Section 6. Asymptotic Behavior of Weak
Solutions for System of Conservation Laws

Oru+ 0xf(u) =0, ueR" (6.1)
u(x,t =0) = up(x) (6.2)
XETOO UO(X) = U, Xﬂrﬂoo UO(X) -y

u;, u, € R™ are two constant states.
Al (6.1) is strictly hyperbolic.

)\1(U) )\z(u) < -

)

right eigenvector y1(u), 72
left eigenvector h(u), h(u) - ( )



A2 Each characteristic field is either genuinely nonlinear or
linearly degenerate.

8tu+axf(u):0

uy x<0
ulx,t=0) =
(x; ) {u, x>0
ur(x,t), Jup = uy, u1, U2, -+ , up = u, such that

ui = T;(uj—1), here T;(u) is the i-th wave curve through the
base point u.

Let U(x, t) be the unique viscosity solution to the Cauchy
problem (6.1) - (6.2). Then one can regard U(x, t) as a limit
of approximate solutions constructed by Glimm's method.



Goal: What will be large time asymptotic behavior of U(x, t), as
t — 4007

If n=1, f is convex, then this problem is well understood.

Case 1: uj = uy, ur(x,t) = u; = uy, then u(x,t) — u, — 0 as

t — 0o, with the decay rate [ —

V't

Case 2: u; > ur, U(x,t) — ug with a phase shift (shock).

Case 3: u; < uy, U(x,t) — ugr (rarefaction wave).



Conclusion (n = 1). The large time behavior of U(x, t) is

determined completely by the far fields of the initial data (v, u,),

in other words, the Riemann solution is “stable”.

Question: What happens for n > 1?7
Let U(x,t) be a Glimm solution. By the strict hyperbolicity,

A (U(x, 1)) < Xa(U(x,t)) < -+ < Ap(U(x, 1))
36 >0, uj, i=0,1,--- ,nsuch that

po +6 < min A1 (U(x, t))
X,t

(x.t)

max An(U(x,t)) + 9 < pn

X,t

max A\i(U(x, t))+6 < pui < E’nlr} Air1(U(x, t))—6, i=1,---
x,t



Primary Region: Q;, i =0,1,--- /n+1, is defined as

t
x=pt
x= it x=pt
& Q
Q)
QD
Qo
Q = {(xt); x<pot}
Q= {(xt); pi1t <x<pjt} i=1,--

Qnp1 = {(X7 t); X > [bn t}



Example: n= 2.

X=pt

X=pt




Theorem 6.1 (Asymptotic behavior toward Riemann Solutions)

Let U(x, t) be the viscosity solution to (6.1) and (6.2) with small
initial total variation. Let ug(x, t) be the corresponding Riemann
solution w, =, t, (uy, u,) solved by elementary waves (uj_1, u;) as
described before. Then

(1) U(x,t) »> u;j as t — 400 as ;:u,-.

(2) If VAi-vi>0,i=a,- - y Op.
(uj—1, u;) is i-rarefaction wave, i.e., \j(uj—1) < Aj(u;). Then
the amount of j-shock wave in €2; approach zero as t — oo
and U(x, t) approaches the centered rarefaction waves

(Ui—la Ui)-



(3) f VXi-vi>0,i=oa1, - ,0p and (uj_1, u;) is an i-shock,
i.e., Ai(ui—1) > Ai(u;). Then in Q;, the solution U(x, t)
approaches (uj_1, u;) both in strength and in shock speed,
furthermore, the total variation of U(x, t) in £; away from the
shock approach zero.

(4) f VXi-vi=0,i=p1,---,Bap. In this case, (uj_1,u;) is an
i-contact discontinuity, and \;j(uj—1) = Ai(uj). Then

A,’(U(X, t)) — )\,'(U,') = )\;(U,',l), (X, t) S Q,’, t — +o0.

The distance between {U(x, t), (x,t) € Q;} and
T;ui_1 = T; u; approach zero as t — +o0.



Main Idea of the Proof:

(1) Nonlinearity introduces dissipation: expansion waves cancels
compressive waves (due to entropy condition).

(2) Decoupling of waves «— nonlinear superposition principle
<= when t > 1, only i-wave dominates on ;.

Theorem 6.2

Let X,i(i =1,2; 1 < k < n) be two generalized k-characteristic
issued from two points on t = tp, with X,} < X,g, let t1(> ty) be

any time after which Xi does not intersect X{'/ for i # k. Denote
by Dk(t) the distance between X! and X2, i.e.

Di(t) = Xie(t) — X (t)



X;f(t): amount of k-rarefaction wave between X} and X?.
X} (t): amount of k-shock between Xt and X? (does not include
X, i=1,2). Then for t > t1,

57(0) < 24 4 00)IQulto, ) + o, 1)

where Qk(to, t) is amount of wave interaction between tp and t
and X! and X2, hk(to, t) is the total amount of i-waves crossing
Xt (X?) forall i > k (i < k) between to and t.

1t
Xk X2

Dy.(t)




Proof of Theorem 6.2

Step 1: Approximation conservation laws

Let A be a region bounded by either generalized characteristic or
space like curves.

LE(N) = EF(N) F (M) + O(1) Q(A)

Li(A) : i-waves leaving A.

Ei(A) : i-waves entering A.

c(A) : i-wave cancellation in A.
Q(A) : interaction happening in A.



Step 2: Expansion of rarefaction waves

Recall that a generalized characteristic curve is piecewise Lipschitz
continuous which is either a genuine characteristic or a shock.

Xk (t) is the total amount of j-waves (j # k) between X} (t) and
X2(t).

Denote uif'(t) = U(X](t)=, t), then

d d d

Dilt) = 5 Du(t) = 5 OG(0) — 5 XK

= A1) 0 (1) = (U (), U (1)



Fact 1: 36(t) € (0,1) such that

Di(t) = 0(£)(A2(2) = AL (1) + (1= 8() (A2 (1) — AL (D)
where A7/ (t) = M (U(X[(t)+, t)) (due to entropy condition).
In fact, 36 € (0,1) such that

(1) Di(t) < ON() = ANHE) + (1 —0) (AF2(1) — A H(e).
1

(2) Di(t) = (A\2(t) — AFH(E)) + (1 — 0(t)) (strength X! +
strength X?).



Indeed,
Di(t) = 0(t) (\2(t ) YA )) (1—16(1))

(>\Z2(f) 2(1-“) FAZ(E) = AL + M) = A ().
Fact 2:

(1) 3t1 > to, such that all Xi (k # k') crosses X{, before t;.
(2) Vt > t1, Is such that t —s = O(1) Dk(t) such that X? ,
crosses X} and )(;+1 crosses X? before t.

\ t=t
| |




Step 2.1: Estimate X,(t) (total amount of i-waves (i # k)
crossing (XL(t), X2(t))).

If i < k, by applying approximation conservation laws.

t
T() < 0(1) [ d(helto, )+ Qulto. 7))
S
for i > k, similar estimate also holds, so,

e(t) < O(1) / " d(helto, ) + Qulto, )



0(1) ngt)
0(1) / d(Qk(to, 7) + hi(to, 7))

A2 (t) = AH(t) + (1 —0(t)) (str X2(t) + str XL(t))

t

/() + () + O) [ d(Qulto.7) + he(ta.7)
(1 - 0(t)) (str X2(t) + str XA (t))



Integrate with respect to t from t; to t,

Dk(t) — Dk(tl)
= /t (XF(m) + X (7))dT + /t (1 —0(7)) (str XZ(7) + str X}(7))dr

+0(1) /t ' d(Qu(to, &) + h(to, &))dT

t
/ (X5 (r) + X (7) + (1 — (7)) (str X2() + str XA (r))dr
t .
+0(1) [ (7= 5) d (Qulta,7) + (10, 7))
t1
Recall the approximate conservation law

LF(N) = EFN F a(h) + 0(1) Q) (63)

<for a, B, c(a,B) = %(\04 +18] — la+ 5|)>



So if we apply (6.3) to A,

Xi(t) = X(r) = a(A) + O(1) Q(r, 1)
< X7 (1) + O(1) Qu(, 1)
ie. Xf(r) > Xf(t)+ 0O(1) Qu(r,t)

[T




Similarly, applying (6.3) to A,

X, (1) to) + ck(A1) + O(1) Qi(to, 7)

X (
X, (to) + O(1) Qk(to, 7)

>
Therefore,

Di(t) = Di(t1) + f@(t)(t — t1)
+0(1) Qi(m, t)dT + X (to)(t — t1)
+0(1)/t Qu(t0, 7)dT
+0(1) /t (1 —0(7)) (str Xo(7) + str Xi(7))dT

+ 0(1)/t Di(7) d (Qu(to, ) + hi(to, 7))



so,

Xy (6)
< tDk_(Z + (—Xk(to) - t(:lt)l /t: (1- 9(7))> (str Xo(t) + str Xy(7))dT

+0(1) Qulto, ) + O(1)— rl/ De(7) d (Qu(to, ™) + hi(to, 7))

X () < Dk(t)+0(1)[—X;(to)—max str Xy (7)+Q«(t, to)+hk(t, to)]

This is true for any two characteristic, just do this procedure for
the increasing variation part.



Next, we turn to the Proof of Theorem 6.1.

Lemma 6.1

ddg > 0, such that if T.V.ug < dg, then
(1) T.V.u(-,t) < cdo Vit >D0.
(2) Q(0,t) < vVt >0.

here Q(t1, t2) is the total amount of wave interaction taken place
between t; and t.



Proof of Lemma 6.1: Since u(x, t) is a solution generated by
Glimm’s scheme, so (1) is true for the Glimm approximate
solution, thus it is true for its limit.

To see (2), we consider any J-curve J and its immediate successor,

QR(J) - QM) < —-D(A)+0(1)D(A)L(Y)
< —% D(A)  (by (1), L(J) is sufficiently small.

Now, we consider a region A whose domain of dependence
contains a mesh curve J, and A consists of all diamonds. Then
summing the above inequality up, we can get

=Y D(A)<2Q(J) < a.

AeN



Take limit to Glimm’s approximate solution

QN) <= Q(0,t) < q.

Lemma 6.2

Ve >0, Itg = to(e) and M = M(g) such that
(1) Q(to,t) <e Vit > t.

(2) T.Vq=my u(- o) <e.

Proof of Lemma 6.2: These follow from Lemma 6.1.

Lemma 6.3

Let I'; be the region between X! and X2, Ag be the region left of

Xll, A; be the region between X12 and X,-l_s_1v i=1,---,n—1, and

A, be the right of X2. Then for any t > t1.



T.
A u(,t) = O(e).
he amount of j-waves outside of I'; at time t is O(e).

iou(,)=0()e.
x+(e) < 20 L oqye.
J t—t1
Alt Lo Ia

I3




Proof of Lemma 6.3: We start with (2). Applying approximate
conservation law to the Region R (which is the right of X,f for
i < k), one can get

LF(R) < EF(R) + O(1) Q(R).

xk3L A sz




Therefore, the total amount of i-wave (i < k) crossing

X2 = O(1) &, the total amount of k-waves on the right of

X2 = O(1)e. Similarly, one can apply the approximate
conservation law to L (left of X!) for i > k, then the total amount
of i-wave (i > k) crossing X} = O(1) ¢, the total amount of
k-wave on the left of X} = O(1)e.

Thus (2) is true, and
hk(to, t) = 0(1)5.
Immediately,

XH(t) < fk(g +001)e,

(1) and (3) are consequence of (2).



Lemma 6.4

The total amount of i-waves in the region €2;, j # i,

j=0,1,--- . n,n+1 at time t approaches to 0 as t — +oc.
t
2,
o,
r,
Iy Iy Q;
Qg Q,
M M t=t,

Proof of Lemma 6.4: By the strict hyperbolicity, for large t, one
has

I’,- C Q,’,

so the conclusions follows from Lemma 6.3.



Lemma 6.5 (Emergency of contact waves)

Assume that V-~ =0, Vi=f1,--,8,—p. Then

V (xkstk) €N, k=1 —1,i,i=pj,--, Bnp.

(1) Xi(u(xi, ti)) = Ni(u(xi—1, ti—1)) + O(e).

(2) U(xi, tj) € Ti(u(xi—1,ti—1)) + O(e).

Proof of Lemma 6.5: By (3) of Lemma 6.3, without loss of

generality, tj_1 = t;. Since \;(u(-, t;)) changes only when it crosses
J-waves for j # i which is of order O(¢).



Lemma 6.6 (Emergency of shock wave)

Suppose
VAi(u) - vi(u) >0, i=ag, - ,qp.

Then d kg such that if
Ni(u(xi, ti)) < Ai(u(xi—1, tic1)) — ko e, (xi, ti) € A .

Then for sufficiently large t
(1) X7 (t) = O(e).
(2) X! and X2 collide to form an i-shock with strength

/\,‘(U(X,'7 t,')) — /\,‘(U(X,'_l, ti—l)) + O(é“)



Proof of Lemma 6.6: Recall that

A2(8) = ATH(e) XF(t) + X7 (t) + O(1)

1

Xi(t)
X () + X7 (t) + O(1)e

Ai(u(x;

B IOVE(O () (007 )
=B (1) X (8) + (- 0)(Mu(x 1)) — Ai(ulx
< x;(t)m— 0) (A £)) — (i1 1))
< 0 2 g0, ) - M(u(xio, 1))

t—t

AP() = A7) = Ai(U(xi, 1) = Ai(u(xi-1, ti-1)) + O(e)

0<f<1)

)

1,
+
+

£

0(e)

1)) +0(e)
0(e)



Set

Solving this differential inequality

Hi(t) < (t — t1)? Hi(ts +1) 4+ O(e)(t — t1).

S
=
A

(Ai(u(xis 7)) — Ai(u(xi-1, ti-1)))(t — t1)
+0(1) (t—t1)? + O(e) (t — t1) (%)

= [(Ai(u(xi, 1)) — Ai(u(xi-1, ti-1)))
+0(1)e](t —t1) + O(1) (t — t1)9



Choose kp sufficiently large, then
Di(t) <0 for t>1,

so the conclusions follows.

Lemma 6.7 (Emergency of rarefaction waves)

Assume that \;(U(x;, t;)) — N\i(U(xi—1,ti—1)) > —O(1) & for some
uniform constant O(1) > 0. Then

(1) X5 (t)] + |str X/ ()] = O(1)e.

(2) U(xi, t7) € R (u(xi—1, ti—1)) + O(1) e.



Proof of Lemma 6.7: By Lemma 6.3,

20 o)

Ai(u(xi, t7)) — Ai(u(xiz1, tie1))
+0(1)(t — 1)1+ 0(1) e
[)\,’(U(X,', 1.',')) - )\,'(U(X,;l, tifl))]
+0(1)e for large t.

i (1)
(By (%))

ININ

IN

On the other hand,
Ai(u(xi, t)) — Ni(u(xiz1, tiz1))

M2 = A7)+ 0(1) e
XF(t) 4+ X7 (8) + O(1) Xi(t) +str X; + O(1) e



so,

X () — [Ni(u(, 1)) — Ai(u(xio1, tio1)]
X5 (8)] + |str Xi| = O(1) e
—0(1)e

AV

Thus,
X;r(t):)\,-(u(x,-,t,-)) Ai(u(xi—1, ti-1)) + O(1) ¢,

SO,

X7 (8)] + [str Xi(t)] = O(1).

We need to relate (uj—1, uj) in ug(x, t) to (u(xj—1, ti—1), u(x;,ti)).



Lemma 6.8 (Comparison with the Riemann solution)
Let (uj—1, u;) be the i-th wave in the Riemann solution

ur(x,t) =u (%),

atu+3xf(u)20

uy x<0
U(X’O):{ u,l; x>0

Then
|u(x;, ) — ui|l = O(1) ¢, YV (xi, ti) €N .



Proof of Lemma 6.8 It follows from Lemmas 6.5, 6.6, 6.7. We
can find @; such that

(1) ‘INJ,' — U(X,', t,')’ = 0(1)8.
(2) u; € T,‘(ﬂ,',l).
(3) (81, 0;) is an i-th elementary wave.

i.e., the superposition of (&ij_1,T;), i=1,---,n solves

Oru+0xf(u)=0

p x<0
“(X’tzo):{ B, x>0



On the other hand, by definition, (u;j_1, u;) is the i-th elementary

of ug(x,t) =U (%)

atu+5xf(u):0

o u—=u x<0
U(X’t_O)_{ uy =u, x>0
S0,
‘flo—u_’:’ao—UO‘:O(l)E.
Similarly,

|Up — up| = O(1)e.
By continuous dependence of Riemann solution,

|lj,'-U,'| = 0(1)8, i:1,--~,n,
so |u(x;, ti) — ujl =1,

I
o
—
—
~—
™
=
S



Final proof of Theorem 6.1

Proof of (1): Ve > 0, let Xj, I, Ak defined as before, clearly for
large enough t, I'; C Q;. Furthermore,

X:Mftc/\l'a

so for x = pjt, u(x,t) = uj+ O(1)e. Since ¢ is arbitrary, so
u(x,t) — uj on % = pj, as t — o0.

Q Q,




Proof of (2):

Step 1: i =, --ap, VAi-7; >0, (uj_1, u;) is a centered
rarefaction wave, i.e. \j(u;) > Aj(uj—1). Then by Lemma 6.8,

)\,’(U(X,‘, t,')) — )\,’(U(X,'_l, t;_l)) > —0(1)6
(xis i) € Niy (xi—1, tic1) € Ni—1 -
Then Lemma 6.7 implies

X (t)] + |str Xi(t) = O(1) e.

On the other hand, for large t, I'; C €;, so by Lemma 6.3 that the
total amount of i-shock wave in Q; is order of O(e), which tends
to zero as t — 400 since ¢ is arbitrary = only i-rarefaction
waves left.



Step 2: We need to show in fact u(x, t) — (uj—1, u;) in Q; as

t — co. By Step 1, 3t > t; such that

X ()] + |str X;(t)] < O(1)e and also the speed X} and X? are
given by \;j(uj_1) + O(g) and \j(u;) + O(e) respectively.

Let /f(j = 1,2) be the edges of the centered rarefaction wave
(uimy, ), = {0, 8) 5 = Aiuia}, P ={(x,0)] § = Ai(ui)}-
Then for t > to + O(1) Dj(t2), one has

IXH(E) = ()] + IXP(E) = IF(1)] = O(1)e (t — 2) + O(1).

&




Let u*(x, t) be the centered rarefaction wave.

@)
)
3

|u*(x,t) —u(x,t)| = O(1)e, V(x,t) e (NiUAN_1)NQ;.
(2) |u*(x,t) —u(x,t)]=0(1)e, V(x,t)el;CQ,.

(1) (X7 t) € N1 NQ;, then

|u*(x,t) —u(x, t)| < |u*(x,t) — uj—1| + |uji—1 — u(x, t)]
= o)~ 0" ((0). 0]+ O
< O(1)e for t large enough.

Now we fix (x,t) € [';, t> to + O(1) Di(t2). By Step 1, no i-th
shocks and other j-waves ( i) (mod O(g)), and since (1) holds
true. Ix* € (1}(t), ?(t)) such that

|u*(x*, t) — u(x, t)| = O(e).



Through (x*, t) we draw a generalized backward characteristics
curve X, its speed changes only when it crosses other waves, since
X stays in [';, thus the total amount of other family waves are of
the order O(e), and when it cross the i-shocks, then its strength is
O(¢), so the speed of X is A\;(u(x,t)) + O(¢)

Ix* — x| =0(1)e|t — to| + O(1)

then

|U*(X7 t) - U(X7 t)’

IAIA

|u*(x, t) — u™(x*, t)| + |u*(x*, t) — u(x, t)]
O(l)])\i(u*(f, t)) — Xi(u*(x*, )| + O(e)
0(1) X_tx ‘+ O(¢)

O(¢) for t sufficiently large.



