
Section 5. Uniqueness of
Glimm’s Solution

§5.1 Notations for Glimm’s Solution

• Choose mesh size s = ∆t, γ = ∆x , so that they satisfy CFL

condition,
γ

s
≥ λ̄.

• Let {θl}∞l=0 be a random sequence of numbers uniformly
distributed on [-1,1].

• Construction of Glimm’s scheme (by induction).



• Initially 0 < t < ∆t = s, we let ν(x , t) be the solution to
∂t ν + ∂x f (ν) = 0
ν(x , t = 0) = ū((m + θ)∆x), (m − 1)∆x < x < (m + 1)∆x ,

0 < t < ∆t, m = 0,±2,±4, · · ·
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• Assume ν(x , t) has been constructed up to t < l∆t, we need
to construct ν(x , t) on l∆t < t < (l + 1)∆t with initial data
on t = l∆t as

ν(x , l∆t) = ν((m + θl)∆x , l∆t),

(m − 1)∆x < x < (m + 1)∆x , m + l even.



We repeat this construction with a given sequence {θl}∞l=0, but let
mesh size γ → 0 (s → 0),

{uν}∞ν=1, ν → +∞ corresponding to γ → 0.

By Glimm’s functional, if T .V . ū � 1, then

T .V . {uν} ≤ c0 T .V .ū

∃{νj}, such that uνj → u in L′loc .

In general, u is not a weak solution (2.7), however, if {θl}∞l=0 is
uniformly distributed on [-1,1], then u is an entropy weak solution
to the Cauchy problem (2.7), (2.8).



Goal: The whole sequence uν coverge to u, and u is the unique
limit, which depends continuously on initial data

u(·, t) = St ū.

Theorem 5.1 Assume that

(1) The system (2.7) admits a SRSG.

(2) T .V . u0 � 1.

(3) Let {uν}∞ν=1 be a sequence of approximate solutions to (2.7)
constructed by Glimm’s method associated with a uniformly
equally distributed sequence {θl}∞l=1 ⊂ [−1, 1] and
u = u(x , t) ∈ C ([0,∞); L′loc(R)) is the a.e. limit of {uν},
then u = u(x , t) = St u0.



Proof of Theorem 5.1

Step 1: Some notations and facts:

• Let u be the limit of uν , u ∈ C ([0,∞), L′(R′))

T .V . u(·, t) ≤ c T .V . u0.

• Vν(t): total variation of uν(t)⇔ total amount of waves in
uν(t).

• Qν(t): total amount of potential wave interaction of uν at
time t.

• As proved before, Qν(t) is uniformly bounded and
nonincreasing. So by monotone convergence theorem, there
exists a subsequence Qν(t),

Qν(t)→ Q(t), ∀ t ≥ 0.



• Clearly Q(t) is bounded and nonincreasing, so Q(t) maybe
discontinuous at most at countably many times,

N = {τ1, τ2, · · · ; so that Q(t) is discontinuous at ti}.

Our goal is to show that for any τ ∈ (0,∞) \ N , that the
inequalities in the definition of viscosity solution are satisfied
with a suitably defined Radon measure µτ .

• For each i , i = 1, 2, · · · , n and ν ≥ 1. Let µνi± be the unique
Radon measures such that

µνi+(I ) = the total amount of positive waves being in I in uν(·, τ),
µνi−(I ) = the total amount of negative waves lies in I in uν(·, τ),

for any open interval I ,

µνi = µνi+ + µνi−.



Up to a subsequence if necessary, we can assume that there exist
Radon measure µi± such that

µνi± ⇀ µi± in measure.

Set µi = µi+ + µi−, µ
ν
i → µi ,

µτ =
n∑

i=1

µi ,

µτ is a Radon measure.

Claim: The hypothesis in Proposition 4.2 is satisfied, i.e. there
exists a uniform constant c and that ∀ fixed
(ξ, τ) ∈ R′ × ([0,∞) \ N )



(a)
1

ε

∫ ξ+ρ−λ̄ ε

ξ−ρ+λ̄ ε

∣∣∣u(x , τ + ε)− U#
u;ξ,τ (x , τ + ε)

∣∣∣ dx
≤ c µτ ((ξ − ρ, ξ) ∪ (ξ, ξ + ρ))

(b)
1

ε

∫ ξ+ρ−λ̄ ε

ξ−ρ+λ̄ ε

∣∣∣u(x , τ + ε)− Ub
u;ξ,τ (x , τ + ε)

∣∣∣ dx
≤ c(µτ (ξ − ρ, ξ + ρ))2

as long as ε and ρ are sufficiently small.

Step 2: Local structure of Glimm’s solutions (Glimm-Lax, Diferna).

Basic tools are:

• Generalized characteristics

• Approximate conservation laws



• Let a segment γ in xt-plane be given as

γ(t) = x̄ + λ(t − τ), t ∈ [τ, τ ′]

γ is non-characteristic if ∃ i such that

λi (u(x , t)) < λ < λi+1 (u(x , t)), ∀ (x , t)

t

x

i

i + 1 −characteristic

−characteristic



• Generalized characteristic curves

Consider the following augmented system{
∂t u0 + λ∂x u0 = 0
∂t u + ∂x f (u) = 0

U = (u0, u) = (u0, u1, · · · , un).

This is a strictly hyperbolic system, since

λ1(u) < λ2(u) < · · · < λi (u) < λ < λi+1(u) < · · · < λn(u).



Definition 5.1 For a given solution U = (u0, u1, un), then the j-th
generalized characteristic curve is a Lipschitz continuous curve
t 7→ ηj(t) such that

η̇j(t) = λj(U(ηj(t)+, t),U(ηj(t)−, t)).

• Approximate Conservation Laws
Let Λ ⊂ R2 be a region bounded by either a space-like curve
or a generalized characteristic curve. Let ν ≥ 1 be given, then
one can also define the corresponding generalized
characteristic curves associated with uν (approximate
characteristic curve). Set



Ej(Λ)
∆
= E+

j (Λ) + E−j (Λ), amount of j−waves entering Λ.

Lj(Λ)
∆
= L+

j (Λ) + L−j (Λ), amount of j−waves leaving Λ.

Q+(Λ) : total amount of wave interactions occurred in Λ.

Then the following estimates hold

Lj(Λ) ≤ Ej(Λ) + O(1)Q+(Λ) for j = 1, 2, · · · , n.

Remark: The inequality is due to the possible cancellation of
waves of the same family in Λ.

By taking limit, the approximate conservation laws hold for u.



Step 3: Some basic facts

• The estimate of j-waves crossing the non-characteristic
segment.

t

x

τ

τ

t =

t =   ’

tγ( )

For any closed interval I , we denote by

Qν(τ, I ) : potential of future wave interactions for uν
passing through I at t = τ.

Qν(τ, I ) −→ Q(τ, I )



Lemma 5.1

(1) Let γ be the non-characteristic segment defined before.
(2) Assume that all the generalized j-characteristic which cross γ

originated at t = τ from some point in an interval I ⊆ [a, b]
and

γ(t) ∈ [a + λ̄(t − τ), b − λ̄(t − τ)], ∀ t ∈ [τ, τ ′].

Then

Xj(γ) = O(1){µj(I ) + Q(τ, [a, b])}
= O(1)µ([a, b])

where Xj(γ) is the total amount of j-waves crossing γ.
t

x

τ

τ

t =

t =   ’

tγ( )

a b



Proof of Lemma 5.1 For definiteness, we assume that j ≤ i , thus
all the generalized j-characteristics crossing γ from right to left.
Starting from (γ(τ ′), τ ′), we draw the maximal backward
generalized j-characteristic, ηj(t). Define

Λ = {(x , t)| γ(t) ≤ x ≤ ηj(t), τ ≤ t ≤ τ ′},

we can apply the approximate conservation law to Λ,

Xj(γ) ≤ O(1)µj(I ) + O(1)Q+(Λ)
≤ O(1) {µj(I ) + Q(τ ; [a, b])}

As a consequence of Lemma 5.1, one has the following lemma.



Lemma 5.2 Let the i-th family be linearly degenerate, i.e.

∇λi (u) · γi (u) ≡ 0.

Then through each point (x0, τ0), there passes a unique i-th
generalized characteristics which depends on (x0, τ0) continuously.

Remark: This lemma is the consequence of the a priori bound on
the amount of wave crossing given in Lemma 5.1 and the
assumption that the i-th family is linearly degenerate. The proof of
the Lemma 5.2 is due to Bressan, based on the Lemma 5.1.



§5.2 Wave structure and the wave-interaction potential

Goal: At each t = τ , such that Q(t) is continuous at t = τ , then
all the solutions to Riemann problem with U(ξ±, τ) are either a
shock or contact discontinuity for all ξ ∈ R′.

(N = {t ∈ (0,∞) such that Q(t) is discontinuous} is countable)

τ ∈ (0,∞)\N .

If this goal is achieved, then the verification of viscosity solution
will be relatively easy. Indeed, we have



Lemma 5.3 Assume that Q(t) is continuous at t = τ > 0. Then

(1) ∀ ξ ∈ R′, ∃ i ∈ {1, 2, · · · , n} such that

µj({ξ}) = 0, ∀ j 6= i .

(2) If µi ({ξ}) > 0 and i-th family is genuinely nonlinear,
∇λi · γi > 0, then for some τ ′ > τ , each approximate solution
uν has an i-shock along an approximate characteristics
x = ηνi (t), t ∈ [τ, τ ′] with ηνi (τ)→ ξ as ν → +∞. In this
case µi− ({ξ}) is precisely the limit of the strength of the
shock as ν →∞, and µi+ ({ξ}) = 0.



Proof of Lemma 5.3 The key idea is to see the effects of wave
interactions.

Step 1: (Proof of (1)) We would like to show that
∃ i ∈ {1, 2, · · · , n} such that µj ({ξ}) = 0 if j 6= i .
If not, ∃ i and j such that µi ({ξ}) > 0, µj({ξ}) > 0, i 6= j ,
∃ δ > 0, such that

µi ({ξ}) > δ > 0, µj({ξ}) > δ > 0

∃ δ0 > 0, and N such that

µνi ({ξ}) > δ0, µνj ({ξ}) > δ0, ∀ ν ≥ N.

∀ ε > 0, in the interval (ξ − ε, ξ + ε), the amount of i-waves and
j-waves in (ξ − ε, ξ + ε) will be bigger than δ0, ν ≥ N.



Due to strict hyperbolicity, |λi − λj | ≥ m0 > 0, it is clear that
these waves have to interact in the interval [τ − c ε, τ + c ε], c
depends only on ε.

lim
ε→0
|[Q(τ + c ε)− Q(τ − c ε)]| ≥ δ2

0

4
.

since ε is arbitrary, this contradicts with the fact that Q(t) is
continuous at t = τ .

Step 2: Assume that i ∈ {1, 2, · · · , n} such that

µi ({ξ}) > 0 and ∇λi · γi > 0.

We would like to show (2). If not, then ∃ δ > 0, such that for every
ε > 0, ∃ ν(ε) large enough, such that one of the followings occurs.



Case 1: The amount of i-shock and i-rarefaction waves in uν(τ)
contained in the interval [ξ − ε, ξ + ε] are both > δ.

Case 2: One can partition [ξ − ε, ξ + ε] as Jν1 ∪ Jν2 such that
Jν1 ∩ Jν2 = φ and each Jνk contains amount of i-shock > δ.

t

x



In Case 1 and Case 2, as ν → +∞, an uniformly positive amount
of interactions would take place in the uν , within a time of interval
[τ, τ + c ε], c is uniform independent of ε. (However, c may
depends on δ, this is due to entropy condition.) Thus

limε→0 limν→∞ |Qν(τ)− Qν(τ + c ε)| ≥ δ2

10

lim [Q(τ)− Q(τ+)] ≥ δ2

10
contradiction.

Case 3: µi+({ξ}) > 0. We show that this is impossible. Indeed,
∀ ε > 0. Let η−i (t) minimal backward i-th characteristic through
(ξ − ε, τ).



η+
i (t) maximal backward i-th characteristics through (ξ + ε, τ).

t

ξ − ε ξ ξ + ε

Fact: η̇+
i − η̇

−
i is proportional to the total amount of i-rarefaction

waves in the interval [η−i , η
+
i ] ≥ δ > 0 if no interactions take place.

Then η±i (t) will meet in the interval [τ − c ε, τ ], c might depend
on δ but independent of ε. This is impossible.

Thus interactions must take place with [τ − c ε, τ ], then this will
contradicts the continuity of Q(t) at t = τ .



Corollary 5.1 Q(τ, I ) = O(1)µ(I \ {ξ})

Step 3: Verification of the conditions for Viscosity Solutions

Lemma 5.4 Let µ be a finite positive Radon measure defined on
the interval [a, b], assuming that λ > 0, δ > 0, λ′ ∈ R1. For t > 0,
we define

ϕ(x) = µ((x − λ t, x + λ t])
ψ(x) = µ((x − (λ′ + δ)t, x − (λ′ − δ)t])



Assume that [λ′ − δ, λ′ + δ] ⊂ [−λ, λ]. Then the following
estimates hold:

(1)

∫ b−λ t

a+λ t
ϕ(x) dx ≤ 2λ t µ((a, b))

(2)

∫ b−λ t

a+λ t
ϕ2(x) dx ≤ 2λ t(µ((a, b)))2

(3)

∫ b−λ t

a+λ t
ψ(x) dx ≤ 2 δ t µ((a, b))

Proof U(x) = µ((a, x))

For almost all x , U(x + λ t)− U(x − λ t) = ϕ(x) and
U(x − (λ′ − δ)t)− U(x − (λ′ + δ)t) = ψ(x). It is then trivial to
show (1), (2) and (3) by direct calculations.



Step 3.1

1

ε

∫ ξ+ρ−λ̄ ε

ξ−ρ+λ̄ ε
|u(x , τ+ε)−Ub

(u;ξ,τ) (x , τ+ε)|dx ≤ µτ ((ξ−ρ, ξ+ρ))2

for all ξ ∈ R, τ ∈ (0,∞) \ N , 0 < ρ, ε� 1.

Now, for fixed ξ, ρ > 0, Iξ,ρ = (ξ − ρ, ξ + ρ),

D =
{

(x , t)
∣∣∣ t ∈ [τ, τ +

ρ

λ̄

]
, x ∈ (ξ − ρ+ λ̄(t − τ), ξ + ρ− λ̄(t − τ))

}
ũ = u(ξ, τ) = u(ξ+, τ)

Ã = Df (ũ), λ̃i , l̃i , γ̃i



𝝉 

x 

 

D 

𝝃 − 𝝆 𝝃 𝝃 + 𝝆 

Let (u−, u+) be a single wave of the i-th family with strength σ,
then

< l̃i , u
+ − u− > = O(1)σ

< l̃j , u
+ − u− > = O(1)σ ·max{|u+ − ũ|, |u− − ũ|}



Let x = γ(s), ∀ s ∈ [τ, t] be a non-characteristic segment
contained in D. Then

(1) < l̃i , u(γ(t), t)− u(γ(τ), τ) >

= O(1)

Xi (γ) + sup
(x ,t)∈D

|u(x , t)− ũ|
∑
j 6=i

Xj(γ)


(2) |u(x , t)− u(ξ, τ)| = O(1)µ(Iξ,ρ),∀(x , t) ∈ D

If follows from (2) that ∃ δ∗ > 0 constant such that

0 < δ∗ = O(1)µ(Iξ,ρ)

λ̃i−δ∗ < λi (uν(x , t), uν(x ′, t ′)) < λ̃i+δ
∗ < min λi+1, ∀ (x , t), (x ′, t ′) ∈ D



Since

|λi (u(x , t), u(x ′, t ′))− λ̃i |
= |λi (u(x , t), u(x ′, t ′))− λi (u(ξ, τ), u(ξ, τ))|
≤ O(1)(|u(x , t)− u(ξ, τ)|+ |u(x ′, t ′)− u(ξ, τ)|
= O(1)µ(Iξ,ρ)

Consider two linear problems{
∂t v + Ã ∂x v = 0
v(x , t = τ) = u(x , τ)

t > τ

{
∂t w + (Ã + δ∗I ) ∂x w = 0
w(x , t = τ) = u(x , τ)

t > τ



ν(x , t) =
∑
i

< l̃i , u(x − λ̃i (t − τ), τ) > γ̃i

w(x , t) =
∑
i

< l̃i , u(x − (λ̃i + δ∗)(t − τ), τ) > γ̃i

so, ∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

|w(x , t)− ν(x , t)|dx

≤
∑
i

∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

|< l̃i , u(x − λ̃i (t − τ), τ)−u(x − (λ̃i + δ∗)(t − τ), τ)>γ̃i |

≤ O(1)
∑
i

∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

µτ ((x − (λ̃i + δ∗)(t − τ), x − λ̃i (t − τ)])

≤ O(1) δ∗(t − τ) µτ (Iξ,ρ)
= O(1) (t − τ) (µτ (Iξ,ρ))2



so it will be sufficient to show that∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)
|u(x , t)− w(x , t)|dx ≤ O(1) (t − τ) (µ(Iξ,ρ))2

For each fixed (x , t), we consider a non-characteristic segment

γi (s) = γ
(x ,t)
i (s) = x − (λ̃i + δ∗)(t − s), τ ≤ s ≤ t.

This is non-characteristic due to the choice of δ∗. Then

< l̃i , u(x , t)− w(x , t) > = < l̃i , u(x , t)− u(γi (τ), τ) > .



τ

(ξ, τ)

γ

γ
x t

i

(  ,  )

Applying (1), we have

< l̃i , u(x , t)− w(x , t) >=< l̃i , u(x , t)− u(γ
(x ,t)
i (τ), τ) >

= O(1)

Xi (γi ) + sup
(x ,t)∈D

|u(x , t)− ũ|
∑
j 6=i

Xj(γi )


= O(1){µ([x − (λ̃i + δ∗)(t − τ), x − (λ̃i − δ∗)(t − τ)])

+Q(t[x − λ̄(t − τ), x + λ̄(t − τ)])}
+O(1) µ(Iξ,ρ) µ([x − λ̄(t − τ), x + λ̄(t − τ)])



By definition: Q(τ, I ) ≤ (µ(I ))2, so above estimates and Lemma
5.4 imply∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

|u(x , t)− w(x , t)|dx

≤ O(1)
∑
i

∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

| < l̃i , u(x , t)− w(x , t) > |dx

≤ O(1)
∑
i

{∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

ψ(x) dx +

∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

ϕ2(x) dx

+O(1)µ(Iξ,ρ)

∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)

ϕ(x) dx

}
≤ O(1)

{
2δ∗(t − τ) µτ ((ξ − ρ, ξ + ρ)) + 2λ̄(t − τ)(µτ ((ξ − ρ, ξ + ρ)))2

+ O(1)µτ (Iξ,ρ) 2λ̄(t − τ) µτ (Iξ,ρ)
}

≤ O(1) (t − τ) (µτ (Iξ,ρ))2



Step 3.2:
1

ε

∫ ξ+ρ−λ̄ ε

ξ−ρ+λ̄ ε
|u(x , τ + ε)− U#

(u;ξ,τ) (x , τ + ε)|dx ≤

c µτ ((ξ − ρ, ξ) ∪ (ξ, ξ + ρ))

Case 1: µ({ξ}) = µτ ({ξ}) = 0. Thus u(x , τ) is continuous at
x = ξ. Then

µ(Iξ,ρ) = µ(Iξ,ρ \ {ξ}) = µ((ξ − ρ, ξ) ∪ (ξ, ξ + ρ))

|u(x , t)−u(x , τ)| = O(1)µ([x−λ̄(t−τ), x+λ̄(t−τ)]) ∀ (x , t) ∈ D



So it follows from the definition of U#, that∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)
|u(x , t)− U#

u,ξ,τ (x , t)|dx

= I1 + I2 + I3

t

x
0

with

I1 =

∫ ξ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)
|u(x , t)− u(x , τ)|dx ,



I2 =

∫ ξ+λ̄(t−τ)

ξ−λ̄(t−τ)
|u(x , t)− ũ|dx ,

t

x

I

I

I1

2

3

I3 =

∫ ξ+ρ−λ̄(t−τ)

ξ+λ̄(t−τ)
|u(x , t)− u(x , τ)|dx ,



Choose x̃ such that the straight line between (x̃ , t) and (ξ, τ) is
non-characteristic, then

I2 =

∫ ξ+λ̄(t−τ)

ξ−λ̄(t−τ)
|u(x , t)− ũ|dx

≤
∫ ξ+λ̄(t−τ)

ξ−λ̄(t−τ)
(|u(x , t)− u(x̃ , t)|+ |u(x̃ , t)− u(ξ, τ)|)dx

≤ O(1)µ(Iξ,ρ) 2λ̄(t − τ)

I1 =

∫ ξ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)
|u(x , t)− u(x , τ)|dx

≤ O(1)

∫ ξ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)
µτ ((x − λ̄(t − τ), x + λ̄(t − τ)))dx

= O(1) 2λ̄(t − τ) µτ ((ξ − ρ, ξ))



Similarly,
I3 ≤ O(1) 2λ̄(t − τ) µτ ((ξ, ξ + ρ)).

Thus,

I1 + I2 + I3 ≤ O(1)(t − τ)µτ ((ξ − ρ, ξ) ∪ (ξ, ξ + ρ))

Case 2: µ({ξ}) > 0, then ∃ i , such that µ({ξ}) = µi ({ξ}) > 0, and
the i-th family is genuinely nonlinear, i.e. ∇λi · γi > 0. Then in
this case, the Riemann problem with data (u(ξ−, τ), u(ξ+, τ)) is
solved by an i-shock.



For the solution u(x , t), there is a single i-th shock grows out at
(ξ, τ), denoted by x = η(t), t ∈ [τ, τ ′].

x

ξ ξ τ
t

u u(  ,  )
−

+τ (   ,  )



Let’s assume that (x , t) ∈ D, x < η(t). Let
s → γ(s) = x − λ̄(t − s), t ∈ [τ, t].

𝒔 

x 

 

𝒔 = 𝝉 
(𝜸(𝝉), 𝝉) (𝝃, 𝝉) 

𝒔 = 𝒕 
(𝒙, 𝒕) 

𝜼(𝒔) 𝜸(𝒔) 

This is a non-characteristic segment. It should be clear that all
i-waves which cross γ intersect with the line t = τ with a compact
interval contained in (ξ − ρ, ξ). (This is true due to entropy
condition.)



Then

|u(x , t)− u(ξ−, τ)| ≤ |u(x , t)− u(γ(τ), τ)|+ |u(γ(τ), τ)− u(ξ−, τ)|

≤ O(1)

Xi (γ) +
∑
j 6=i

Xj(γ) + µτ ((ξ − ρ, ξ))


≤ O(1)

µτ ((ξ − ρ, ξ)) + Q(τ, Iξ,ρ) +
∑
j 6=i

µj(Iξ,ρ)



µj(Iξ,ρ) = µj(Iξ,ρ \ {ξ})
Q(τ, Iξ,ρ) = O(1)µτ (Iξ,ρ \ {ξ})



In conclusion, we have shown that

|u(x , t)−u(ξ−, τ)| = O(1)µτ (Iξ,ρ\{ξ}) for (x , t) ∈ D, x < η(t).

Exactly, we have

|u(x , t)− u(ξ+, τ)| = O(1)µτ (Iξ,ρ \ {ξ}) ∀(x , t) ∈ D, x > η(t).

As a consequence, we get

|η′(t)− λi (u(ξ−, τ), u(ξ+, τ))| = O(1)µτ (Iξ,ρ \ {ξ})∫ ξ+ρ−λ̄(t−τ)

ξ−ρ+λ̄(t−τ)
|u(x , t)− U#

u,ξ,τ (x , t)|dx =

∫
I1∪I2∪I3

|u − U#|



I1 is bounded by ξ + λi (u(ξ−, τ), u(ξ+, τ))(t − τ), η(t),

I2 = [ξ − λ̄(t − τ), ξ + λ̄(t − τ)] \ I1 = I+
2 ∪ I−2 ,

with I−2 = I2 ∩ {x < η(t)}, I+
2 = I2 ∩ {x > η(t)},

I3 = I \ {I1 ∪ I2}.



∫
I1

|u(x , t)− U#
u,ξ,τ (x , t)|dx = O(1) |I1|

= O(1)µτ (Iξ,ρ \ {ξ})(t − τ)∫
I−2

|u(x , t)− U#
u,ξ,τ (x , t)|dx =

∫
I−2
|u(x , t)− u(ξ−, τ)|dx

= O(1)µ(Iξ,ρ \ {ξ}) |I−2 |
= O(1)µ(Iξ,ρ \ {ξ}) 2λ̄(t − τ)

Similarly,∫
I+
2

|u(x , t)− U#
u,ξ,τ (x , t)|dx ≤ O(1)µ(Iξ,ρ \ {ξ}) 2λ̄(t − τ).

The integral over I3 is the same as Case 1.



Case 3: µ({ξ}) = µi ({ξ}) > 0 and the i-th family is linearly
degenerate. Then the Riemann problem with the data
(u(ξ−, τ), u(ξ+, τ)) is a contact discontinuity. And furthermore,
in u(x , t), there exists contact discontinuity x = η(t) growing out
of (ξ, τ), τ < t < τ ′ for some τ ′ > τ . Note that x = η(t) is the
unique i-th generalized characteristic curve through (ξ, τ).

Claim: All the analysis in Case 2 is true for this case. (exercise)


