate - boundedness in higher norm

Lemma 8.1 There exists L > 0, and T, > 0, independent of k,
such that for all k =—-1,0,1,2,---

1 = llls, 7. < R (8.20)

10eu  H|[so17, <L (8.21)



Proof: Set wk*1 = y%*1 — 10 then

Ao(u*) 9w Tt + ZA_,'(Uk)anWkJrl = Sk
-1

(8.22)
wktl(x, t = 0) = ufTH(x) — u§(x) = wiTH(x)
Sk =S(uk, x, 1) = > Aj(u¥) o uf (8.23)
j=1

Remark 8.6 The key estimate is (8.20), since the temporal
estimate (8.21) will follow from the system (8.18) with the help of
Moser-type calculus inequality.



Obviously, w® = 0, (8.20) holds trivially.

By inductive assumption, (8.20) holds true for uk. For some T, to
be chosen, then uk € Ds.

So we can consider the following problem

Ao(u)atWJijmzlAj_(U)a)gWZS(UaX7 t) (8 24)
w(x,t =0)=wp € D, .
ue C® weC® ue b

Since |||w|||s,7. = maxo<i<T, ||W(:, t)||s, we need only to estimate
ID*w (-, t)[P V1< |a <s, te0, T



Set wy, = D*W, |a| <'s. Then it follows from (8.24) that

Ao Dewo + Y Aj Oy wa = Ao(u)D*(AgS) + Sa = 1o
j=1
=" Ao [(AgAj) (1) Dy wa — D((Ag Aj) D w)]
j=1
Wo(x,t = 0) = DYwp(x)

(8.25)




Claim: 3C = C(Da, |||ul|ls.T., R, s) such that

( > IISaIS) + (Z ||A0DQ(A015)|3) < C(1+]|wlfZ) (8.26)

1<]al<s | <s

Then applying the energy inequality

1 T
Ea(t) < exp {ZC_1|0“V Al T*} (E(O) +/ 1£al[5 dt)
0

Sum them up, then

T.
Cliw(t)[[2 < exp {C*|div Al T.} <5|W(0)|§+‘/0 (1 +lw(D)I2) d5>



Now Grownwall inequality implies that

-1
llwllls,7. < C exp{C(l—i—L) }(||WO|5+;T> )

¢ R 4
llwllls, 7. < exp(C(l—i—L)T*) (2+ CT*> <R

[Iwoll = [lug™* — uglls < llug™ — wolls +[|ug — wolls < C + Cy=

Note that T, L are independent of time.

It remains to prove the claim (8.26). To this end, we need some
elementary Moser-type calculus inequalities.

CR

2



Proposition 8.2 The follow facts hold
m
(1) f u,v € H®, s > > then uv € H°.

luvl[ns < Csllulls [[v]] s

(2) f u,v e HN L™, then u-v € H*.
[1D%(wv)llo < Cs (lulee [[D*ullo + [v] 1 [|Dullo)

forl1<|a|]<s
(3) ue H5, Due L*®, v e H 1N L*® and |a| < s.

[1D%(uv)—uD*lJo < C (|Dulrs ||D°10llo + |v]== ||D*ullo)



(4) Assume that G(u) is a smooth function on a domain D, and
furthermore, u is a continuous function of (x, t) such that
u(x,t) € Dy cC D and u e H*°NL*>®. Then for s > 1,

oG
ID*G(u)llo < Cs 1D ullo
~1,01
o6 is C° 1( 1)-norm
Ou s—1,D;

Remark 8.7 Proposition 8.2 is called Moser-type calculus
inequalities on Sobolev spaces, which are the consequences of the
well-known Gagliardo-Nirenberge inequality:

For any u € H*(R™) N L= (R™), \D"ung < Cslu]t;g HDSqu,
0<i<s.



Proof of the Claim: Vo, 1 < |a| <.

[1A0(u) D* (A ()S)IF < CH[D(Ag™ (1) S(u)l[3
< Cllulz<c

> ISalls

1<|al<S
< ) Ao(w) [(Ag A)(u)D* dyw] — D (AT A; D w5
1<]ol<S
_ _ _ 2
< CH(|ID(AG A= [|D5 B wllo + |0 w|ie [|D5(AgA)llo)
< Cllwl|?



Step 4: Convergence of uX(x, t) (Contraction in lower norm
estimate)

Idea: We need to find a norm || - || such that
|uk —u|| =0 as k — 400
and A;j(u*) = Aj(u) j=0,1,2,--- ., m
Vuktl = Vu as k — oo

Lemma 8.2 (Contraction in Lower-norm) 3T, € (0, T,] and a
sequence {fx} such that

6 = . < allle¥ = o lor.. + 18

oo
with a < 1, Z |Bk| < +o00.
k=0



Proof of Lemma 8.2: Note that u*™1 — u¥ satisfies

Ao(u¥) dp(uF T — +Z Aj
(U — uk)(x, t = 0) = US“ ug

8k = S(uk, x, £) = S(uF 1 x, 1) = ) (Ai(u)

Jj=0

Then the standard energy estimate

k+1 _

[Ilu ukllo,7

k+1 _ uk) = g

Ai(uF71y) 8Xjuk

< Crexp{CTH|lug™ — ufllo + T|[Ju* — u*=[Jo,7}
lug — wollo < C e lluolly ek =€02”



It follows from Lemma 8.2 that
Ju € C([0, Tw], L2(R™))

such that
" = ulllor.. =0 as k— oo

Combining Lemma 8.1 with Lemma 8.2,

e Wlls, 7. + [[10eu*][s-r,7.. < €

u“ e D,

Furthermore, u € L*°([0, T..]; H®).



It follows from interpolation inequality

/ S/

1—5 £l
wlls < Cllwllg = [lwlls

that m
uk = u in C([0, T); H>) §+1§5’<5
and
ue Co[0, T.s] x R™)
and

u € C([0, Twi]; CHR™))



Oruk = d,u in C([0, Tws]; C(R™)) by using the equation, and
immediately
ue CH([0, Tu] x R™)

Therefore u is a classical solution of the Cauchy problem.
We need to show

u € Cu([0, Tu]; HS(R™)) N Lip([0, Tus], HSHR™))
i.e. for Vo € (H*(R™)) = H—*(R™)

(u(t), ) is continuous on [0, T..]



Note the following facts,

(1) H=* is dense in H™%, s’ < s.

(2) Since uk — uin C([0, Tux]; HS (R™)), (u¥, @) converges
uniformly on [0, T,.] for any p € H™S'.

(3) ekl 7. < R+ 1uflls.

Then (1), (2), (3) implies that (u*(t), ) converges uniformly to
(u(t), ) on [0, Tl
Therefore (u(t), ¢) is continuous on [0, T..].

(uk(t), 0) = (u(t), )
= (W(1), ) — (u(t), @) + (U (1), 0 — @) + (u(t), o — P)

This finishes the proof of Proposition 8.1.



Proposition 8.3 Let u be the classical solution in Proposition 8.1
satisfying

u(x,t) € Dy

and
u € Cu([0, Tu]; H*(R™)) N Lip([0, Thl; Hs_l(R’"))
Then

ue C([0, Tuu]; HS(R™)) N CY([0, T.]; HSHR™))  (8.27)



Proof: Weak implies strong by using the equations and the energy
estimate.

It suffices to show that
612 pg(oy = Temsor [[u(8)]1 a0y = Tmesos [lu(E)l]s,a0ce

where

0P ey = 3 /R < D%, Aofw) D > i

laf<s



Recall that
u(x,t) e Do CcC D

Cl < Ao(u(x,t)) < CH, 0<C<1
SO

Cllu@)I2 < u()]1Z a0¢e) < CHIu(OII2

I - [Is,40(t) defines an equivalent norm on H.



Since A is smooth enough, Ag(u(x,t)) € C! where
Ao(0) = Ao(uo(x))-

u € Cy([0, Tus], H*(R™)),

so
u(-,t) = up(-) as t— 0+
therefore
u(-,t) = up(t) strongly in  H*(R™)
iff

ol ls,a0(0) = Timesor [[u(t)]ls,0(e)

thus u(+, t) is continuous from right at t = 0.



This argument applies to each ty € [0, T..], so u(-, t) is continuous
from right at every ty € [0, T]. On the other hand, the system
(8.3) is hyperbolic. So it is time-reversible, the same argument
implies u(-, t) is continuous from left at every ty € [0, T..]

Ao Oru + ZAJ- Oxu = S(u,x,t)

j=1

Hence, u(-, t) is continuous at [0, T].



To show (8.27), we have a lemma,

Lemma 8.3 Let u be the classical solution constructed in [0, T..].
Then there exists a function f(t) € L*([0, T«]) such that

t
() pycey < 110012 oy + /0 f(s)ds (8.28)

Let us assume Lemma 8.3 holds, then taking limits t — 0+ in
(8.28) immediately, we obtain

T 2 2
lime—o+ [[u(t)][5 gy < [160l[5 a0 0)

This is nothing but (8.27).



It remains to prove Lemma 8.3. Due to the uniqueness of classical
solution, we can assume that u(x, t) is the limit of the approximate
solution u*(x, t).

uk(x,t) € C®NH®

with the uniform H®-estimate in Lemma 8.1.
Set uk+tl = D*uk+1. Then as before,

Ao(uF)0uk Tt + ZAj(uk) a)g.ug+1 =S,
j=1



where

Sa = Ao(uF)D (A~ (L*)S(uk, x, t)) + Fa

0
Fo = { 3 Ao(ut) [0 M (W)A ()0 ultt — D (A (6 A (uF)ay v )] (k2 1)
j=1

Thus the energy estimates yield

% Z A (Dauk+1’ Ao(uk)Dauk+1)
= Z (div A(u*)D*u**t D u* ) + 2/ Z (Sa, D u*™Ydx

B a)<s B |a|<s



Then

hence

IN

: The right hand side is in L>(]0, T..])

A= (Ag, A1, Am) (based on Lemma 8.1)

_ Z/ Da k+1 AO )Da k+1> < f( )

\a|<s

Z/ Da k+1 AO )Da k+1>d

|a|<s

Z/ (DUl Ag(u*) D k+1dx+/f

|a|<s



Taking limit kK — oo,

mk%oo Z/ (Dauk+1,A0(uk)Dauk+1)dX
Rm

laf<s

t
< IimkﬁooZ/ (DaugH,Ao(ué)DaugH)dx—i—/ f(s)ds
R 0

laf<s

= ||uolls,a0(0) + Jo F(s)ds

. . !/
By weak convergence of uk — uin HS, and vk — uin HY,
s"> 2 41, we have

mk—wo Z / (Dauk+1,A0(uk)DO‘uk+1)dx
Rm

lal<s

> Z/Rm(DO‘u(t),Ao(u(t))Dau(t))dx

la|<s



Continuation Principle

Ao(u) Oru + i%\j(u) Ox;u = S(u, x, t)
u(x,t =0) :j:ulo € H*(R™)
where s > 2 +1, ue Dy CC Dy
3T = T(S, |Juol[s) > 0
u e C([0, T]; H*(R™) N C*([0, T]; H*H(R™))

how large is T7



Let [0, T] be the maximum interval of existence of such H*®
solution. Then clearly

either T =400, u € ([0,00); H*(R™))
or T < +o0, then

lim_|[u(t)[|s = 400
t—T~

Since, if otherwise, lim,_, 1+ ||u(t)|]s < +oo.
Then
m
Ap Oru + ZAJ- Ox;u = S(u, x, t)

j=1
ulx,t =T —¢) = u|t=7_c € H®



Sharp Continuation Principle

Proposition 8.4 Assume that
(1) e H, s>3F+1, upcDy CCD.
(2) Let T be given time T > 0.

Assume that 3 constants C; and G, and a fixed open set D, such
that D1 CC D, CC D, so that on any interval of existence of
H?-solution in Theorem 8.2, [0, T..], T« < T, the following a
priori estimate hold.

(i) |div Al < C1 on [0, T,].
(i) |Du|i~ < G on [0, T,].
(i) u(x,t) € Dy V(x,t) € R™ x [0, T.].



Then

(a) u exists on [0, T] such that
u e C([0, T]; H*(R™)) n C([0, T]; H*~L(R™)).

(b) [u(®)llls, 7. < exp{(C1+ G)CT H{]|uol|s + C}, V T, € [0, T],
C is a uniform constant.

Remark 8.8 If [0, T] is a maximal interval of existence of H*®
solution, and T < +o0, then either

lime 7 (|0u|roe + |Vu|pee) = 400 or u(x,t) escapes every
compact subset of D as €— T_.



Remark 8.9 Assume that
(1) we H®, s> 3 +1.

(2) u(x,t) is a classical solution to (10.11), i.e.
u e CHR™ x [0, T]).

Then, on the same interval [0, T],
u € C([0, T]; H(R™)) n C*([0, T]; H*~(R™)). In particular, if
(i) up € NsH*;
(if) ue C([0, T]; H¥(R™)) for some sp > 7 + 1 and uis a
solution to (8.8).

Then u € C*(R™ x [0, T]).



Proof of Proposition 8.4: By the standard continuity argument,
it suffices to prove the a priori estimate in (b). Let u(x,t) be
classical H*-solution to (8.8) and satisfies (i)-(iii).

Ao(u) Oru + ZAj(u) Ox;u = S(u, x, t)
j=1
u(x,t =0)=u(x) e Dy CcC D

(iii) implies that
Cl < Ao(u(x,t)) < C71I



Set u® = D%u,

Ao O™ + ZAjan”a = 5

j=1

So = AoD*(Ag'S) + Fa
Fo= = Ao(u)[D(Ag A; Oygu) — AG A; 0]
j=1

F,=0 for a=0



For1 <|a| <s,

> Fallo

1<]al<s

< ) CH(ID(AY Al [D* D ulo + [Oulie |D3 (A A)o)
s

< C-Gf[D2ullo

> 11AD*(AG*S) o < Cllulls

laf<s

Then the uniform estimate in (b) follows from this and energy
principle.



Remark 8.10 This completes the local well-posedness of classical
solution to the Cauchy problem

u)atu—i—ZA )Oyu=S
Jj=1 m
u(x,t =0) =up € H*(R™) s>5+1

lim|y o0 U(x, t) = U



Local energy principle and finite speed of Propagation

Consider

Ao(x,t) Deu+ Y Aj(x,t) u + B(x, t)u = F(x, t)
j=1
u(x,t =0) = up(x)

Ai(x, t) = Aj(x, t), j=0,1,---,m.

Cl < A(x,t)<C7l,  (C<1)

(8.30)

(8.31)

(8.32)



m

D 2
mwﬁ>1< Z O wV, V) < ooV

AR

X




Proposition 8.5 (Local energy principle) Let u be a classical
solution to (8.30). Then it follows that

/ (Aou, u)(T)dx
[x—y|<d

< / (Aouo, ug)dx
|[x—y|<d+RT

T
+// 12(F, u) + (divAu, u) + (B + B*)u, u)|dxdt
0 Jx—y|<d+R(T-t)

Proof: By direct computation, using the symmetry of A

m

gt(u*Aou) +Y 0 (u*Aju) = utdiv Au + u*Bu + u*Bu + 2u*F

Jj=1



Then integrate on the trapezoid, using the Gauss formula,

Definition 8.5 (Uniformly Local Sobolev Space)
Let u € H (R™), then u is said to be in the uniformly local
Sobolev space H? (R™). If

yn;%,fq 6,y ulls = [|ul

s < too  for some d
where

Ix —y|
04, = 9( ¥

oy = 41T r<;3 0<0<1 6e CORY)
0 if r>1




Remark 8.11 ﬂ *||s,4 are equivalent norms for H;, for different d
and

ulls,qy < Cllulls,d
0<d <d, dr < dp < +00

Remark 8.12 In the uniform local Sobolev space H?;, the local
energy principle

‘“Ho,d(T)
-1 1 4. % ¥ Hoo T
< e (CTdv AT (B4 B T Huo||0’2d+RT+/ i3
0



Remark 8.13 If |im wu(x,t) =10, then uc H;,.

|x| =00

Other interesting uniform local spaces are used to handle the cases
such that

u(x,t) = u(xi, t): planary functions,

u : periodic function.



Theorem 8.3 Assume that
(1) wo € H;(R™), s > 7 +1
(2) ug € 751 ccD

Then there exists T = T(ﬂuoﬂsyd,Dl) such that the Cauchy

Problem (8.8) has a unique solution u € C([0, T] x R™) with the
properties

(i) u(-,t) € Dy, Dy CC Dy CC D
(i) ue C([0, T]; He (R™) N CY([0, T]; Hy H(R™))
(i) ue L>([0, T]; Hfl,)



Theorem 8.4 (Continuation Principle) Assume that
(1) wo € H;(R™), s > 7 +1
(2) T > 0 be given constant

(3) El_fixed constants M; and M> and a fixed open set D7 with
D; C D independent of T, € [0, T] so that for any time
interval [0, T] of the local H;,(R™) solution, T, < T, the
following a priori estimates hold

(i) |divA|~ <My, 0<t<T,
(i) |Duiw < Ms, 0<t<T.

(iii) u(x,t) € D1, ¥(x,t) € R™ x [0, T.]



Then the local regular solution exists on [0, T] with
we C([0, T Heo) 1 CH([0, 1 HEZY) 1 L=([0, T )
Furthermore, the local uniform energy estimate holds.

Remark 8.14 For one-dimensional theory

{ Oru + A(u) Oxu = S(u, x, t) x€R, ueR"

u(x,t =0) = up(x) (8.8)



Theorem 8.5 Assume that
(1) up € CYRY) such that

Juol|cr = |uolre + |ug|re < +00

(2) up € '251 cc D

Then there exists T = T(Dx, ||uo||c1) > 0 such that there exists a
unique solution to (8.8)" on R! x [0, T]. Furthermore, let T, be
the maximal length of the time interval [0, T,] of the existence of
classical solution and T, < +00. Then

either lime_ 1, |Oxu(-, t)|1c = +00
or  u(x,t) runs out of any compact subset of D as t — T,—

(Proof by characteristic method)



$8.4 Blow-up of Smooth Solutions and Formation of Shock
Waves

Otu+28xj Fi(u)=0

j=1
u(x,t =0) = up(x)
uo € HS(R™), s> g +1
First, we have a local solution, u € C}(R™ x [0, T]). Then
either T =400, i.e., 3 globalin time regular solution

either  lim;_ 7+ |[Vyu(-t)|rc = 400

or maximal T < +oo
+ { or u runs out of every compact subset of D



In particular, if D = R", then the second case implies

tlr?' lu(-, t)[ee = +00

Case 1: Formation of shock waves

Case 2: Shell singularity

Main Tasks in the Theory of Hyperbolic Conservation Laws
(1) Generally, shock waves form in finite time

(2) After formation of shock wave, how to extend the “solution”
globally in time in a “unique” way
e formation of shocks for scalar equation
e formation of shocks for planar waves (One-dimensional Theory)
e formation of singularity for 3-D compressible Euler equation



68.4.1 Scalar equations

1
8tu+ZA ) Ox su=10 uelR (8.33)

u(x, t—O)—uo( )

where

If m=1,

Oru+ 0x f(u) =0
or Oiu—+ a(u)dyu=0



Its characteristic x = x(t, @) is defined to

dx
{ & = a(u(x(t,0), 1)

x(t=0,0) =«

for any Cl-solution u(x, t). Then

da
dt

u(x(t,a), t) = up(av)

u(x(t,a),t) =0



Method 1: (Explicit formula)

In this case, a(u(x(t,a),t)) = a(up(a))

x = o+ a(up(a))t
u(x,t) = uo(x — a(uo(c))t)
= lu(t, )l = |luol[reo
AN
Dl t) = ()

If diaa(uo(a)) > 0, then [Oxu(x, t)| < |ug(c)||Le-

Using the equation, |Oru|i~ < C.



|Dujjee < My < 400, so there exists global smooth solution. If the
above condition fails, then 3« such that

d
Ja2(uo(@))la=ap <0
Then ug(ag) # 0, when
ToHT = —— 1 4w
) ana(uo(@))
up(x)

|Ocu(x,t)] = — 400 as t— T,—

1+ La(ug(a))t

In most cases, blow-up is proved by comparing some differential
inequality about a functional involving v and Vu with a Ricatti
type equation

dy _ o

at 7



Method 2:
a'(u)(Oru + a(u)dxu) =0

Then
Ora(u) + a(u) Oxa(u) =0
i.e.
a(u)?
Ora(u) + Ok < (2) ) =0
w = a(u

atW +ax (;W2> = O

Differentiate the above equation with respect to x,

2
o ome(9)) -

¢ (Ow) + w Oy (O w) + (Oxw)? =0

=



along the characteristic x = x(t, &)

d

—a(x(1), 1) + q>=0

where g(x, t) = Oxw(x, t).

Solving this Ricatti equation

do

|q(-,t)|Loo < 0 iff go>0

@ = - al(uo(a)



Method 3: (Geometric)

X :X(t, Oé)
dx
{ 4 = Au(x(t.0), 1)) = a(uo(@))
x(t=0,0) =«

" a

If a(up(cr)) increases with respect to «, then wave expands, so
there are no singularities.



d
Jap > 0, aa(uo(a)) <0

Jag and ag, ag < ap such that a(up(ai)) > a(uo(a2))
= wave compression.

For multidimensional case,

8tu+ZA )Oyu=0, Aju)=

A(u) = (A/( )
u(x,t=0) = uo(x)

8.34)
Am(u)) (



We define the characteristic curve through initial point

a= (a1, - ,am) as x = x(t, «) satisfies
ox
{ o = Alu(x(t,0), 1)
x(t=0,0) =«

where u is a Cl-regular solution to (8.34).

iu(x(t,Oz) 8tu+ZA u) Oxu =0

dt
= u(x(t,a),t) = ()

= x:a+A(:( )t



Method 1: (Explicit formula)

u(x,t) = uo(ar) = up(x — A(uo())t)

(1)
[[u(:s t)[|Lee = [|uol[Lee < +00
(2) ;
Viu(x,t) = Vg uo(a)a—j

It can be shown that (e.x.)

Vo tp(e)
Vul(x, t) = 7 + tdivaA(up(a))’



SO

 |[Vauo(a)l
Va0 = T g Aol

If divg A(ug(cv)) > 0, then there will be global smooth solution.
If 3ayg, such that divy A(up())|a, < 0.

Set

T, = < 40

divg, A(up())

as t — T, ||[Vxu(x, t)||f~ — 00 as t — T,.



Method 2: (Reduced to Ricatti equation)

{(MzA o, O>}

m
= 0¢(0x u)—i—ZA  (Ox; 1) —l—zm:ZA’(u Ox;u Ox;u =0

j=1 j=1i=1
Multiply the both sides by A’(u), and sum up from 1 to m,
ZA’ ) 01 (05;u) ZA’ 1) Oy (D)
ij=1

+ZA’ u) Oy uOyu =0

i= 1



Define g(x, t) = ZA’ Dy, u = diviA(u).
i=1

(ZA’ ) Ox, u) —l—ZA u) Ox; (Zm:Ai'(U)

m

j=1

(ZA ) Oru O, u—l—ZA ZA;/(U)OXJ.U&(‘.U
i=1

m

= 6tq+ZA qu+q =0
j=1
dq 5
= — =0
at 9

Ox; u)

)+q20



qo0

Therefore, q(x, t) = 1+ qot’
do

‘ ~ diva A(ug(a))
dive A(u(x, t)) = 1+ divg AEUO(a))t

If 3ag such that
diva A(uo(ar)) < 0,

shock must form at



Theorem 8.6 Assume that ug € H;(R™), s > % + 1, then the
Cauchy problem (8.34) has a unique global regular solution iff

divy A(up(a)) >0

Furthermore, if

min divy A(ug(r)) = mp < 0

1

then shock wave must form at T, = —-

Remark 8.15 HS,(R™) can be replaced by C}.



Remark 8.16 (Geometric meaning of the singularity)
Let u(x,t) be regular on R™ x [0, T],

Lagrangian map: L: a— X(a,t)

! j O((a, t)

J(t, o) = det (g)a()

J(t, «) measures the ration of the volume in the image to the
volume initially along the characteristic curve X(t, )



locally compression: Ej(t’ a)<0

d
locally expansion: aJ(t, a)>0

wave breaks down means infinite compression, i.e.

J(t,a) = 0 as t— T,

X (t, )
{ T = A(U(X(t; Oé), t))
X(t=0,0)=a

Then %J(t, 0) = (dive A(u(x(t, @), 1)) J(t, ).



If g(t, ) = divyx A(u(x(t, ), t)) >0,
wave expands =  global existence of solution.
If g(t, ) < 0, wave compressive.

In particular, if go(ap) < 0, shock must form.

Since
t
J(o,t) = exp/ q(s,a)ds

0

= exp/ 7%(&) ds
o 14 qo(a)s

= 1+ qo(a)t

— 0 as t— T,=—

qo(@)



68.4.2 Plane waves and formation of shock waves

Given any direction w € R™, |w| = 1, look for special

u(x,t) = U(x - w,t)
£:X'W7 U(X7t):U(€7t)
Oru+ Y AjOyu =0

0:U + A(u,w)0:U =0

where

{ Oru+ Alu,w)Beu=0, t>0, ¢eR!
U(X¢ t= 0) = uO(é.)

P. Lax, F. John, L. Hormander.



£8.4.3 Shock wave formation in plane wave solution

Oru + Z Ox; Fj(u) =0
j=1

(8.35)
u(x,t =0) = up(x)
u(x,t) = U(x - w, t) for a given direction w € R", |w| =1,
Ai(u) = 9.
Set { =x-w,
Ot + A(u,w) Ogu =0
8.36
L 20 2 e (8:30)

m

where A(u, w) = Z w;Ai(u),
i=1



LR =1.

Blow-up of simple waves

Let k be fixed, 1 < k < n. Assume that tip € D C R". Regard
re(u) as a vector field on D. As we can look the integral curve of
re(u) through T, i.e.

dU, (o
;0(' NG (8.37)

Uk(oc =0) = g




Joy, 0 < 0 < o4 such that (8.37) has a smooth solution Uy (o),
o€ (o_,04).

Uk(o) is called a k-th wave curve through Tp.

Next, solve the following initial value problem

{ at0+)\k(Uk(U))3§U:0 fERl, t>0

o(t = 0) = oo(€) o <oo(€) <oy, veert (83)

o(&, t) exist locally on [0, T], T is maximal time.

Set

U(f, t) = Uk(O'(f, t)) (839)



Claim: U(&, t) defined by (8.39), is a solution to the equation in

(8.36).
DU
8tU = ngata = rk(Uk)atO'
65U = (950 I’k(Uk)

orU + A(U)({%U = 0o - rk(Uk) -+ A(Uk)rk(Uk)(?ga
= (atU + Ak(Uk)aga)rk(Uk) =0



Definition 8.6 The Ux(o(&, t)) defined by (8.39) is called a simple
wave. Recall the previous result on the formation of shocks that

(8.38) has a global smooth solution iff

jgxk(uk(oo(f») >0

In other words, if 3¢y € RY, such that

d
—= M (Ui (00(€)))e=g, < 0
d§
shock must form in finite time
d _ oy, QUedo
= (VA[( . rk)ﬂ

(8.40)



Definition 8.7 (P. D. Lax) The k-th characteristic field is said to
be genuinely nonlinear at ug € D in the direction w, if

(V)\k : rk)(uo) 7& 0 (8.41)

And the k-th field is said to be linearly degenerate if

(V)\k . rk)(u) =0 Yu € B(;(UO)



Proposition 8.6 Assuming that the system in (8.35) is not linearly
degenerate in the direction w. Then 3 a k-simple wave which
blow-up in finite time, which is determined by

0(¢)
1+ (O A i(uk(o0(6))))t

Next, blow-up results due to F. John.

{ Oru+ A(u) Ocu =0
u(¢; t = 0) = wo(¢)

ug has compact support.



Theorem 8.7 (F. John) Assume that
(i) The system in (8.36) is genuinely nonlinear on B;(p).
(i) wo € H(RY), s > 3. ug has compact support in the sense
that
o — g € CH(RY)  supp (up — Tip) C [a, b]
Then there exists a 6y = 0p(J, A) > 0 such that if

0<6=(b—a)?|up|i= < 6o

Then the solution to (8.36) must form shocks in finite time.



Key ideas of the proof:

e Huygen's principle
If A(u) = Ao, constant matrix

PYPRERIND W constant

m
u(x,t) = Z ajri,
i=1

e characteristic decomposition of spatial derivatives

e reduced to a Ricatti equation



Step 1: Canonical representation

Let u(&,t) be a C2-smooth solution. Consider the j-th
characteristic £ = &j(t), i.e.

a§j _
= A(u(&(1). 1)

We denote the differentiation along the j-th characteristic as —,

tj
ie. J
— =0:r+ A0
dtj Ao
Then the system (8.36) can be written as
l-t(u)iu:0 j=1--,n (8.42)
J dtJ 9y Y

(8.42) is called a canonical representation of (8.36).



Step 2: Characteristic decomposition Ocu

agu == Z wij r,-(u)
i=1
where w; = [f(u) O u.

John's formula

D n
w; = Z ikl Wk Wi
Dt Vi
k,I=1

(8.43)

(8.44)



viki(u) are called interaction coefficients given by
1
ikt = =5 (A= M) lilres n] = (VA - ne)di (8.45)

[rk, r/] = Vrk s — Vr, %

Properties of iy

{ (1) vii = —VAi-ri=—1 (by normalization) (8.46)

(2) Yikk = 0 if i # k



Key idea:
(1) “major” term in (8.44) is v;; w? = —w?

‘.
(2) (8.46) implies that no other self-interactions in (8.43), i.e. all
the other terms in (8.43) involves w; wy, j # k which are the

products of waves from different family.

(3) For the initial data with compact support, the approximate
Huygen's principle applies, so waves with different speeds
eventually separate, thus wy w; must become smaller for large

time, so J
g i = i w? + O(1)

Thus, one can obtain a Ricatti type differential inequality, Dy
blow-up in finite time for w;. In order to ensure the u still remains
B5(0), then one has to show ||0¢ul|;1 is bounded.



Remark 8.17 In Theorem 8.6, we require that every characteristic
family is genuinely nonlinear, which does not apply to 3 x 3 gas
dynamics equation since for which the entropy wave family is
always linearly degenerate.

Theorem 8.7 (JDE, 1979, T. P. Liu) Assume that
(i) The system in (8.36) is strictly hyperbolic.

(i) Each characteristic field is either genuinely nonlinear or
linearly degenerate, 3N C {1,2,--- ,n}, such that A; is
genuinely nonlinear if i € N, ); is linearly degenerate if
je N ={1,2,--- ,n}\ N.



(i) Linear waves never generate nonlinear waves, i.e.

Yiki =0 if ieN and k,l € N©  (8.47)
(iv) wo € H5(RY), s >3, u—tip € CHR?), supp (u — To) C [a, b].
Then there exists 0y = 6p(d, A) > 0, such that if

0 = (b—a)|uglLe < 6o

0 <& = max|wi(&)le=, wi(€) =/ (u0(&)) e uo(€) ~ (8.48)

Then any Cl-solution to problem (8.36) forms shocks in finite
time. Furthermore, if 8 < 6y, ¢ = 0, then smooth solution exists
globally.



Remark 8.18 If N contains only one element, then (8.47) is
satisfied automatically. However, for one-dimensional gas
dynamics, only one family (entropy wave family) is linearly
degenerate. So Theorem 8.7 indeed applies to 3 x 3 gas dynamics
system.

Remark 8.19 In (8.48), ¢ measure the strength of the initial
nonlinear waves, Theorem 8.7 implies if no nonlinear waves
initially, the global smooth solution exists. In particular, if the
system is totally linearly degenerate, i.e. N = ¢. Then (8.47) is
satisfied automatically also. Theorem 8.7 implies global existence
of smooth solutions. How about the multi-d case?

Remark 8.20 All the results of F. John has been generalized to
the case, the characteristic fields may have inflection points, by
Hormander, Da-Tsien Li, etc.



Shock formation for systems endowed with coordinates of
Riemann invariants

Definition 8.8 A c(u) is said to be an i-Riemann invariant if
Ve(u)-ri(u) =0 YueD (8.49)

Look at (8.49), which is a 1-st order PDE. By the characteristic
method, one can find (n — 1) i-th Riemann invariants ¢j(u),
j=1,---,n, j+# i, such that

VCJ"I’,'ZO

and V¢;, j # i, span the orthogonal complement of r;.



Definition 8.9 The system

Oru+ A(u) Ocu =0 (8.50)
is said to be endowed with a coordinate system of Riemann
invariants, if 3 n scalar valued function c;(u),--- , cy(u) such that
cj(u) is an i-th Riemann invariant for (8.50) for all j # i,
i,j=1,---,n,and V¢ij(u), i =1,---, n are linearly independent.
Proposition 8.7 The functions (c1(u),-- , cp(u)) form a

coordinate system of Riemann invariants of (8.50) iff

Vei(u) - ri(u) = { 7&00 : ij (8.51)

Since (8.51) = c¢j(u)//li(u), therefore

(Va(u), -, Ve (u)T = L(u)



Remark 8.21 V¢;(u) must be a left eigenvector of A(u)
associated with ;.

Recall the canonical form of (8.50)
li(u)(Oru + Aj O¢u) = 0, i=1,---,n (8.52)

Now assume that (8.50) is endowed with a coordinate system of
Riemann invariants

c(u) = (a(u), -, cn(u))

Then
li(u) = Vei(u)



Then go back to (8.52)
0 = [i(u)(Oru~+ Ni(u)Ocu) = Vei(u)(Oru + Ai(u) O¢u)
= 61» C,'(u)+)\,-(u) 85 c;(u)

8tc,-—|—>\,-(c)8§c,-:0 i=12---.n (853)

Remark 8.22 In the case n = 2, this can be done always.
However, in general, for n > 3, the system to determine the

invariants is over-determined, thus has no solution.



Proposition 8.8 Assume that (8.50) is endowed with a coordinate
of Riemann invariants c(u) = (c1(u), -+, cp(u)). Then

(1) Its canonical form is given by (8.53), which is diagonal system.
(2) Forany i, i=1,---n, ¢i(u) is constant along an i-th
characteristic associated with any smooth solution.

In particular, for any smooth solution u(x, t)

[le(u(, )l = [[e(uo)l|L= (8.54)

In the rest of this section, we always assume that (8.50) is
endowed with a coordinate of Riemann invariants
c(u) = (c1(u), -+, cn(u)), which can be normalized so that

Vei(u) - () = 5 (8.55)



Proposition 8.9 Assume that (8.50) is endowed with a coordinate
system of Riemann invariants such that (8.55) hold. Then

(i) lri,rk] =Vrj-re—=Vre-rj=0 Vj, k (8.56)
(i) rfV2cn=—V¢ V=0 i#j#k#i (857)
(iif) %gz,k - gi" PAj kA (8.58)



Proof of Proposition 8.9: Recall that u — c(u) is differomorphism,
and

Du Dc Dc &

DcDu T DubDe ~

Then it follows from (8.55),

Du Dc
E:R(U):(rl(u)v'” 7rn(u))7 EEL(U)
i.e. ou
ac =ri(u), ri(u) = ri(u)

Thus for any smooth function ¢,

gfi — Vo (1) = Voo - (1) (8.60)



Step 1:
0=V(Vci(u)-r(u))r=r Vicin+Ve-Vrin
so
VeVrne=—rfVocnr  Vijk=1--n (8.61)
VeV =—riVicer,  Yijk=1,--,n
Veilr,nd=0 < [5,n]=0
since it is true for all i, =

By (8.60), this is equivalently
or;  Ork

8ck N aCj



Step 2:

Arj

V(Ar)ri

Al’k

V(Ar)ri

rf VAr+ AVrj ry
ri VAr + AVri rj

Aj 1j

V(/\J-rj)rk = V)\jrkrj + /\J-Vrjrk
Ak Tk

V(/\k rk)rj = VAkrirk + ANeVirj
VAjrcr + AV

\O rjrg + PYAVIS I

Since A= VF, so VA is symmetric. Taking the difference, we have



Alris ]l = (VA ) — (VA r)nc + AjVrpne— M Vrrg

(VA = (VA = MV — N Vnne g oy

This implies that Vr; ri is a linear combination of r; and r,. Now

for i #j, i # k, j# k

. V/\J r V)\k rj
V¢iVrire = N )\ch, (v )\ch, rk (8.63)
=0

Then (8.57) follows from (8.61) and (8.63).



Step 3: By (8.62),

2y Ok
8’] o ¢k o 8CJ re
- J
aCk )\k — )\j )\k — )\j

or;

Bc gjkrj—i_gkjrka jvk:]-a"'7n7 J#k

Differentiate the equality with respect to ¢;,

82rj 6ng 8I‘J 8rk 8gkj
78ck8c, g it Jk@ + 84 +

rk
ac; oc;

(8.64)



Substitute (8.64) into this formula,

d9%ri  Ogjk 08y
“da e g — gj(gji 1; + &ij 1) — 8kj(&«i i + ik i) + ¢, 'k
By the symmetry of i and k,

P Ogi Igij
BT il vl gji(gjk rj + &kj re) — &ij(gik ri + &ki rk) + 9"
This implies

ogjk  0Ogji
(8:"_8;,(’ i+ i )+ ri( )=0
1

SO
agjk _ 8gj,'
aC,' 8Ck




Theorem 8.8 Assume that

(i) (8.50) is endowed with a coordinate system of Riemann
invariants c(u) = (c1(u),- -, cn(u)).
(ii) (8.50) is strictly hyperbolic.
(iii) 3i€{1,---,n} such that the i-th family is genuinely

nonlinear 9
VAir #0 ( ”;Ao)
aC,'
(iv) up € H3(RY), s >3 and 3& € R?! such that
dC,(Uo(&))) 8>\, 8)\,

e og <0 5g = VAilwl(&) ri(w()  (865)

Then smooth solution forms a shock in finite time.



Proof of Theorem 8.8:

Step 1: By (8.54) in Proposition 8.8, ||c(u(, t))||rec = ||c(uo)|| Lo,
so there are no shell singularities.

Step 2: To estimate Jzu. Set
(%u = Z Wi rj, w; = /,' . 8§u = VC,'(U) 8§u (8.66)
i=1

SO

Wi = 85 Cj (8.67)

d

EW,' = 0w + \; 85 w; = Z’yijk W W (868)



and

7ijk = / [I’J, rk] (V)\, . ,:[')61'/(
- %)\
J
d O\
—w, = ——Ls; .

- ZJ: <_22W’ W’) (8.69)




Step 3: Find an integration factor for (8.69)
d
E‘D(U)
d
= o) (In fact, &' (u) = Vo(u))

d
ou

= CD,(U) a + )\,’8§u>

8tu:—A6§u:—AZerj:—ZWjAjrj
J J

Therefore,

%Cb(u) = 9'(u) (Z)\j“ﬁerr)‘fZV"frf)
= (u)d (N —A)wi

J#i



Thus for any smooth function ®(u),

d (ow,,) = 90w,  owmd
dt(e W’) T Wit e dt’”

u d u
= % )EWi-Fe(D( o' (u ;()\i — Aj)w; 1y Wi
JFI

= W —Z W,VVJ—l—VCD U)Z W,erj}

J#i

N O
SR S 17 i Cm TS AJ-))W,-WJ}

J#i J

O\ oA 09
— %)) T4 2 LAS VI W
€ aC,' Wi ;(acj aqj()\l )\J)> WIVVJ}




Claim: One can choose an integral factor ®(u) such that

O\
od B g

A AN — )\

jAi (8.70)

Assume that the claim (8.70) holds

Claim is followed from (8.58) and (8.59).





