
Section 6. Asymptotic Behavior of Weak
Solutions for System of Conservation Laws

{
∂t u + ∂x f (u) = 0, u ∈ Rn (6.1)
u(x , t = 0) = u0(x) (6.2)

lim
x→+∞

u0(x) = ur , lim
x→−∞

u0(x) = ul

ul , ur ∈ Rn are two constant states.

A1 (6.1) is strictly hyperbolic.

λ1(u) < λ2(u) < · · · < λn(u), u ∈ Rn

right eigenvector γ1(u), γ2(u) · · · γn(u)
left eigenvector l1(u), l2(u) · · · ln(u)



A2 Each characteristic field is either genuinely nonlinear or
linearly degenerate.

∂t u + ∂x f (u) = 0

u(x , t = 0) =

{
ul x < 0
ur x > 0

uR(x , t), ∃ u0 = ul , u1, u2, · · · , un = ur such that
ui = Ti (ui−1), here Ti (u) is the i-th wave curve through the
base point u.

Let U(x , t) be the unique viscosity solution to the Cauchy
problem (6.1) - (6.2). Then one can regard U(x , t) as a limit
of approximate solutions constructed by Glimm’s method.



Goal: What will be large time asymptotic behavior of U(x , t), as
t → +∞?

If n = 1, f is convex, then this problem is well understood.

Case 1: ul = ur , uR(x , t) = ul = ur , then u(x , t)− ur → 0 as

t →∞, with the decay rate

(
1√
t

)
.

Case 2: ul > ur , U(x , t)→ uR with a phase shift (shock).

Case 3: ul < ur , U(x , t)→ uR (rarefaction wave).



Conclusion (n = 1). The large time behavior of U(x , t) is
determined completely by the far fields of the initial data (ul , ur ),
in other words, the Riemann solution is “stable”.

Question: What happens for n > 1?
Let U(x , t) be a Glimm solution. By the strict hyperbolicity,

λ1(U(x , t)) < λ2(U(x , t)) < · · · < λn(U(x , t))

∃ δ > 0, µi , i = 0, 1, · · · , n such that

µ0 + δ ≤ min
(x ,t)

λ1(U(x , t))

max
(x ,t)

λi (U(x , t))+δ ≤ µi ≤ min
(x ,t)

λi+1(U(x , t))−δ, i = 1, · · · , n−1

max
(x ,t)

λn(U(x , t)) + δ ≤ µn



Primary Region: Ωi , i = 0, 1, · · · , n + 1, is defined as

Ω

ΩΩ
Ω

Ω

μ μ

μ

x =    t

x =    t

x =    t

t

n

n

n

0

0

1

2

+1

1

Ω0 = {(x , t); x < µ0 t}
Ω1 = {(x , t); µi−1 t < x < µi t} i = 1, · · · , n

Ωn+1 = {(x , t); x > µn t}



Example: n = 2.
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Theorem 6.1 (Asymptotic behavior toward Riemann Solutions)

Let U(x , t) be the viscosity solution to (6.1) and (6.2) with small
initial total variation. Let uR(x , t) be the corresponding Riemann
solution w , γ, t, (ul , ur ) solved by elementary waves (ui−1, ui ) as
described before. Then

(1) U(x , t)→ ui as t → +∞ as
x

t
= µi .

(2) If ∇λi · γi > 0, i = α1, · · · , αp.
(ui−1, ui ) is i-rarefaction wave, i.e., λi (ui−1) ≤ λi (ui ). Then
the amount of i-shock wave in Ωi approach zero as t →∞
and U(x , t) approaches the centered rarefaction waves
(ui−1, ui ).



(3) If ∇λi · γi > 0, i = α1, · · · , αp and (ui−1, ui ) is an i-shock,
i.e., λi (ui−1) > λi (ui ). Then in Ωi , the solution U(x , t)
approaches (ui−1, ui ) both in strength and in shock speed,
furthermore, the total variation of U(x , t) in Ωi away from the
shock approach zero.

(4) If ∇λi · γi ≡ 0, i = β1, · · · , βn−p. In this case, (ui−1, ui ) is an
i-contact discontinuity, and λi (ui−1) = λi (ui ). Then

λi (U(x , t))→ λi (Ui ) = λi (Ui−1), (x , t) ∈ Ωi , t → +∞.

The distance between {U(x , t), (x , t) ∈ Ωi} and
Ti ui−1 = Ti ui approach zero as t → +∞.



Main Idea of the Proof:

(1) Nonlinearity introduces dissipation: expansion waves cancels
compressive waves (due to entropy condition).

(2) Decoupling of waves ←→ nonlinear superposition principle
⇐⇒ when t � 1, only i-wave dominates on Ωi .

Theorem 6.2

Let X i
k(i = 1, 2; 1 ≤ k ≤ n) be two generalized k-characteristic

issued from two points on t = t0, with X 1
k ≤ X 2

k , let t1(≥ t0) be

any time after which X j
k does not intersect X j ′

i for i 6= k . Denote
by Dk(t) the distance between X 1

k and X 2
k , i.e.

Dk(t) = X 2
k (t)− X 1

k (t)



X+
k (t): amount of k-rarefaction wave between X 1

k and X 2
k .

X−k (t): amount of k-shock between X 1
k and X 2

k (does not include
X i
k , i = 1, 2). Then for t > t1,

X+
k (t) ≤ Dk(t)

t − t1
+ O(1)[Qk(t0, t) + hk(t0, t)]

where Qk(t0, t) is amount of wave interaction between t0 and t
and X 1

k and X 2
k , hk(t0, t) is the total amount of i-waves crossing

X 1
k (X 2

k ) for all i > k (i < k) between t0 and t.
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Proof of Theorem 6.2

Step 1: Approximation conservation laws

Let Λ be a region bounded by either generalized characteristic or
space like curves.

L±i (Λ) = E±i (Λ)∓ ci (Λ) + O(1)Q(Λ)

Li (Λ) : i-waves leaving Λ.
Ei (Λ) : i-waves entering Λ.
c(Λ) : i-wave cancellation in Λ.
Q(Λ) : interaction happening in Λ.



Step 2: Expansion of rarefaction waves

Recall that a generalized characteristic curve is piecewise Lipschitz
continuous which is either a genuine characteristic or a shock.
X̃k(t) is the total amount of j-waves (j 6= k) between X 1

k (t) and
X 2
k (t).

Denote u±ik (t) = U(X i
k(t)±, t), then

Ḋk(t) =
d

dt
Dk(t) =

d

dt
(X 2

k (t))− d

dt
X 1
k (t)

= λk(u+2
k (t), u−2

k (t))− λk(U+1
k (t),U−1

k (t))



Fact 1: ∃ θ(t) ∈ (0, 1) such that

Ḋk(t) = θ(t)(λ−2
k (t)− λ+1

k (t)) + (1− θ(t))(λ+2
k (t)− λ−1

k (t))

where λ±ik (t) = λk(U(X i
k(t)±, t)) (due to entropy condition).

In fact, ∃ θ ∈ (0, 1) such that

(1) Ḋk(t) ≤ θ(λ−2
k (t)− λ+1

k (t)) + (1− θ) (λ+2
k (t)− λ−1

k (t)).

(2) Ḋk(t) = (λ−2
k (t)− λ+1

k (t)) + (1− θ(t)) (strength X 1
k +

strength X 2
k ).



Indeed,

Ḋk(t) = θ(t) (λ−2
k (t)− λ+1

k (t)) + (1− θ(t))

(λ−2
k (t)− λ−2

k (t) + λ−2
k (t)− λ+1

k (t) + λ+1
k (t)− λ−1

k (t)).

Fact 2:

(1) ∃ t1 > t0, such that all X j
k (k 6= k1) crosses X j ′

k ′ before t1.
(2) ∀ t > t1, ∃ s such that t − s = O(1)Dk(t) such that X 2

k−1

crosses X 1
k and X 1

k+1 crosses X 2
k before t.
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Step 2.1: Estimate X̃k(t) (total amount of i-waves (i 6= k)
crossing (X 1

k (t),X 2
k (t))).

If i < k , by applying approximation conservation laws.

X̃i
k(t) ≤ O(1)

∫ t

s
d(hk(t0, τ) + Qk(t0, τ))

for i > k , similar estimate also holds, so,

X̃k(t) ≤ O(1)

∫ t

s
d(hk(t0, τ) + Qk(t0, τ))



Step 2.2:

λ−2
k (t)− λ+1

k (t)

= X+
k (t) + X−k (t) + O(1) X̃k(t)

= X+
k (t) + X−k (t) + O(1)

∫ t

s
d(Qk(t0, τ) + hk(t0, τ))

Then

Ḋk(t) = λ−2
k (t)− λ−1

k (t) + (1− θ(t)) (str X 2
k (t) + str X 1

k (t))

= X+
k (t) + X−k (t) + O(1)

∫ t

s
d(Qk(t0, τ) + hk(t0, τ))

+(1− θ(t)) (str X 2
k (t) + str X 1

k (t))



Integrate with respect to t from t1 to t,

Dk(t)− Dk(t1)

=

∫ t

t1

(X+
k (τ) + X−

k (τ))dτ +

∫ t

t1

(1− θ(τ)) (str X 2
k (τ) + str X 1

k (τ))dτ

+O(1)

∫ t

t1

∫ τ

s

d(Qk(t0, ξ) + hk(t0, ξ))dτ

=

∫ t

t1

(X+
k (τ) + X−

k (τ) + (1− θ(τ)) (str X 2
k (τ) + str X 1

k (τ))dτ

+O(1)

∫ t

t1

(τ − s) d (Qk(t0, τ) + hk(t0, τ))

Recall the approximate conservation law

L±i (Λ) = E±i (Λ)∓ ci (Λ) + O(1)Q(Λ) (6.3)(
for α, β, c(α, β) =

1

2
(|α|+ |β| − |α + β|)

)



So if we apply (6.3) to Λ,

X+
k (t) = X+

k (τ)− ck(Λ) + O(1)Qk(τ, t)
≤ X+

k (τ) + O(1)Qk(τ, t)

i.e. X+
k (τ) ≥ X+

k (t) + O(1)Qk(τ, t)

t = t

t =

t = t

1

0

τ
Λ

Λ



Similarly, applying (6.3) to Λ1,

X−k (τ) = X−k (t0) + ck(Λ1) + O(1)Qk(t0, τ)
≥ X−k (t0) + O(1)Qk(t0, τ)

Therefore,

Dk(t) ≥ Dk(t1) + X+
k (t)(t − t1)

+O(1)

∫ t

t1

Qk(τ, t)dτ + X−k (t0)(t − t1)

+O(1)

∫ t

t1

Qk(t0, τ)dτ

+O(1)

∫ t

t1

(1− θ(τ)) (str X2(τ) + str X1(τ))dτ

+ O(1)

∫ t

t1

Dk(τ) d (Qk(t0, τ) + hk(t0, τ))



so,

X+
k (t)

≤ Dk(t)

t − t1
+

(
−X−

k (t0) +
(−1)

t − t1

∫ t

t1

(1− θ(τ))

)
(str X2(t) + str X1(τ))dτ

+O(1)Qk(t0, t) + O(1)
1

t − t1

∫ t

t1

Dk(τ) d (Qk(t0, τ) + hk(t0, τ))

Immediately, we obtain that

X+
k (t) ≤ Dk(t)

t − t1
+O(1)[−X−k (t0)−max str Xk(τ)+Qk(t, t0)+hk(t, t0)]

This is true for any two characteristic, just do this procedure for
the increasing variation part.



Next, we turn to the Proof of Theorem 6.1.

Lemma 6.1

∃ δ0 > 0, such that if T .V . u0 ≤ δ0, then

(1) T .V . u(·, t) ≤ c0 δ0 ∀ t > 0.

(2) Q(0, t) ≤ c1 ∀ t > 0.

here Q(t1, t2) is the total amount of wave interaction taken place
between t1 and t2.



Proof of Lemma 6.1: Since u(x , t) is a solution generated by
Glimm’s scheme, so (1) is true for the Glimm approximate
solution, thus it is true for its limit.

To see (2), we consider any J-curve J and its immediate successor,

Q(J ′)− Q(J) ≤ −D(∆) + O(1)D(∆) L(J)

≤ −1

2
D(∆) (by (1), L(J) is sufficiently small.)

Now, we consider a region Λ whose domain of dependence
contains a mesh curve J, and Λ consists of all diamonds. Then
summing the above inequality up, we can get

Q(Λ) =
∑
∆∈Λ

D(∆) ≤ 2Q(J) ≤ c1.



Take limit to Glimm’s approximate solution

Q(Λ) ≤ c1 =⇒ Q(0, t) ≤ c1.

Lemma 6.2

∀ ε > 0, ∃ t0 = t0(ε) and M = M(ε) such that

(1) Q(t0, t) < ε ∀ t > t0.

(2) T .V .{|x |≥M} u(·, t0) < ε.

Proof of Lemma 6.2: These follow from Lemma 6.1.

Lemma 6.3

Let Γi be the region between X 1
i and X 2

i , Λ0 be the region left of
X 1

1 , Λi be the region between X 2
1 and X 1

i+1, i = 1, · · · , n − 1, and
Λn be the right of X 2

n . Then for any t ≥ t1.



(1)
T .V .
Λi u(·, t) = O(ε).

(2) The amount of j-waves outside of Γj at time t is O(ε).

(3)
osc
Λi u(·, ·) = O(1) ε.

(4) X+
j (t) ≤

Dj(t)

t − t1
+ O(1) ε.

t
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Proof of Lemma 6.3: We start with (2). Applying approximate
conservation law to the Region R (which is the right of X 2

k for
i ≤ k), one can get

L±i (R) ≤ E±i (R) + O(1)Q(R).

1 2

−M M

L R

X X
k k



Therefore, the total amount of i-wave (i < k) crossing
X 2
k = O(1) ε, the total amount of k-waves on the right of

X 2
k = O(1) ε. Similarly, one can apply the approximate

conservation law to L (left of X 1
k ) for i ≥ k , then the total amount

of i-wave (i > k) crossing X 1
k = O(1) ε, the total amount of

k-wave on the left of X 1
k = O(1) ε.

Thus (2) is true, and

hk(t0, t) = O(1) ε.

Immediately,

X+
k (t) ≤ Dk(t)

t − t1
+ O(1) ε,

(1) and (3) are consequence of (2).



Lemma 6.4

The total amount of i-waves in the region Ωj , j 6= i ,
j = 0, 1, · · · , n, n + 1 at time t approaches to 0 as t → +∞.
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Proof of Lemma 6.4: By the strict hyperbolicity, for large t, one
has

Γi ⊂ Ωi ,

so the conclusions follows from Lemma 6.3.



Lemma 6.5 (Emergency of contact waves)

Assume that ∇λi · γi ≡ 0, ∀ i = β1, · · · , βn−p. Then
∀ (xk , tk) ∈ Λk , k = i − 1, i , i = βi , · · · , βn−p.

(1) λi (u(xi , ti )) = λi (u(xi−1, ti−1)) + O(ε).

(2) U(xi , ti ) ∈ Ti (u(xi−1, ti−1)) + O(ε).

Proof of Lemma 6.5: By (3) of Lemma 6.3, without loss of
generality, ti−1 = ti . Since λi (u(·, ti )) changes only when it crosses
j-waves for j 6= i which is of order O(ε).



Lemma 6.6 (Emergency of shock wave)

Suppose
∇λi (u) · γi (u) > 0, i = α1, · · · , αp .

Then ∃ k0 such that if

λi (u(xi , ti )) ≤ λi (u(xi−1, ti−1))− k0 ε, (xi , ti ) ∈ Λi .

Then for sufficiently large t

(1) X+
i (t) = O(ε).

(2) X 1
i and X 2

i collide to form an i-shock with strength

λi (u(xi , ti ))− λi (u(xi−1, ti−1)) + O(ε).



Proof of Lemma 6.6: Recall that

λ−2
i (t)− λ+1

i (t) = X+
i (t) + X−i (t) + O(1) X̃i (t)

= X+
i (t) + X−i (t) + O(1) ε

λ+2
i (t)− λ−1

i (t) = λi (U(xi , ti ))− λi (u(xi−1, ti−1)) + O(ε)

Ḋ(t) ≤ θ(λ−2
i (t)− λ+1

i (t)) + (1− θ)(λ+2
i − λ

−1
i (t)) (0 < θ < 1)

= θ(X+
i (t) + X−

i (t)) + (1− θ)(λ(u(xi , ti ))− λi (u(xi−1, ti−1))) + O(ε)
≤ θX+

i (t) + (1− θ)(λi (u(xi , ti ))− λi (u(xi−1, ti−1))) + O(ε)

≤ θ
Di (t)

t − t1
+ (1− θ)(λi (u(xi , ti ))− λi (u(xi−1, ti−1))) + O(ε)



Set

Hi (t) = Di (t)− [λi (u(xi , ti ))− λi (u(xi−1, ti−1))](t − t1).

Then

Ḣi (t) ≤ θ H(t)

t − t1
+ O(ε).

Solving this differential inequality

Hi (t) ≤ (t − t1)θ Hi (t1 + 1) + O(ε)(t − t1).

Thus,

Di (t) ≤ (λi (u(xi , ti ))− λi (u(xi−1, ti−1)))(t − t1)
+O(1) (t − t1)θ + O(ε) (t − t1) (F)

= [(λi (u(xi , ti ))− λi (u(xi−1, ti−1)))
+O(1) ε](t − t1) + O(1) (t − t1)θ



Choose k0 sufficiently large, then

Di (t) < 0 for t � 1,

so the conclusions follows.

Lemma 6.7 (Emergency of rarefaction waves)

Assume that λi (U(xi , ti ))− λi (U(xi−1, ti−1)) ≥ −O(1) ε for some
uniform constant O(1) ≥ 0. Then

(1) |X−i (t)|+ |str X j
i (t)| = O(1) ε.

(2) U(xi , ti ) ∈ R+
i (u(xi−1, ti−1)) + O(1) ε.



Proof of Lemma 6.7: By Lemma 6.3,

X+
i (t) ≤ Di (t)

t − t1
+ O(1) ε

(By (F)) ≤ λi (u(xi , ti ))− λi (u(xi−1, ti−1))
+O(1)(t − t1)θ−1 + O(1) ε

≤ [λi (u(xi , ti ))− λi (u(xi−1, ti−1))]
+O(1) ε for large t.

On the other hand,

λi (u(xi , ti ))− λi (u(xi−1, ti−1))

= λ+2
i (t)− λ−1

i (t) + O(1) ε

= X+
i (t) + X−i (t) + O(1) X̃i (t) + str Xi + O(1) ε



so,

X+
i (t)− [λi (u(xi , ti ))− λi (u(xi−1, ti−1))]

= |X−i (t)|+ |str Xi | − O(1) ε
≥ −O(1) ε

Thus,

X+
i (t) = λi (u(xi , ti ))− λi (u(xi−1, ti−1)) + O(1) ε,

so,
|X−i (t)|+ |str Xi (t)| = O(1) ε.

We need to relate (ui−1, ui ) in uR(x , t) to (u(xi−1, ti−1), u(xi , ti )).



Lemma 6.8 (Comparison with the Riemann solution)

Let (ui−1, ui ) be the i-th wave in the Riemann solution

uR(x , t) = u
(x
t

)
,
∂t u + ∂x f (u) = 0

u(x , 0) =

{
ul x < 0
uR x > 0

Then
|u(xi , ti )− ui | = O(1) ε, ∀ (xi , ti ) ∈ Λi .



Proof of Lemma 6.8 It follows from Lemmas 6.5, 6.6, 6.7. We
can find ũi such that

(1) |ũi − u(xi , ti )| = O(1) ε.

(2) ũi ∈ Ti (ũi−1).

(3) (ũi−1, ũi ) is an i-th elementary wave.

i.e., the superposition of (ũi−1, ũi ), i = 1, · · · , n solves
∂t u + ∂x f (u) = 0

u(x , t = 0) =

{
ũ0 x < 0
ũn x > 0



On the other hand, by definition, (ui−1, ui ) is the i-th elementary

of uR(x , t) = U
(x
t

)
,

∂t u + ∂x f (u) = 0

u(x , t = 0) =

{
u− = u0 x < 0
u+ = un x > 0

so,
|ũ0 − u−| = |ũ0 − u0| = O(1) ε.

Similarly,
|ũn − u+| = O(1) ε.

By continuous dependence of Riemann solution,

|ũi − ui | = O(1) ε, i = 1, · · · , n,
so |u(xi , ti )− ui | = O(1) ε, i = 1, · · · , n.



Final proof of Theorem 6.1

Proof of (1): ∀ ε > 0, let X j
k , Γk , Λk defined as before, clearly for

large enough t, Γi ⊂ Ωi . Furthermore,

x = µi t ⊂ Λi ,

so for x = µi t, u(x , t) = ui + O(1) ε. Since ε is arbitrary, so

u(x , t)→ ui on
x

t
= µi , as t →∞.
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Proof of (2):

Step 1: i = α1, · · ·αp, ∇λi · γi > 0, (ui−1, ui ) is a centered
rarefaction wave, i.e. λi (ui ) ≥ λi (ui−1). Then by Lemma 6.8,

λi (u(xi , ti ))− λi (u(xi−1, ti−1)) ≥ −O(1) ε

(xi , ti ) ∈ Λi , (xi−1, ti−1) ∈ Λi−1 .

Then Lemma 6.7 implies

|X−i (t)|+ |str Xi (t) = O(1) ε.

On the other hand, for large t, Γi ⊂ Ωi , so by Lemma 6.3 that the
total amount of i-shock wave in Ωi is order of O(ε), which tends
to zero as t → +∞ since ε is arbitrary =⇒ only i-rarefaction
waves left.



Step 2: We need to show in fact u(x , t)→ (ui−1, ui ) in Ωi as
t →∞. By Step 1, ∃ t2 > t1 such that
|X−i (t)|+ |str Xi (t)| ≤ O(1) ε and also the speed X 1

i and X 2
i are

given by λi (ui−1) + O(ε) and λi (ui ) + O(ε) respectively.

Let l ji (j = 1, 2) be the edges of the centered rarefaction wave
(ui−1, ui ), l1i = {(x , t)| x

t = λi (ui−1}, l2i = {(x , t)| x
t = λi (ui )}.

Then for t ≥ t2 + O(1)Di (t2), one has

|X 1
i (t)− l1i (t)|+ |X 2

i (t)− l2i (t)| = O(1) ε (t − t2) + O(1).

Ω2



Let u∗(x , t) be the centered rarefaction wave.
Claim: (1)
|u∗(x , t)− u(x , t)| = O(1) ε, ∀ (x , t) ∈ (Λi ∪ Λi−1) ∩ Ωi .

(2) |u∗(x , t)− u(x , t)| = O(1) ε, ∀ (x , t) ∈ Γi ⊂ Ωi .

(1) (x , t) ∈ Λi−1 ∩ Ωi , then

|u∗(x , t)− u(x , t)| ≤ |u∗(x , t)− ui−1|+ |ui−1 − u(x , t)|
= |u∗(x , t)− u∗(l1i (t), t)|+ O(1) ε

≤ O(1)
|l1i (t)− X 1

i (t)|
t

+ O(1) ε

≤ O(1) ε for t large enough.

Now we fix (x , t) ∈ Γi , t ≥ t2 + O(1)Di (t2). By Step 1, no i-th
shocks and other j-waves (j 6= i) (mod O(ε)), and since (1) holds
true. ∃ x∗ ∈ (l1i (t), l2i (t)) such that

|u∗(x∗, t)− u(x , t)| = O(ε).



Through (x∗, t) we draw a generalized backward characteristics
curve X , its speed changes only when it crosses other waves, since
X stays in Γi , thus the total amount of other family waves are of
the order O(ε), and when it cross the i-shocks, then its strength is
O(ε), so the speed of X is λi (u(x , t)) + O(ε)

|x∗ − x | = O(1) ε |t − t2|+ O(1)

then

|u∗(x , t)− u(x , t)| ≤ |u∗(x , t)− u∗(x∗, t)|+ |u∗(x∗, t)− u(x , t)|
≤ O(1)|λi (u∗(x , t))− λi (u∗(x∗, t))|+ O(ε)

= O(1)

∣∣∣∣x − x∗

t

∣∣∣∣+ O(ε)

= O(ε) for t sufficiently large.


