Section 5. Uniqueness of Glimm's Solution

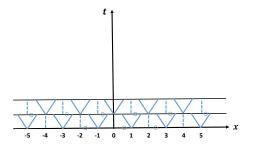
 $\S 5.1$ Notations for Glimm's Solution

Choose mesh size s = Δt, γ = Δx, so that they satisfy CFL condition, ^γ/_s ≥ λ̄.

- Let {θ_l}[∞]_{l=0} be a random sequence of numbers uniformly distributed on [-1,1].
- Construction of Glimm's scheme (by induction).

• Initially $0 < t < \Delta t = s$, we let $\nu(x, t)$ be the solution to

$$\left(egin{array}{l} \partial_t \, \nu + \partial_x \, f(\nu) = 0 \
u(x,t=0) = ar{u}((m+ heta)\Delta x), \ (m-1)\Delta x < x < (m+1)\Delta x, \ 0 < t < \Delta t, \ m=0,\pm 2,\pm 4,\cdots \end{array}
ight.$$



▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

• Assume $\nu(x, t)$ has been constructed up to $t < l\Delta t$, we need to construct $\nu(x, t)$ on $l\Delta t < t < (l+1)\Delta t$ with initial data on $t = l\Delta t$ as

$$u(x, l\Delta t) = \nu((m + \theta_l)\Delta x, l\Delta t),$$
 $(m-1)\Delta x < x < (m+1)\Delta x, m+l$ even.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We repeat this construction with a given sequence $\{\theta_I\}_{I=0}^{\infty}$, but let mesh size $\gamma \to 0$ ($s \to 0$),

$$\{u_{\nu}\}_{\nu=1}^{\infty}, \quad \nu \to +\infty \text{ corresponding to } \gamma \to 0.$$

By Glimm's functional, if $T.V. \bar{u} \ll 1$, then

$$T.V.\{u_{\nu}\} \leq c_0 T.V.\bar{u}$$

 $\exists \{\nu_j\}$, such that $u_{\nu_j} \rightarrow u$ in L'_{loc} .

In general, u is not a weak solution (2.7), however, if $\{\theta_l\}_{l=0}^{\infty}$ is uniformly distributed on [-1,1], then u is an entropy weak solution to the Cauchy problem (2.7), (2.8).

<u>Goal</u>: The whole sequence u_{ν} coverge to u, and u is the unique limit, which depends continuously on initial data

$$u(\cdot,t)=S_t\,\overline{u}.$$

Theorem 5.1 Assume that

- (1) The system (2.7) admits a SRSG.
- (2) $T.V. u_0 \ll 1.$
- (3) Let {u_ν}[∞]_{ν=1} be a sequence of approximate solutions to (2.7) constructed by Glimm's method associated with a uniformly equally distributed sequence {θ_l}[∞]_{l=1} ⊂ [-1, 1] and u = u(x, t) ∈ C([0, ∞); L'_{loc}(ℝ)) is the a.e. limit of {u_ν}, then u = u(x, t) = S_t u₀.

Proof of Theorem 5.1

Step 1: Some notations and facts:

• Let u be the limit of $u_{
u}$, $u \in C([0,\infty), L'(\mathbb{R}'))$

```
T.V.u(\cdot,t) \leq c T.V.u_0.
```

- $V_{\nu}(t)$: total variation of $u_{\nu}(t) \Leftrightarrow$ total amount of waves in $u_{\nu}(t)$.
- $Q_{\nu}(t)$: total amount of potential wave interaction of u_{ν} at time t.
- As proved before, Q_{\u03c0}(t) is uniformly bounded and nonincreasing. So by monotone convergence theorem, there exists a subsequence Q_{\u03c0}(t),

$$Q_
u(t) o Q(t), \qquad orall \, t \geq 0.$$

• Clearly Q(t) is bounded and nonincreasing, so Q(t) maybe discontinuous at most at countably many times,

 $\mathcal{N} = \{\tau_1, \tau_2, \cdots; \text{ so that } Q(t) \text{ is discontinuous at } t_i\}.$

Our goal is to show that for any $\tau \in (0, \infty) \setminus \mathcal{N}$, that the inequalities in the definition of viscosity solution are satisfied with a suitably defined Radon measure μ_{τ} .

• For each $i,\,i=1,2,\cdots,n$ and $\nu\geq 1.$ Let $\mu_{i\pm}^{\nu}$ be the unique Radon measures such that

 $\mu_{i+}^{\nu}(I) =$ the total amount of positive waves being in I in $u_{\nu}(\cdot, \tau)$, $\mu_{i-}^{\nu}(I) =$ the total amount of negative waves lies in I in $u_{\nu}(\cdot, \tau)$,

for any open interval I,

$$\mu_{i}^{\nu} = \mu_{i+}^{\nu} + \mu_{i-}^{\nu}.$$

Up to a subsequence if necessary, we can assume that there exist Radon measure μ_{i+} such that

 $\mu_{i\pm}^{\nu} \rightharpoonup \mu_{i\pm}$ in measure.

Set $\mu_i = \mu_{i+} + \mu_{i-}, \ \mu_i^{\nu} \rightarrow \mu_i$,

$$\mu_{\tau} = \sum_{i=1}^{n} \mu_{i},$$

 μ_{τ} is a Radon measure.

<u>Claim</u>: The hypothesis in Proposition 4.2 is satisfied, i.e. there exists a uniform constant c and that \forall fixed $(\xi, \tau) \in \mathbb{R}' \times ([0, \infty) \setminus \mathcal{N})$

(a)
$$\frac{1}{\varepsilon} \int_{\xi-\rho+\bar{\lambda}\varepsilon}^{\xi+\rho-\bar{\lambda}\varepsilon} \left| u(x,\tau+\varepsilon) - U_{u;\xi,\tau}^{\#}(x,\tau+\varepsilon) \right| dx$$
$$\leq c \,\mu_{\tau}((\xi-\rho,\xi) \cup (\xi,\xi+\rho))$$
(b)
$$\frac{1}{\varepsilon} \int_{\xi-\rho+\bar{\lambda}\varepsilon}^{\xi+\rho-\bar{\lambda}\varepsilon} \left| u(x,\tau+\varepsilon) - U_{u;\xi,\tau}^{b}(x,\tau+\varepsilon) \right| dx$$
$$\leq c (\mu_{\tau}(\xi-\rho,\xi+\rho))^{2}$$

as long as ε and ρ are sufficiently small.

Step 2: Local structure of Glimm's solutions (Glimm-Lax, Diferna).

Basic tools are:

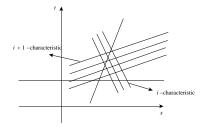
- Generalized characteristics
- Approximate conservation laws

• Let a segment γ in xt-plane be given as

$$\gamma(t) = \bar{x} + \lambda(t - \tau), \ t \in [\tau, \tau']$$

 γ is non-characteristic if $\exists i$ such that

$$\lambda_i(u(x,t)) < \lambda < \lambda_{i+1}(u(x,t)), \quad \forall (x,t)$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Generalized characteristic curves

Consider the following augmented system

$$\begin{cases} \partial_t u_0 + \lambda \, \partial_x \, u_0 = 0\\ \partial_t \, u + \partial_x \, f(u) = 0 \end{cases}$$

$$U = (u_0, u) = (u_0, u_1, \cdots, u_n).$$

This is a strictly hyperbolic system, since

 $\lambda_1(u) < \lambda_2(u) < \cdots < \lambda_i(u) < \lambda < \lambda_{i+1}(u) < \cdots < \lambda_n(u).$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition 5.1 For a given solution $U = (u_0, u_1, u_n)$, then the *j*-th generalized characteristic curve is a Lipschitz continuous curve $t \mapsto \eta_i(t)$ such that

$$\dot{\eta}_j(t) = \lambda_j(U(\eta_j(t)+,t),U(\eta_j(t)-,t)).$$

• Approximate Conservation Laws Let $\Lambda \subset \mathbb{R}^2$ be a region bounded by either a space-like curve or a generalized characteristic curve. Let $\nu \geq 1$ be given, then one can also define the corresponding generalized characteristic curves associated with u_{ν} (approximate characteristic curve). Set

$$\begin{array}{lll} E_j(\Lambda) & \triangleq & E_j^+(\Lambda) + E_j^-(\Lambda), \text{ amount of } j-\text{waves entering } \Lambda. \\ L_j(\Lambda) & \triangleq & L_j^+(\Lambda) + L_j^-(\Lambda), \text{ amount of } j-\text{waves leaving } \Lambda. \\ Q^+(\Lambda) & : & \text{total amount of wave interactions occurred in } \Lambda. \end{array}$$

Then the following estimates hold

$$L_j(\Lambda) \leq E_j(\Lambda) + O(1) Q^+(\Lambda)$$
 for $j = 1, 2, \cdots, n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remark: The inequality is due to the possible cancellation of waves of the same family in Λ .

By taking limit, the approximate conservation laws hold for u.

Step 3: Some basic facts

• The estimate of *j*-waves crossing the non-characteristic segment.



For any closed interval I, we denote by

Lemma 5.1

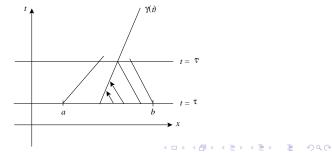
- (1) Let γ be the non-characteristic segment defined before.
- (2) Assume that all the generalized *j*-characteristic which cross γ originated at $t = \tau$ from some point in an interval $I \subseteq [a, b]$ and

$$\gamma(t)\in [\mathsf{a}+ar\lambda(t- au), \ \mathsf{b}-ar\lambda(t- au)], \qquad orall t\in [au, au'].$$

Then

$$\begin{array}{rcl} X_j(\gamma) &=& O(1)\{\mu_j(I) + Q(\tau, [a, b])\} \\ &=& O(1)\,\mu([a, b]) \end{array}$$

where $X_j(\gamma)$ is the total amount of *j*-waves crossing γ .



Proof of Lemma 5.1 For definiteness, we assume that $j \leq i$, thus all the generalized *j*-characteristics crossing γ from right to left. Starting from $(\gamma(\tau'), \tau')$, we draw the maximal backward generalized *j*-characteristic, $\eta_i(t)$. Define

$$\Lambda = \{ (x,t) | \ \gamma(t) \leq x \leq \eta_j(t), \quad \tau \leq t \leq \tau' \},$$

we can apply the approximate conservation law to Λ ,

$$egin{array}{rcl} X_j(\gamma) &\leq & O(1)\,\mu_j(I) + O(1)\,Q^+(\Lambda) \ &\leq & O(1)\,\{\mu_j(I) + Q(au;[a,b])\} \end{array}$$

As a consequence of Lemma 5.1, one has the following lemma.

Lemma 5.2 Let the *i*-th family be linearly degenerate, i.e.

 $\nabla \lambda_i(u) \cdot \gamma_i(u) \equiv 0.$

Then through each point (x_0, τ_0) , there passes a unique *i*-th generalized characteristics which depends on (x_0, τ_0) continuously.

Remark: This lemma is the consequence of the a priori bound on the amount of wave crossing given in Lemma 5.1 and the assumption that the *i*-th family is linearly degenerate. The proof of the Lemma 5.2 is due to Bressan, based on the Lemma 5.1.

§5.2 Wave structure and the wave-interaction potential

<u>Goal</u>: At each $t = \tau$, such that Q(t) is continuous at $t = \tau$, then all the solutions to Riemann problem with $U(\xi\pm,\tau)$ are either a shock or contact discontinuity for all $\xi \in \mathbb{R}'$.

 $(\mathcal{N} = \{t \in (0,\infty) \text{ such that } Q(t) \text{ is discontinuous}\} \text{ is countable})$

 $\tau \in (0,\infty) \backslash \mathcal{N}.$

If this goal is achieved, then the verification of viscosity solution will be relatively easy. Indeed, we have

Lemma 5.3 Assume that Q(t) is continuous at $t = \tau > 0$. Then (1) $\forall \xi \in \mathbb{R}', \exists i \in \{1, 2, \dots, n\}$ such that

$$\mu_j(\{\xi\})=0, \qquad \forall j\neq i.$$

(2) If μ_i({ξ}) > 0 and *i*-th family is genuinely nonlinear, ∇ λ_i · γ_i > 0, then for some τ' > τ, each approximate solution u^ν has an *i*-shock along an approximate characteristics x = η^ν_i(t), t ∈ [τ,τ'] with η^ν_i(τ) → ξ as ν → +∞. In this case μ_{i-} ({ξ}) is precisely the limit of the strength of the shock as ν → ∞, and μ_{i+} ({ξ}) = 0.

Proof of Lemma 5.3 The key idea is to see the effects of wave interactions.

Step 1: (Proof of (1)) We would like to show that $\exists i \in \{1, 2, \dots, n\}$ such that $\mu_j(\{\xi\}) = 0$ if $j \neq i$. If not, $\exists i$ and j such that $\mu_i(\{\xi\}) > 0$, $\mu_j(\{\xi\}) > 0$, $i \neq j$, $\exists \delta > 0$, such that

$$\mu_i(\{\xi\}) > \delta > 0, \quad \mu_j(\{\xi\}) > \delta > 0$$

 $\exists \, \delta_0 > 0$, and N such that

$$\mu_i^{\nu}(\{\xi\}) > \delta_0, \qquad \mu_j^{\nu}(\{\xi\}) > \delta_0, \qquad \forall \nu \ge N.$$

 $\forall \varepsilon > 0$, in the interval $(\xi - \varepsilon, \xi + \varepsilon)$, the amount of *i*-waves and *j*-waves in $(\xi - \varepsilon, \xi + \varepsilon)$ will be bigger than δ_0 , $\nu \ge N$.

Due to strict hyperbolicity, $|\lambda_i - \lambda_j| \ge m_0 > 0$, it is clear that these waves have to interact in the interval $[\tau - c \varepsilon, \tau + c \varepsilon]$, c depends only on ε .

$$\lim_{\varepsilon\to 0} |[Q(\tau+c\,\varepsilon)-Q(\tau-c\,\varepsilon)]|\geq \frac{\delta_0^2}{4}.$$

since ε is arbitrary, this contradicts with the fact that Q(t) is continuous at $t = \tau$.

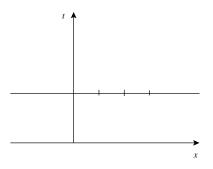
Step 2: Assume that $i \in \{1, 2, \dots, n\}$ such that

$$\mu_i(\{\xi\}) > 0$$
 and $\nabla \lambda_i \cdot \gamma_i > 0$.

We would like to show (2). If not, then $\exists \delta > 0$, such that for every $\varepsilon > 0$, $\exists \nu(\varepsilon)$ large enough, such that one of the followings occurs.

<u>Case 1:</u> The amount of *i*-shock and *i*-rarefaction waves in $u^{\nu}(\tau)$ contained in the interval $[\xi - \varepsilon, \xi + \varepsilon]$ are both $> \delta$.

<u>Case 2:</u> One can partition $[\xi - \varepsilon, \xi + \varepsilon]$ as $J_1^{\nu} \cup J_2^{\nu}$ such that $J_1^{\nu} \cap J_2^{\nu} = \phi$ and each J_k^{ν} contains amount of *i*-shock $> \delta$.

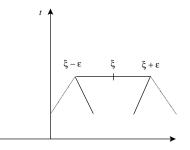


In Case 1 and Case 2, as $\nu \to +\infty$, an uniformly positive amount of interactions would take place in the u^{ν} , within a time of interval $[\tau, \tau + c \varepsilon]$, c is uniform independent of ε . (However, c may depends on δ , this is due to entropy condition.) Thus

$$\begin{split} \lim_{arepsilon o 0} \lim_{
u o \infty} |Q^{
u}(au) - Q^{
u}(au+c\,arepsilon)| &\geq rac{\delta^2}{10} \ \overline{\lim} \left[Q(au) - Q(au+)
ight] &\geq rac{\delta^2}{10} \ ext{ contradiction.} \end{split}$$

- 0

<u>Case 3:</u> $\mu_{i+}(\{\xi\}) > 0$. We show that this is impossible. Indeed, $\forall \varepsilon > 0$. Let $\eta_i^-(t)$ minimal backward *i*-th characteristic through $(\xi - \varepsilon, \tau)$. $\eta_i^+(t)$ maximal backward *i*-th characteristics through $(\xi + \varepsilon, \tau)$.



<u>Fact</u>: $\dot{\eta}_i^+ - \dot{\eta}_i^-$ is proportional to the total amount of *i*-rarefaction waves in the interval $[\eta_i^-, \eta_i^+] \ge \delta > 0$ if no interactions take place. Then $\eta_i^{\pm}(t)$ will meet in the interval $[\tau - c \varepsilon, \tau]$, *c* might depend on δ but independent of ε . This is impossible.

Thus interactions must take place with $[\tau - c \varepsilon, \tau]$, then this will contradicts the continuity of Q(t) at $t = \tau$.

Corollary 5.1 $Q(\tau, I) = O(1) \mu(I \setminus \{\xi\})$

Step 3: Verification of the conditions for Viscosity Solutions

Lemma 5.4 Let μ be a finite positive Radon measure defined on the interval [a, b], assuming that $\lambda > 0$, $\delta > 0$, $\lambda' \in \mathbb{R}^1$. For t > 0, we define

$$\begin{array}{lll} \varphi(x) &=& \mu((x-\lambda t, \ x+\lambda t]) \\ \psi(x) &=& \mu((x-(\lambda'+\delta)t, \ x-(\lambda'-\delta)t]) \end{array}$$

Assume that $[\lambda' - \delta, \lambda' + \delta] \subset [-\lambda, \lambda]$. Then the following estimates hold:

(1)
$$\int_{a+\lambda t}^{b-\lambda t} \varphi(x) dx \leq 2\lambda t \mu((a, b))$$

(2)
$$\int_{a+\lambda t}^{b-\lambda t} \varphi^{2}(x) dx \leq 2\lambda t (\mu((a, b)))^{2}$$

(3)
$$\int_{a+\lambda t}^{b-\lambda t} \psi(x) dx \leq 2\delta t \mu((a, b))$$

Proof $U(x) = \mu((a, x))$

For almost all x, $U(x + \lambda t) - U(x - \lambda t) = \varphi(x)$ and $U(x - (\lambda' - \delta)t) - U(x - (\lambda' + \delta)t) = \psi(x)$. It is then trivial to show (1), (2) and (3) by direct calculations.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

$$\begin{array}{l} \underbrace{\operatorname{Step } 3.1}_{\varepsilon} \\ \frac{1}{\varepsilon} \int_{\xi-\rho+\bar{\lambda}\,\varepsilon}^{\xi+\rho-\bar{\lambda}\,\varepsilon} |u(x,\tau+\varepsilon) - U^b_{(u;\xi,\tau)} (x,\tau+\varepsilon)| dx \leq \mu_\tau ((\xi-\rho,\xi+\rho))^2 \\ \text{for all } \xi \in \mathbb{R}, \ \tau \in (0,\infty) \setminus \mathcal{N}, \ 0 < \rho, \ \varepsilon \ll 1. \end{array}$$

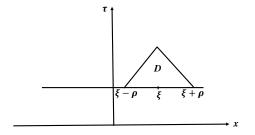
Now, for fixed ξ , $\rho > 0$, $I_{\xi,\rho} = (\xi - \rho, \xi + \rho)$,

$$D = \left\{ (x,t) \mid t \in \left[\tau, \tau + \frac{\rho}{\overline{\lambda}}\right], x \in (\xi - \rho + \overline{\lambda}(t - \tau), \xi + \rho - \overline{\lambda}(t - \tau)) \right\}$$

$$\tilde{u} = u(\xi, \tau) = u(\xi +, \tau)$$

$$\tilde{A} = Df(\tilde{u}), \tilde{\lambda}_i, \tilde{l}_i, \tilde{\gamma}_i$$

<□ > < @ > < E > < E > E のQ @



Let (u^-, u^+) be a single wave of the *i*-th family with strength σ , then

$$egin{array}{rcl} < ilde{l}_{i}, \,\, u^{+} - u^{-} > &= & O(1)\,\sigma \ < ilde{l}_{j}, \,\, u^{+} - u^{-} > &= & O(1)\,\sigma\cdot \max\{|u^{+} - ilde{u}|, |u^{-} - ilde{u}|\} \end{array}$$

Let $x = \gamma(s)$, $\forall s \in [\tau, t]$ be a non-characteristic segment contained in D. Then

(1)
$$< \tilde{l}_i, u(\gamma(t), t) - u(\gamma(\tau), \tau) >$$

= $O(1) \left\{ X_i(\gamma) + \sup_{(x,t)\in D} |u(x,t) - \tilde{u}| \sum_{j\neq i} X_j(\gamma) \right\}$
(2) $|u(x,t) - u(\xi, \tau)| = O(1) \mu(l_{\xi,\rho}), \forall (x,t) \in D$

If follows from (2) that $\exists \, \delta^* > 0$ constant such that

$$0<\delta^*=O(1)\,\mu(I_{\xi,
ho})$$

 $ilde{\lambda}_i - \delta^* < \lambda_i (u_
u(x,t), \ u_
u(x',t')) < ilde{\lambda}_i + \delta^* < \min \ \lambda_{i+1}, \quad \forall (x,t), \ (x',t') \in D$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{aligned} &|\lambda_i(u(x,t), u(x',t')) - \tilde{\lambda}_i| \\ &= |\lambda_i(u(x,t), u(x',t')) - \lambda_i(u(\xi,\tau), u(\xi,\tau))| \\ &\leq O(1)(|u(x,t) - u(\xi,\tau)| + |u(x',t') - u(\xi,\tau)| \\ &= O(1) \, \mu(I_{\xi,\rho}) \end{aligned}$$

Consider two linear problems

$$\begin{cases} \partial_t v + \tilde{A} \partial_x v = 0 \\ v(x, t = \tau) = u(x, \tau) \end{cases} \qquad t > \tau$$
$$\begin{cases} \partial_t w + (\tilde{A} + \delta^* I) \partial_x w = 0 \\ w(x, t = \tau) = u(x, \tau) \end{cases} \qquad t > \tau$$

<□ > < @ > < E > < E > E のQ @

$$u(x,t) = \sum_{i} < \tilde{l}_{i}, \ u(x - \tilde{\lambda}_{i}(t - \tau), \tau) > \tilde{\gamma}_{i}$$
 $w(x,t) = \sum_{i} < \tilde{l}_{i}, \ u(x - (\tilde{\lambda}_{i} + \delta^{*})(t - \tau), \tau) > \tilde{\gamma}_{i}$

so,

$$\begin{split} &\int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} |w(x,t)-\nu(x,t)| dx \\ &\leq \sum_{i} \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} |<\tilde{l}_{i}, \ u(x-\tilde{\lambda}_{i}(t-\tau),\tau)-u(x-(\tilde{\lambda}_{i}+\delta^{*})(t-\tau),\tau)>\tilde{\gamma}_{i}| \\ &\leq O(1) \sum_{i} \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} \mu_{\tau}((x-(\tilde{\lambda}_{i}+\delta^{*})(t-\tau), \ x-\tilde{\lambda}_{i}(t-\tau)]) \\ &\leq O(1) \delta^{*}(t-\tau) \ \mu_{\tau}(I_{\xi,\rho}) \\ &= O(1) (t-\tau) \ (\mu_{\tau}(I_{\xi,\rho}))^{2} \end{split}$$

◆□ → <圖 → < 差 → < 差 → < 差 → < 2 → < </p>

so it will be sufficient to show that

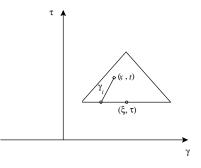
$$\int_{\xi-
ho+ar\lambda(t- au)}^{\xi+
ho-ar\lambda(t- au)} |u(x,t)-w(x,t)| dx \leq O(1) \left(t- au
ight) \left(\mu(I_{\xi,
ho})
ight)^2$$

For each fixed (x, t), we consider a non-characteristic segment

$$\gamma_i(s) = \gamma_i^{(x,t)}(s) = x - (\tilde{\lambda}_i + \delta^*)(t-s), \qquad au \leq s \leq t.$$

This is non-characteristic due to the choice of δ^* . Then

$$< ilde{l}_i, \ u(x,t)-w(x,t)>=< ilde{l}_i, \ u(x,t)-u(\gamma_i(au), au)>.$$



Applying (1), we have

$$< \tilde{l}_{i}, \ u(x,t) - w(x,t) > = < \tilde{l}_{i}, u(x,t) - u(\gamma_{i}^{(x,t)}(\tau),\tau) >$$

$$= O(1) \left\{ X_{i}(\gamma_{i}) + \sup_{(x,t)\in D} |u(x,t) - \tilde{u}| \sum_{j\neq i} X_{j}(\gamma_{i}) \right\}$$

$$= O(1) \{ \mu([x - (\tilde{\lambda}_{i} + \delta^{*})(t - \tau), \ x - (\tilde{\lambda}_{i} - \delta^{*})(t - \tau)]) + Q(t[x - \bar{\lambda}(t - \tau), \ x + \bar{\lambda}(t - \tau)]) \}$$

$$+ O(1) \ \mu(l_{\xi,\rho}) \ \mu([x - \bar{\lambda}(t - \tau), \ x + \bar{\lambda}(t - \tau)])$$

By definition: $Q(\tau, I) \leq (\mu(I))^2$, so above estimates and Lemma 5.4 imply

$$\begin{split} & \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} |u(x,t) - w(x,t)| dx \\ \leq & O(1) \sum_{i} \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} |<\tilde{l}_{i}, \ u(x,t) - w(x,t) > |dx \\ \leq & O(1) \sum_{i} \left\{ \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} \psi(x) \, dx + \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} \varphi^{2}(x) \, dx \right. \\ & + O(1) \, \mu(l_{\xi,\rho}) \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} \varphi(x) \, dx \\ \leq & O(1) \left\{ 2\delta^{*}(t-\tau) \, \mu_{\tau}((\xi-\rho,\xi+\rho)) + 2\bar{\lambda}(t-\tau)(\mu_{\tau}((\xi-\rho,\xi+\rho)))^{2} \right. \\ \leq & O(1) \, (t-\tau) \, (\mu_{\tau}(l_{\xi,\rho}))^{2} \end{split}$$

$$\frac{\text{Step 3.2:}}{c \ \mu_{\tau}((\xi - \rho, \xi) \cup (\xi, \xi + \rho))} \frac{1}{\varepsilon} \int_{\xi - \rho + \bar{\lambda}\varepsilon}^{\xi + \rho - \bar{\lambda}\varepsilon} |u(x, \tau + \varepsilon) - U_{(u;\xi,\tau)}^{\#}(x, \tau + \varepsilon)| dx \leq \varepsilon$$

<u>Case 1</u>: $\mu(\{\xi\}) = \mu_{\tau}(\{\xi\}) = 0$. Thus $u(x, \tau)$ is continuous at $x = \xi$. Then

$$\begin{split} \mu(I_{\xi,\rho}) &= \mu(I_{\xi,\rho} \setminus \{\xi\}) = \mu((\xi - \rho, \xi) \cup (\xi, \xi + \rho)) \\ u(x,t) - u(x,\tau)| &= O(1) \, \mu([x - \bar{\lambda}(t - \tau), \, x + \bar{\lambda}(t - \tau)]) \qquad \forall \, (x,t) \in D \end{split}$$

So it follows from the definition of $U^{\#}$, that

$$\int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi+\rho-\bar{\lambda}(t-\tau)} |u(x,t) - U_{u,\xi,\tau}^{\#}(x,t)| dx$$

$$= I_1 + I_2 + I_3$$

with

$$I_1 = \int_{\xi-
ho+ar\lambda(t- au)}^{\xi-ar\lambda(t- au)} |u(x,t)-u(x, au)|dx,$$

$$I_{2} = \int_{\xi - \bar{\lambda}(t-\tau)}^{\xi + \bar{\lambda}(t-\tau)} |u(x,t) - \tilde{u}| dx, \qquad \underbrace{\qquad \qquad }_{t_{1}}$$

$$I_3 = \int_{\xi + \bar{\lambda}(t-\tau)}^{\xi + \rho - \bar{\lambda}(t-\tau)} |u(x,t) - u(x,\tau)| dx,$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Choose \tilde{x} such that the straight line between (\tilde{x}, t) and (ξ, τ) is non-characteristic, then

$$\begin{array}{rcl} l_2 & = & \displaystyle \int_{\xi - \bar{\lambda}(t - \tau)}^{\xi + \bar{\lambda}(t - \tau)} |u(x, t) - \tilde{u}| dx \\ & \leq & \displaystyle \int_{\xi - \bar{\lambda}(t - \tau)}^{\xi + \bar{\lambda}(t - \tau)} (|u(x, t) - u(\tilde{x}, t)| + |u(\tilde{x}, t) - u(\xi, \tau)|) dx \\ & \leq & O(1) \, \mu(I_{\xi, \rho}) \, 2 \bar{\lambda}(t - \tau) \end{array}$$

$$\begin{split} I_1 &= \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi-\bar{\lambda}(t-\tau)} |u(x,t) - u(x,\tau)| dx \\ &\leq O(1) \int_{\xi-\rho+\bar{\lambda}(t-\tau)}^{\xi-\bar{\lambda}(t-\tau)} \mu_{\tau}((x-\bar{\lambda}(t-\tau), x+\bar{\lambda}(t-\tau))) dx \\ &= O(1) 2\bar{\lambda}(t-\tau) \ \mu_{\tau}((\xi-\rho,\xi)) \end{split}$$

Similarly,

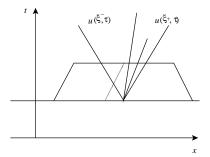
$$I_3 \leq O(1) 2 \overline{\lambda}(t- au) \ \mu_{ au}((\xi,\xi+
ho)).$$

Thus,

$$I_1+I_2+I_3 \leq O(1)(t- au)\mu_ au((\xi-
ho,\xi)\cup(\xi,\xi+
ho))$$

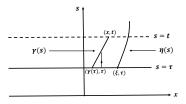
<u>Case 2</u>: $\mu(\{\xi\}) > 0$, then $\exists i$, such that $\mu(\{\xi\}) = \mu_i(\{\xi\}) > 0$, and the *i*-th family is genuinely nonlinear, i.e. $\nabla \lambda_i \cdot \gamma_i > 0$. Then in this case, the Riemann problem with data $(u(\xi^-, \tau), u(\xi^+, \tau))$ is solved by an *i*-shock.

For the solution u(x, t), there is a single *i*-th shock grows out at (ξ, τ) , denoted by $x = \eta(t), t \in [\tau, \tau']$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let's assume that
$$(x, t) \in D$$
, $x < \eta(t)$. Let $s \to \gamma(s) = x - \overline{\lambda}(t - s)$, $t \in [\tau, t]$.



This is a non-characteristic segment. It should be clear that all *i*-waves which cross γ intersect with the line $t = \tau$ with a compact interval contained in $(\xi - \rho, \xi)$. (This is true due to entropy condition.)

Then

$$egin{aligned} |u(x,t)-u(\xi-, au)| &\leq |u(x,t)-u(\gamma(au), au)|+|u(\gamma(au), au)-u(\xi-, au)|\ &\leq & O(1) \left\{X_i(\gamma)+\sum_{j
eq i} X_j(\gamma)+\mu_ au((\xi-
ho,\xi))
ight\}\ &\leq & O(1) \left\{\mu_ au((\xi-
ho,\xi))+Q(au,I_{\xi,
ho})+\sum_{j
eq i} \mu_j(I_{\xi,
ho})
ight\} \end{aligned}$$

$$egin{array}{rcl} \mu_j(I_{\xi,
ho})&=&\mu_j(I_{\xi,
ho}\setminus\{\xi\})\ Q(au,\ I_{\xi,
ho})&=&O(1)\,\mu_ au(I_{\xi,
ho}\setminus\{\xi\}) \end{array}$$

In conclusion, we have shown that

 $|u(x,t)-u(\xi-, au)|=O(1)\,\mu_{ au}(I_{\xi,
ho}ackslash \{\xi\}) \quad ext{for} \quad (x,t)\in D, \ x<\eta(t).$

Exactly, we have

$$|u(x,t)-u(\xi+, au)|=O(1)\,\mu_{ au}(I_{\xi,
ho}\setminus\{\xi\})\quad orall(x,t)\in D, x>\eta(t).$$

As a consequence, we get

$$\begin{split} &|\eta'(t) - \lambda_i(u(\xi -, \tau), \ u(\xi +, \tau))| = O(1) \, \mu_\tau(I_{\xi,\rho} \setminus \{\xi\}) \\ &\int_{\xi - \rho + \bar{\lambda}(t - \tau)}^{\xi + \rho - \bar{\lambda}(t - \tau)} |u(x, t) - U_{u,\xi,\tau}^{\#}(x, t)| dx = \int_{I_1 \cup I_2 \cup I_3} |u - U^{\#} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 I_1 is bounded by $\xi + \lambda_i(u(\xi-,\tau), u(\xi+,\tau))(t-\tau), \eta(t),$

$$I_{2} = [\xi - \bar{\lambda}(t - \tau), \ \xi + \bar{\lambda}(t - \tau)] \setminus I_{1} = I_{2}^{+} \cup I_{2}^{-},$$

with $I_{2}^{-} = I_{2} \cap \{x < \eta(t)\}, I_{2}^{+} = I_{2} \cap \{x > \eta(t)\},$

 $I_3=I\setminus\{I_1\cup I_2\}.$

$$\begin{split} \int_{I_1} & |u(x,t) - U_{u,\xi,\tau}^{\#}(x,t)| dx &= O(1) |I_1| \\ &= O(1) \, \mu_{\tau}(I_{\xi,\rho} \setminus \{\xi\})(t-\tau) \\ \int_{I_2^-} & |u(x,t) - U_{u,\xi,\tau}^{\#}(x,t)| dx &= \int_{I_2^-} |u(x,t) - u(\xi-,\tau)| dx \\ &= O(1) \, \mu(I_{\xi,\rho} \setminus \{\xi\}) \, |I_2^-| \\ &= O(1) \, \mu(I_{\xi,\rho} \setminus \{\xi\}) \, 2\bar{\lambda}(t-\tau) \end{split}$$

Similarly,

r

$$\int_{I_2^+} |u(x,t) - U_{u,\xi,\tau}^{\#}(x,t)| dx \leq O(1) \, \mu(I_{\xi,\rho} \setminus \{\xi\}) \, 2\bar{\lambda}(t-\tau).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The integral over I_3 is the same as Case 1.

<u>Case 3:</u> $\mu(\{\xi\}) = \mu_i(\{\xi\}) > 0$ and the *i*-th family is linearly degenerate. Then the Riemann problem with the data $(u(\xi-,\tau), u(\xi+,\tau))$ is a contact discontinuity. And furthermore, in u(x,t), there exists contact discontinuity $x = \eta(t)$ growing out of $(\xi,\tau), \tau < t < \tau'$ for some $\tau' > \tau$. Note that $x = \eta(t)$ is the unique *i*-th generalized characteristic curve through (ξ,τ) .

<u>Claim</u>: All the analysis in Case 2 is true for this case. (exercise)