Section 6. Asymptotic Behavior of Weak Solutions for System of Conservation Laws

$$\begin{cases} \partial_t u + \partial_x f(u) = 0, & u \in \mathbb{R}^n \\ u(x, t = 0) = u_0(x) \end{cases}$$
(6.1)
(6.2)

$$\lim_{x \to +\infty} u_0(x) = u_r, \qquad \lim_{x \to -\infty} u_0(x) = u_I$$

 $u_l, u_r \in \mathbb{R}^n$ are two constant states.

<u>A1</u> (6.1) is strictly hyperbolic.

left

$$\begin{array}{ll} \lambda_1(u) < \lambda_2(u) < \cdots < \lambda_n(u), & u \in \mathbb{R}^n \\ \text{right eigenvector} & \gamma_1(u), & \gamma_2(u) & \cdots & \gamma_n(u) \\ \text{left eigenvector} & & l_1(u), & l_2(u) & \cdots & l_n(u) \end{array}$$

<u>A2</u> Each characteristic field is either genuinely nonlinear or linearly degenerate.

$$\begin{cases} \partial_t u + \partial_x f(u) = 0\\ u(x, t = 0) = \begin{cases} u_1 & x < 0\\ u_r & x > 0 \end{cases} \end{cases}$$

 $u_R(x, t)$, $\exists u_0 = u_i, u_1, u_2, \cdots, u_n = u_r$ such that $u_i = T_i(u_{i-1})$, here $T_i(u)$ is the *i*-th wave curve through the base point u.

Let U(x, t) be the unique viscosity solution to the Cauchy problem (6.1) - (6.2). Then one can regard U(x, t) as a limit of approximate solutions constructed by Glimm's method.

<u>Goal</u>: What will be large time asymptotic behavior of U(x, t), as $t \to +\infty$?

If n = 1, f is convex, then this problem is well understood.

$$\begin{array}{ll} \underline{\text{Case 1}}: \ u_l = u_r, \ u_R(x,t) = u_l = u_r, \ \text{then} \ u(x,t) - u_r \to 0 \ \text{as} \\ t \to \infty, \ \text{with the decay rate} \ \left(\frac{1}{\sqrt{t}}\right). \end{array}$$

<u>Case 2</u>: $u_l > u_r$, $U(x, t) \rightarrow u_R$ with a phase shift (shock).

<u>Case 3</u>: $u_l < u_r$, $U(x, t) \rightarrow u_R$ (rarefaction wave).

<u>Conclusion</u> (n = 1). The large time behavior of U(x, t) is determined completely by the far fields of the initial data (u_l, u_r) , in other words, the Riemann solution is "stable".

<u>Question</u>: What happens for n > 1? Let U(x, t) be a Glimm solution. By the strict hyperbolicity,

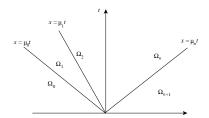
$$\lambda_1(U(x,t)) < \lambda_2(U(x,t)) < \cdots < \lambda_n(U(x,t))$$

 $\exists \, \delta > 0$, μ_i , $i = 0, 1, \cdots, n$ such that

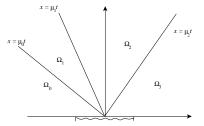
$$\mu_0 + \delta \leq \min_{(x,t)} \lambda_1(U(x,t))$$

 $\max_{\substack{(x,t)\\(x,t)}} \lambda_i(U(x,t)) + \delta \le \mu_i \le \min_{\substack{(x,t)\\(x,t)}} \lambda_{i+1}(U(x,t)) - \delta, \qquad i = 1, \cdots, n-1$ $\max_{\substack{(x,t)\\(x,t)}} \lambda_n(U(x,t)) + \delta \le \mu_n$

Primary Region: Ω_i , $i = 0, 1, \cdots, n + 1$, is defined as



$$\begin{array}{rcl} \Omega_0 &=& \{(x,t); \; x < \mu_0 \, t\} \\ \Omega_1 &=& \{(x,t); \; \mu_{i-1} \, t < x < \mu_i \, t\} \\ \Omega_{n+1} &=& \{(x,t); \; x > \mu_n \, t\} \end{array} \qquad i = 1, \cdots, n$$



€ 990

・ロト ・個ト ・モト ・モト

Theorem 6.1 (Asymptotic behavior toward Riemann Solutions)

Let U(x, t) be the viscosity solution to (6.1) and (6.2) with small initial total variation. Let $u_R(x, t)$ be the corresponding Riemann solution w, γ , t, (u_l, u_r) solved by elementary waves (u_{i-1}, u_i) as described before. Then

(1)
$$U(x,t) \rightarrow u_i$$
 as $t \rightarrow +\infty$ as $\frac{x}{t} = \mu_i$.

(2) If ∇λ_i · γ_i > 0, i = α₁, · · · , α_p. (u_{i-1}, u_i) is *i*-rarefaction wave, i.e., λ_i(u_{i-1}) ≤ λ_i(u_i). Then the amount of *i*-shock wave in Ω_i approach zero as t → ∞ and U(x, t) approaches the centered rarefaction waves (u_{i-1}, u_i).

(3) If ∇λ_i · γ_i > 0, i = α₁, · · · , α_p and (u_{i-1}, u_i) is an *i*-shock, i.e., λ_i(u_{i-1}) > λ_i(u_i). Then in Ω_i, the solution U(x, t) approaches (u_{i-1}, u_i) both in strength and in shock speed, furthermore, the total variation of U(x, t) in Ω_i away from the shock approach zero.

(4) If
$$\nabla \lambda_i \cdot \gamma_i \equiv 0$$
, $i = \beta_1, \dots, \beta_{n-p}$. In this case, (u_{i-1}, u_i) is an *i*-contact discontinuity, and $\lambda_i(u_{i-1}) = \lambda_i(u_i)$. Then

$$\lambda_i(U(x,t)) o \lambda_i(U_i) = \lambda_i(U_{i-1}), \quad (x,t) \in \Omega_i, \quad t o +\infty.$$

The distance between $\{U(x, t), (x, t) \in \Omega_i\}$ and $T_i u_{i-1} = T_i u_i$ approach zero as $t \to +\infty$.

Main Idea of the Proof:

- (1) Nonlinearity introduces dissipation: expansion waves cancels compressive waves (due to entropy condition).
- (2) Decoupling of waves \leftrightarrow nonlinear superposition principle \Leftrightarrow when $t \gg 1$, only *i*-wave dominates on Ω_i .

Theorem 6.2

Let X_k^i $(i = 1, 2; 1 \le k \le n)$ be two generalized k-characteristic issued from two points on $t = t_0$, with $X_k^1 \le X_k^2$, let $t_1(\ge t_0)$ be any time after which X_k^j does not intersect $X_i^{j'}$ for $i \ne k$. Denote by $D_k(t)$ the distance between X_k^1 and X_k^2 , i.e.

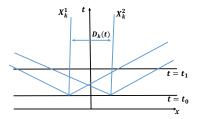
$$D_k(t) = X_k^2(t) - X_k^1(t)$$

(日) (同) (三) (三) (三) (○) (○)

 $\mathbb{X}_{k}^{+}(t)$: amount of *k*-rarefaction wave between X_{k}^{1} and X_{k}^{2} . $\mathbb{X}_{k}^{-}(t)$: amount of *k*-shock between X_{k}^{1} and X_{k}^{2} (does not include X_{k}^{i} , i = 1, 2). Then for $t > t_{1}$,

$$\mathbb{X}_k^+(t) \leq rac{D_k(t)}{t-t_1} + O(1)[Q_k(t_0,t) + h_k(t_0,t)]$$

where $Q_k(t_0, t)$ is amount of wave interaction between t_0 and tand X_k^1 and X_k^2 , $h_k(t_0, t)$ is the total amount of *i*-waves crossing X_k^1 (X_k^2) for all i > k (i < k) between t_0 and t.



Proof of Theorem 6.2

Step 1: Approximation conservation laws

Let Λ be a region bounded by either generalized characteristic or space like curves.

$$L_i^{\pm}(\Lambda) = E_i^{\pm}(\Lambda) \mp c_i(\Lambda) + O(1) Q(\Lambda)$$

 $L_i(\Lambda)$: *i*-waves leaving Λ . $E_i(\Lambda)$: *i*-waves entering Λ . $c(\Lambda)$: *i*-wave cancellation in Λ . $Q(\Lambda)$: interaction happening in Λ .

Step 2: Expansion of rarefaction waves

Recall that a generalized characteristic curve is piecewise Lipschitz continuous which is either a genuine characteristic or a shock. $\tilde{\mathbb{X}}_k(t)$ is the total amount of *j*-waves $(j \neq k)$ between $X_k^1(t)$ and $X_k^2(t)$.

Denote $u_k^{\pm i}(t) = U(X_k^i(t)\pm, t)$, then

$$\dot{D}_k(t) = rac{d}{dt} D_k(t) = rac{d}{dt} (X_k^2(t)) - rac{d}{dt} X_k^1(t) \ = \lambda_k (u_k^{+2}(t), u_k^{-2}(t)) - \lambda_k (U_k^{+1}(t), U_k^{-1}(t))$$

(日) (同) (三) (三) (三) (○) (○)

Fact 1:
$$\exists \theta(t) \in (0, 1)$$
 such that
 $\dot{D}_k(t) = \theta(t)(\lambda_k^{-2}(t) - \lambda_k^{+1}(t)) + (1 - \theta(t))(\lambda_k^{+2}(t) - \lambda_k^{-1}(t))$
where $\lambda_k^{\pm i}(t) = \lambda_k(U(X_k^i(t)\pm, t))$ (due to entropy condition).
In fact, $\exists \theta \in (0, 1)$ such that
(1) $\dot{D}_k(t) \leq \theta(\lambda_k^{-2}(t) - \lambda_k^{+1}(t)) + (1 - \theta)(\lambda_k^{+2}(t) - \lambda_k^{-1}(t)).$
(2) $\dot{D}_k(t) = (\lambda_k^{-2}(t) - \lambda_k^{+1}(t)) + (1 - \theta(t))$ (strength X_k^1 +
strength X_k^2).

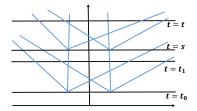
▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Indeed,

$$\dot{D}_k(t) = ext{ } heta(t) \left(\lambda_k^{-2}(t) - \lambda_k^{+1}(t)
ight) + (1 - heta(t)) \ \left(\lambda_k^{-2}(t) - \lambda_k^{-2}(t) + \lambda_k^{-2}(t) - \lambda_k^{+1}(t) + \lambda_k^{+1}(t) - \lambda_k^{-1}(t)
ight).$$

Fact 2:

(1) $\exists t_1 > t_0$, such that all X_k^j $(k \neq k^1)$ crosses $X_{k'}^{j'}$ before t_1 . (2) $\forall t > t_1$, $\exists s$ such that $t - s = O(1) D_k(t)$ such that X_{k-1}^2 crosses X_k^1 and X_{k+1}^1 crosses X_k^2 before t.



Step 2.1: Estimate $\tilde{X}_k(t)$ (total amount of *i*-waves $(i \neq k)$ crossing $(X_k^1(t), X_k^2(t)))$.

If i < k, by applying approximation conservation laws.

$$ilde{\mathbb{X}}^i_k(t) \leq O(1) \int_s^t \ d(h_k(t_0, au) + Q_k(t_0, au))$$

for i > k, similar estimate also holds, so,

$$ilde{\mathbb{X}}_k(t) \leq O(1) \int_s^t \ d(h_k(t_0, au) + Q_k(t_0, au))$$

Step 2.2:

$$\begin{array}{l}\lambda_{k}^{-2}(t) - \lambda_{k}^{+1}(t) \\ = & \mathbb{X}_{k}^{+}(t) + \mathbb{X}_{k}^{-}(t) + O(1) \ \tilde{\mathbb{X}}_{k}(t) \\ = & \mathbb{X}_{k}^{+}(t) + \mathbb{X}_{k}^{-}(t) + O(1) \ \int_{s}^{t} d(Q_{k}(t_{0},\tau) + h_{k}(t_{0},\tau)) \end{array}$$

Then

$$\begin{split} \dot{D}_k(t) &= \lambda_k^{-2}(t) - \lambda_k^{-1}(t) + (1 - \theta(t)) (\operatorname{str} X_k^2(t) + \operatorname{str} X_k^1(t)) \\ &= \mathbb{X}_k^+(t) + \mathbb{X}_k^-(t) + O(1) \int_s^t d(Q_k(t_0, \tau) + h_k(t_0, \tau)) \\ &+ (1 - \theta(t)) (\operatorname{str} X_k^2(t) + \operatorname{str} X_k^1(t)) \end{split}$$

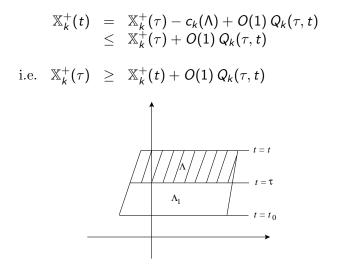
Integrate with respect to t from t_1 to t,

$$D_{k}(t) - D_{k}(t_{1}) = \int_{t_{1}}^{t} (\mathbb{X}_{k}^{+}(\tau) + \mathbb{X}_{k}^{-}(\tau))d\tau + \int_{t_{1}}^{t} (1 - \theta(\tau)) (\operatorname{str} X_{k}^{2}(\tau) + \operatorname{str} X_{k}^{1}(\tau))d\tau + O(1) \int_{t_{1}}^{t} \int_{s}^{\tau} d(Q_{k}(t_{0},\xi) + h_{k}(t_{0},\xi))d\tau = \int_{t_{1}}^{t} (\mathbb{X}_{k}^{+}(\tau) + \mathbb{X}_{k}^{-}(\tau) + (1 - \theta(\tau)) (\operatorname{str} X_{k}^{2}(\tau) + \operatorname{str} X_{k}^{1}(\tau))d\tau + O(1) \int_{t_{1}}^{t} (\tau - s) d (Q_{k}(t_{0},\tau) + h_{k}(t_{0},\tau))$$

Recall the approximate conservation law

$$L_{i}^{\pm}(\Lambda) = E_{i}^{\pm}(\Lambda) \mp c_{i}(\Lambda) + O(1) Q(\Lambda)$$
(6.3)
$$\left(\text{for } \alpha, \beta, \ c(\alpha, \beta) = \frac{1}{2} (|\alpha| + |\beta| - |\alpha + \beta|) \right)$$

So if we apply (6.3) to Λ ,



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Similarly, applying (6.3) to Λ_1 ,

$$egin{array}{rcl} \mathbb{X}_k^-(au) &=& \mathbb{X}_k^-(t_0) + c_k(\Lambda_1) + O(1) \, Q_k(t_0, au) \ &\geq& \mathbb{X}_k^-(t_0) + O(1) \, Q_k(t_0, au) \end{array}$$

Therefore,

$$egin{aligned} D_k(t) &\geq & D_k(t_1) + \mathbb{X}_k^+(t)(t-t_1) \ &+ O(1) \int_{t_1}^t Q_k(au, t) d au + \mathbb{X}_k^-(t_0)(t-t_1) \ &+ O(1) \int_{t_1}^t Q_k(t_0, au) d au \ &+ O(1) \int_{t_1}^t (1- heta(au)) (\operatorname{str} X_2(au) + \operatorname{str} X_1(au)) d au \ &+ O(1) \int_{t_1}^t D_k(au) \ d \ (Q_k(t_0, au) + h_k(t_0, au)) \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

SO,

$$\begin{split} & \mathbb{X}_{k}^{+}(t) \\ & \leq \quad \frac{D_{k}(t)}{t-t_{1}} + \left(-\mathbb{X}_{k}^{-}(t_{0}) + \frac{(-1)}{t-t_{1}} \int_{t_{1}}^{t} (1-\theta(\tau)) \right) \; (\text{str} \; X_{2}(t) + \text{str} \; X_{1}(\tau)) d\tau \\ & + O(1) \, Q_{k}(t_{0},t) + O(1) \frac{1}{t-t_{1}} \int_{t_{1}}^{t} \; D_{k}(\tau) \; d \; (Q_{k}(t_{0},\tau) + h_{k}(t_{0},\tau)) \end{split}$$

Immediately, we obtain that

$$\mathbb{X}^+_k(t) \leq rac{D_k(t)}{t-t_1} + O(1)[-\mathbb{X}^-_k(t_0) - ext{max str} \ X_k(au) + Q_k(t,t_0) + h_k(t,t_0)]$$

(ロ)、(型)、(E)、(E)、 E) の(の)

This is true for any two characteristic, just do this procedure for the increasing variation part. Next, we turn to the Proof of Theorem 6.1.

Lemma 6.1

 $\exists \, \delta_0 > 0$, such that if $T.V. \, u_0 \leq \delta_0$, then

(1)
$$T.V.u(\cdot,t) \leq c_0 \delta_0 \qquad \forall t > 0.$$

(2)
$$Q(0,t) \le c_1 \quad \forall t > 0.$$

here $Q(t_1, t_2)$ is the total amount of wave interaction taken place between t_1 and t_2 .

Proof of Lemma 6.1: Since u(x, t) is a solution generated by Glimm's scheme, so (1) is true for the Glimm approximate solution, thus it is true for its limit.

To see (2), we consider any J-curve J and its immediate successor,

$$\begin{array}{rcl} Q(J')-Q(J) &\leq & -D(\Delta)+O(1)\,D(\Delta)\,L(J) \\ &\leq & -\frac{1}{2}\,D(\Delta) \qquad (\mbox{by (1)},L(J)\mbox{ is sufficiently small.}) \end{array}$$

Now, we consider a region Λ whose domain of dependence contains a mesh curve J, and Λ consists of all diamonds. Then summing the above inequality up, we can get

$$Q(\Lambda) = \sum_{\Delta \in \Lambda} D(\Delta) \leq 2Q(J) \leq c_1.$$

Take limit to Glimm's approximate solution

$$Q(\Lambda) \leq c_1 \Longrightarrow Q(0,t) \leq c_1.$$

Lemma 6.2

$$\begin{aligned} \forall \varepsilon > 0, \ \exists t_0 = t_0(\varepsilon) \text{ and } M = M(\varepsilon) \text{ such that} \\ (1) \ Q(t_0, t) < \varepsilon \qquad \forall t > t_0. \\ (2) \ T.V_{\{|x| \ge M\}} \ u(\cdot, t_0) < \varepsilon. \end{aligned}$$

Proof of Lemma 6.2: These follow from Lemma 6.1.

Lemma 6.3

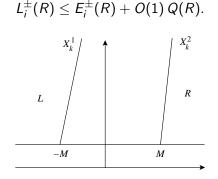
Let Γ_i be the region between X_i^1 and X_i^2 , Λ_0 be the region left of X_1^1 , Λ_i be the region between X_1^2 and X_{i+1}^1 , $i = 1, \dots, n-1$, and Λ_n be the right of X_n^2 . Then for any $t \ge t_1$.

(1)
$$\Lambda_{i}^{T.V.} u(\cdot, t) = O(\varepsilon).$$

(2) The amount of *j*-waves outside of Γ_{j} at time *t* is $O(\varepsilon)$.
(3) $\Lambda_{i}^{\text{osc}} u(\cdot, \cdot) = O(1) \varepsilon.$
(4) $\mathbb{X}_{j}^{+}(t) \leq \frac{D_{j}(t)}{t - t_{1}} + O(1) \varepsilon.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Proof of Lemma 6.3: We start with (2). Applying approximate conservation law to the Region *R* (which is the right of X_k^2 for $i \le k$), one can get



Therefore, the total amount of *i*-wave (i < k) crossing $X_k^2 = O(1) \varepsilon$, the total amount of *k*-waves on the right of $X_k^2 = O(1) \varepsilon$. Similarly, one can apply the approximate conservation law to *L* (left of X_k^1) for $i \ge k$, then the total amount of *i*-wave (i > k) crossing $X_k^1 = O(1) \varepsilon$, the total amount of *k*-wave on the left of $X_k^1 = O(1) \varepsilon$.

Thus (2) is true, and

$$h_k(t_0,t)=O(1)\varepsilon.$$

Immediately,

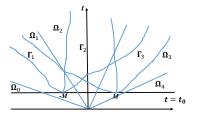
$$\mathbb{X}_k^+(t) \leq rac{D_k(t)}{t-t_1} + O(1)\,arepsilon,$$

(日) (同) (三) (三) (三) (○) (○)

(1) and (3) are consequence of (2).

Lemma 6.4

The total amount of *i*-waves in the region Ω_j , $j \neq i$, $j = 0, 1, \dots, n, n+1$ at time *t* approaches to 0 as $t \to +\infty$.



Proof of Lemma 6.4: By the strict hyperbolicity, for large *t*, one has

 $\Gamma_i \subset \Omega_i$,

so the conclusions follows from Lemma 6.3.

Lemma 6.5 (Emergency of contact waves)

Assume that
$$\nabla \lambda_i \cdot \gamma_i \equiv 0$$
, $\forall i = \beta_1, \cdots, \beta_{n-p}$. Then
 $\forall (x_k, t_k) \in \Lambda_k$, $k = i - 1, i, i = \beta_i, \cdots, \beta_{n-p}$.
(1) $\lambda_i(u(x_i, t_i)) = \lambda_i(u(x_{i-1}, t_{i-1})) + O(\varepsilon)$.
(2) $U(x_i, t_i) \in T_i(u(x_{i-1}, t_{i-1})) + O(\varepsilon)$.

Proof of Lemma 6.5: By (3) of Lemma 6.3, without loss of generality, $t_{i-1} = t_i$. Since $\lambda_i(u(\cdot, t_i))$ changes only when it crosses *j*-waves for $j \neq i$ which is of order $O(\varepsilon)$.

Lemma 6.6 (Emergency of shock wave)

$$abla \lambda_i(u) \cdot \gamma_i(u) > 0, \qquad i = \alpha_1, \cdots, \alpha_p \;.$$

Then $\exists k_0$ such that if

$$\lambda_i(u(x_i, t_i)) \leq \lambda_i(u(x_{i-1}, t_{i-1})) - k_0 \varepsilon, \qquad (x_i, t_i) \in \Lambda_i \ .$$

Then for sufficiently large t

X_i⁺(t) = O(ε).
 X_i¹ and X_i² collide to form an *i*-shock with strength

$$\lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1})) + O(\varepsilon).$$

Proof of Lemma 6.6: Recall that

$$egin{array}{rll} \lambda_{i}^{-2}(t)-\lambda_{i}^{+1}(t)&=&\mathbb{X}_{i}^{+}(t)+\mathbb{X}_{i}^{-}(t)+O(1)\ ilde{\mathbb{X}}_{i}(t)\ &=&\mathbb{X}_{i}^{+}(t)+\mathbb{X}_{i}^{-}(t)+O(1)\,arepsilon \end{array}$$

$$\lambda_i^{+2}(t) - \lambda_i^{-1}(t) = \lambda_i(U(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1})) + O(\varepsilon)$$

$$\begin{split} \dot{D}(t) &\leq \quad \theta(\lambda_i^{-2}(t) - \lambda_i^{+1}(t)) + (1 - \theta)(\lambda_i^{+2} - \lambda_i^{-1}(t)) \quad (0 < \theta < 1) \\ &= \quad \theta(\mathbb{X}_i^+(t) + \mathbb{X}_i^-(t)) + (1 - \theta)(\lambda(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1}))) + O(\varepsilon) \\ &\leq \quad \theta \, \mathbb{X}_i^+(t) + (1 - \theta)(\lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1}))) + O(\varepsilon) \\ &\leq \quad \theta \, \frac{D_i(t)}{t - t_1} + (1 - \theta)(\lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1}))) + O(\varepsilon) \end{split}$$

$$H_i(t) = D_i(t) - [\lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1}))](t - t_1).$$

Then

$$\dot{H}_i(t) \leq heta \; rac{\mathcal{H}(t)}{t-t_1} + O(arepsilon).$$

Solving this differential inequality

$$H_i(t) \leq (t-t_1)^{ heta} H_i(t_1+1) + O(arepsilon)(t-t_1).$$

Thus,

$$\begin{array}{lll} D_i(t) &\leq & (\lambda_i(u(x_i,t_i))-\lambda_i(u(x_{i-1},t_{i-1})))(t-t_1) \\ &\quad +O(1) \ (t-t_1)^{\theta}+O(\varepsilon) \ (t-t_1) & (\bigstar) \\ &= & [(\lambda_i(u(x_i,t_i))-\lambda_i(u(x_{i-1},t_{i-1}))) \\ &\quad +O(1) \ \varepsilon](t-t_1)+O(1) \ (t-t_1)^{\theta} \end{array}$$

<□ > < @ > < E > < E > E のQ @

Choose k_0 sufficiently large, then

$$D_i(t) < 0$$
 for $t \gg 1$,

so the conclusions follows.

Lemma 6.7 (Emergency of rarefaction waves)

Assume that $\lambda_i(U(x_i, t_i)) - \lambda_i(U(x_{i-1}, t_{i-1})) \ge -O(1)\varepsilon$ for some uniform constant $O(1) \ge 0$. Then (1) $|\mathbb{X}_i^-(t)| + |\operatorname{str} X_i^j(t)| = O(1)\varepsilon$. (2) $U(x_i, t_i) \in R_i^+(u(x_{i-1}, t_{i-1})) + O(1)\varepsilon$.

Proof of Lemma 6.7: By Lemma 6.3,

$$\begin{array}{rcl} (\mathsf{By}(\bigstar)) & \mathbb{X}_{i}^{+}(t) & \leq & \displaystyle\frac{D_{i}(t)}{t-t_{1}} + O(1) \varepsilon \\ & \leq & \displaystyle\lambda_{i}(u(x_{i},t_{i})) - \lambda_{i}(u(x_{i-1},t_{i-1})) \\ & & + O(1)(t-t_{1})^{\theta-1} + O(1) \varepsilon \\ & \leq & \displaystyle[\lambda_{i}(u(x_{i},t_{i})) - \lambda_{i}(u(x_{i-1},t_{i-1}))] \\ & & + O(1) \varepsilon \quad \text{for large } t. \end{array}$$

On the other hand,

$$\lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1}))$$

$$= \lambda_i^{+2}(t) - \lambda_i^{-1}(t) + O(1)\varepsilon$$

$$= \mathbb{X}_i^+(t) + \mathbb{X}_i^-(t) + O(1)\tilde{\mathbb{X}}_i(t) + \operatorname{str} X_i + O(1)\varepsilon$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\begin{aligned} & \mathbb{X}_i^+(t) - [\lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1}))] \\ &= |\mathbb{X}_i^-(t)| + |\mathsf{str} \ X_i| - O(1) \varepsilon \\ &\geq -O(1) \varepsilon \end{aligned}$$

Thus,

so,

$$\mathbb{X}_i^+(t) = \lambda_i(u(x_i, t_i)) - \lambda_i(u(x_{i-1}, t_{i-1})) + O(1)\varepsilon,$$

 $|\mathbb{X}_i^-(t)| + |\operatorname{str} X_i(t)| = O(1)\varepsilon.$

We need to relate
$$(u_{i-1}, u_i)$$
 in $u_R(x, t)$ to $(u(x_{i-1}, t_{i-1}), u(x_i, t_i))$.

Lemma 6.8 (Comparison with the Riemann solution) Let (u_{i-1}, u_i) be the *i*-th wave in the Riemann solution $u_R(x, t) = u\left(\frac{x}{t}\right),$ $\begin{cases}
\partial_t u + \partial_x f(u) = 0 \\
u(x, 0) = \begin{cases}
u_l & x < 0 \\
u_P & x > 0
\end{cases}$

Then

$$|u(x_i, t_i) - u_i| = O(1) \varepsilon, \qquad \forall (x_i, t_i) \in \Lambda_i \;.$$

Proof of Lemma 6.8 It follows from Lemmas 6.5, 6.6, 6.7. We can find \tilde{u}_i such that

(1)
$$|\tilde{u}_i - u(x_i, t_i)| = O(1) \varepsilon$$
.
(2) $\tilde{u}_i \in T_i(\tilde{u}_{i-1})$.
(3) $(\tilde{u}_{i-1}, \tilde{u}_i)$ is an *i*-th elementary wave.

i.e., the superposition of $(\tilde{u}_{i-1}, \tilde{u}_i)$, $i = 1, \cdots, n$ solves

$$\begin{cases} \partial_t u + \partial_x f(u) = 0\\ u(x, t = 0) = \begin{cases} \tilde{u}_0 & x < 0\\ \tilde{u}_n & x > 0 \end{cases}\end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On the other hand, by definition, (u_{i-1}, u_i) is the *i*-th elementary of $u_R(x, t) = U\left(\frac{x}{t}\right)$,

$$\begin{cases} \partial_t u + \partial_x f(u) = 0\\ u(x, t = 0) = \begin{cases} u_- = u_0 & x < 0\\ u_+ = u_n & x > 0 \end{cases} \end{cases}$$

so,

$$|\widetilde{u}_0-u_-|=|\widetilde{u}_0-u_0|=O(1)\,arepsilon.$$

Similarly,

$$|\tilde{u}_n-u_+|=O(1)\varepsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

By continuous dependence of Riemann solution,

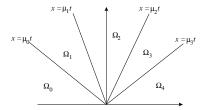
$$\begin{aligned} |\tilde{u}_i - u_i| &= O(1)\varepsilon, \quad i = 1, \cdots, n, \\ \text{so} \quad |u(x_i, t_i) - u_i| &= O(1)\varepsilon, \quad i = 1, \cdots, n. \end{aligned}$$

Final proof of Theorem 6.1

Proof of (1): $\forall \varepsilon > 0$, let X_k^j , Γ_k , Λ_k defined as before, clearly for large enough t, $\Gamma_i \subset \Omega_i$. Furthermore,

$$x = \mu_i t \subset \Lambda_i,$$

so for $x = \mu_i t$, $u(x, t) = u_i + O(1)\varepsilon$. Since ε is arbitrary, so $u(x, t) \to u_i$ on $\frac{x}{t} = \mu_i$, as $t \to \infty$.



Proof of (2):

<u>Step 1</u>: $i = \alpha_1, \dots, \alpha_p, \nabla \lambda_i \cdot \gamma_i > 0, (u_{i-1}, u_i)$ is a centered rarefaction wave, i.e. $\lambda_i(u_i) \ge \lambda_i(u_{i-1})$. Then by Lemma 6.8,

$$egin{aligned} \lambda_i(u(x_i,t_i)) &- \lambda_i(u(x_{i-1},t_{i-1})) \geq -O(1)\,arepsilon \ &(x_i,t_i) \in \Lambda_i, \; (x_{i-1},t_{i-1}) \in \Lambda_{i-1} \;. \end{aligned}$$

Then Lemma 6.7 implies

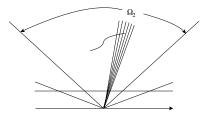
$$|\mathbb{X}_i^-(t)| + |\mathrm{str} X_i(t) = O(1) \varepsilon.$$

On the other hand, for large t, $\Gamma_i \subset \Omega_i$, so by Lemma 6.3 that the total amount of *i*-shock wave in Ω_i is order of $O(\varepsilon)$, which tends to zero as $t \to +\infty$ since ε is arbitrary \Longrightarrow only *i*-rarefaction waves left.

<u>Step 2</u>: We need to show in fact $u(x, t) \to (u_{i-1}, u_i)$ in Ω_i as $\overline{t \to \infty}$. By Step 1, $\exists t_2 > t_1$ such that $|\mathbb{X}_i^-(t)| + |\operatorname{str} X_i(t)| \le O(1) \varepsilon$ and also the speed X_i^1 and X_i^2 are given by $\lambda_i(u_{i-1}) + O(\varepsilon)$ and $\lambda_i(u_i) + O(\varepsilon)$ respectively.

Let $l_i^{\prime}(j = 1, 2)$ be the edges of the centered rarefaction wave (u_{i-1}, u_i) , $l_i^1 = \{(x, t) | \frac{x}{t} = \lambda_i(u_{i-1})\}$, $l_i^2 = \{(x, t) | \frac{x}{t} = \lambda_i(u_i)\}$. Then for $t \ge t_2 + O(1) D_i(t_2)$, one has

$$|X_i^1(t) - l_i^1(t)| + |X_i^2(t) - l_i^2(t)| = O(1) \varepsilon (t - t_2) + O(1).$$



Let
$$u^*(x, t)$$
 be the centered rarefaction wave.
Claim: (1)
 $|u^*(x, t) - u(x, t)| = O(1)\varepsilon, \quad \forall (x, t) \in (\Lambda_i \cup \Lambda_{i-1}) \cap \Omega_i.$
(2) $|u^*(x, t) - u(x, t)| = O(1)\varepsilon, \quad \forall (x, t) \in \Gamma_i \subset \Omega_i.$
(1) $(x, t) \in \Lambda_{i-1} \cap \Omega_i$, then
 $|u^*(x, t) - u(x, t)| \leq |u^*(x, t) - u_{i-1}| + |u_{i-1} - u(x, t)|$
 $= |u^*(x, t) - u^*(l_i^1(t), t)| + O(1)\varepsilon$
 $\leq O(1) \frac{|l_i^1(t) - X_i^1(t)|}{t} + O(1)\varepsilon$
 $\leq O(1)\varepsilon$ for t large enough.

Now we fix $(x, t) \in \Gamma_i$, $t \ge t_2 + O(1) D_i(t_2)$. By Step 1, no *i*-th shocks and other *j*-waves $(j \ne i) \pmod{O(\varepsilon)}$, and since (1) holds true. $\exists x^* \in (l_i^1(t), l_i^2(t))$ such that

$$|u^*(x^*,t)-u(x,t)|=O(\varepsilon).$$

Through (x^*, t) we draw a generalized backward characteristics curve X, its speed changes only when it crosses other waves, since X stays in Γ_i , thus the total amount of other family waves are of the order $O(\varepsilon)$, and when it cross the *i*-shocks, then its strength is $O(\varepsilon)$, so the speed of X is $\lambda_i(u(x, t)) + O(\varepsilon)$

$$|x^* - x| = O(1) \varepsilon |t - t_2| + O(1)$$

then

$$\begin{aligned} |u^*(x,t) - u(x,t)| &\leq |u^*(x,t) - u^*(x^*,t)| + |u^*(x^*,t) - u(x,t)| \\ &\leq O(1)|\lambda_i(u^*(x,t)) - \lambda_i(u^*(x^*,t))| + O(\varepsilon) \\ &= O(1) \left|\frac{x - x^*}{t}\right| + O(\varepsilon) \\ &= O(\varepsilon) \quad \text{for } t \text{ sufficiently large.} \end{aligned}$$