Section 5. Uniqueness of
Glimm'’s Solution

§5.1 Notations for Glimm’s Solution

e Choose mesh size s = At, v = Ax, so that they satisfy CFL

condition, X >\
s
o Let {0,}7°, be a random sequence of numbers uniformly

distributed on [-1,1].

e Construction of Glimm's scheme (by induction).



e Initially 0 < t < At = s, we let v(x, t) be the solution to
8tv+8x f(l/) =0
v(x,t =0)=u((m+0)Ax), (m—1)Ax < x < (m+ 1)Ax,
0<t<At, m=0,42,44, -




e Assume v(x, t) has been constructed up to t < /At, we need
to construct v(x, t) on /At < t < (I + 1)At with initial data
on t = /At as

v(x, IAt) = v((m+ 60;)Ax, IAt),

(m—=1)Ax <x < (m+1)Ax, m+1] even.



We repeat this construction with a given sequence {6,}7°,, but let
mesh size v — 0 (s — 0),

{uy}24, v — +oo corresponding to v — 0.
By Glimm’s functional, if T.V.u < 1, then
TV Au) <cT.V.0
v}, such that u,, — v in L

loc*

In general, u is not a weak solution (2.7), however, if {6,}7° is
uniformly distributed on [-1,1], then u is an entropy weak solution
to the Cauchy problem (2.7), (2.8).



Goal: The whole sequence u, coverge to u, and u is the unique
limit, which depends continuously on initial data

Theorem 5.1 Assume that
(1) The system (2.7) admits a SRSG.
(2) T.V.uy < 1.

(3) Let {u,}22, be a sequence of approximate solutions to (2.7)
constructed by Glimm’s method associated with a uniformly
equally distributed sequence {6,}7°, C [-1,1] and
u=u(x,t) € C([0,00); Lj,.(R)) is the a.e. limit of {u,},
then u = u(x, t) = S up.



Proof of Theorem 5.1

Step 1: Some notations and facts:
e Let u be the limit of u,, u € C([0,00), L'(R'))

T.V.u(,t) <cT.V.u.

e V,(t): total variation of u,(t) < total amount of waves in
u,(t).

e Q,(t): total amount of potential wave interaction of v, at
time t.

e As proved before, Q,(t) is uniformly bounded and
nonincreasing. So by monotone convergence theorem, there

exists a subsequence Q,(t),

Q.(t) = Q(t), YVt >0.



Clearly Q(t) is bounded and nonincreasing, so Q(t) maybe
discontinuous at most at countably many times,

N ={m,m, -+ ; so that Q(t) is discontinuous at t;}.

Our goal is to show that for any 7 € (0,00) \ NV, that the
inequalities in the definition of viscosity solution are satisfied
with a suitably defined Radon measure .

Foreach /i, i=1,2,--- ,nand v > 1. Let uu7, be the unique
Radon measures such that

pi () = the total amount of positive waves being in / in u,(-,7),
wt (1 the total amount of negative waves lies in / in u, (-, 7),

for any open interval /,

i = piy +pi



Up to a subsequence if necessary, we can assume that there exist
Radon measure pj+ such that

Wix — it in measure.

Set pi = pit + pi—y B — i,

n
Hr = Z iy
i=1

ur is a Radon measure.

Claim: The hypothesis in Proposition 4.2 is satisfied, i.e. there
exists a uniform constant ¢ and that V fixed

(§,7) € R" x ([0,00) \ NV)



u(x, 7 +¢e) — U*

u;E,T

(X,T—I—E)‘ dx

1 [Etp—Ae

() /5 s

S C/U’T((f - pag) U (fag + p))

E+p—Ie
ORI

€ Je—p+ie
< c(pr (& = p, €+ p))?

ulx,7+¢)— UL[,’@T(X, T+ 5)‘ dx

as long as € and p are sufficiently small.
Step 2: Local structure of Glimm's solutions (Glimm-Lax, Diferna).
Basic tools are:

e Generalized characteristics

e Approximate conservation laws



e Let a segment 7 in xt-plane be given as
Y(t)=x+ Nt —71), te[r,T]
~ is non-characteristic if 3/ such that
Ai (u(x, t)) < A < Aip1 (u(x, t)), V(x,t)

t

i + 1 —characteristig
-~

Y~

i —characteristic

X




e Generalized characteristic curves

Consider the following augmented system

3tu0+)\8XUQ=0
atu+8xf(u):0

U= (u07 U) = (u0> uy,--- 7un)-

This is a strictly hyperbolic system, since

A (u) < Aa(u) < -+ < M) < A< Aiga(u) < -

< An(u).



Definition 5.1 For a given solution U = (up, u1, up), then the j-th
generalized characteristic curve is a Lipschitz continuous curve
t — nj(t) such that

ni(t) = N (UMm(t)+, t), U(n;(t)—, t)).

e Approximate Conservation Laws
Let A C R? be a region bounded by either a space-like curve
or a generalized characteristic curve. Let v > 1 be given, then
one can also define the corresponding generalized
characteristic curves associated with v, (approximate
characteristic curve). Set



EJ.JF(/\) + E; (M), amount of j—waves entering A.

I
=
> e

Ljr(/\) + L; (A), amount of j—waves leaving A.
QT(A) : total amount of wave interactions occurred in A.

Then the following estimates hold
Li(N) < Ei(N)+O(1)Qt(A)  for j=1,2,---,n.

Remark: The inequality is due to the possible cancellation of
waves of the same family in A.

By taking limit, the approximate conservation laws hold for u.



Step 3: Some basic facts

e The estimate of j-waves crossing the non-characteristic
segment.
ta Y0

For any closed interval /, we denote by

Qu(7,1) . potential of future wave interactions for u,,
passing through | at t = 7.
Q1) — Q7. 1)



Lemma 5.1

(1) Let v be the non-characteristic segment defined before.

(2) Assume that all the generalized j-characteristic which cross
originated at t = 7 from some point in an interval | C [a, b]
and

(t) € [a+ At —7), b=\t —T1)], vte ]
Then

Xi(v) = OMW){w(l) + Q(r, [a, b])}
= 0(1) p([a, b])

where X;j(7y) is the total amount of j-waves crossing ~.
ty (0

=1
T

N

¥
a




Proof of Lemma 5.1 For definiteness, we assume that j < /, thus
all the generalized j-characteristics crossing ~ from right to left.
Starting from (vy(7'),7’), we draw the maximal backward
generalized j-characteristic, n;(t). Define

AN={(xt)| v(t) <x <m(t), 7<t<7},
we can apply the approximate conservation law to A,

Xi(v) < O(1) (1) + O(1) QT (A)
< O(1) {w;(1) + Q(7;[a, b))}

As a consequence of Lemma 5.1, one has the following lemma.



Lemma 5.2 Let the i-th family be linearly degenerate, i.e.

VAi(u) -vi(u) = 0.

Then through each point (xp,7p), there passes a unique i-th
generalized characteristics which depends on (xp, 79) continuously.

Remark: This lemma is the consequence of the a priori bound on
the amount of wave crossing given in Lemma 5.1 and the
assumption that the i-th family is linearly degenerate. The proof of
the Lemma 5.2 is due to Bressan, based on the Lemma 5.1.



§5.2 Wave structure and the wave-interaction potential

Goal: At each t = 7, such that Q(t) is continuous at t = 7, then
all the solutions to Riemann problem with U({+, 7) are either a
shock or contact discontinuity for all £ € R'.

(N = {t € (0,00) such that Q(t) is discontinuous} is countable)

7 € (0,00)\WN.

If this goal is achieved, then the verification of viscosity solution
will be relatively easy. Indeed, we have



Lemma 5.3 Assume that Q(t) is continuous at t =7 > 0. Then
(1) V€€ R, 3ie{1,2,---,n} such that

ni({€}) =0,  Vj#i

(2) If ui({£}) > 0 and i-th family is genuinely nonlinear,
V A =i > 0, then for some 7/ > 7, each approximate solution
u” has an i-shock along an approximate characteristics
x =n/(t), t € [r,7'] with n¥(7) = £ as v — +o0. In this
case pi— ({£}) is precisely the limit of the strength of the
shock as v — oo, and p;y ({£}) = 0.



Proof of Lemma 5.3 The key idea is to see the effects of wave
interactions.

Step 1: (Proof of (1)) We would like to show that
Ji€{1,2,---,n} such that p; ({£}) =0if j # .

If not, 37 and j such that p;({¢{}) > 0, 1;({£}) > 0, i #J,
36 > 0, such that

pi({€}) > 6 >0, pi({€}) >0>0

309 > 0, and N such that

pi({€3) > 00, pi({€}) > 6o, V=N

Ve > 0, in the interval (£ —¢,£ + ), the amount of /-waves and
J-waves in (§ —e,& 4 €) will be bigger than &g, v > N.



Due to strict hyperbolicity, [Aj — \j| > mg > 0, it is clear that
these waves have to interact in the interval [T — ce, 7+ c¢], ¢
depends only on .

2
lim [Q(r + ) = Q(r — ca)]| = 2,

since ¢ is arbitrary, this contradicts with the fact that Q(t) is
continuous at t = 7.

Step 2: Assume that i € {1,2,--- , n} such that
wi({€}) >0 and VAi-vi>0.

We would like to show (2). If not, then 36 > 0, such that for every
e >0, Ju(e) large enough, such that one of the followings occurs.



Case 1: The amount of j-shock and i-rarefaction waves in u”(7)
contained in the interval [ — &, + €] are both > §.

Case 2: One can partition [ —&,& + €] as J{ U J§ such that
J{ N J5 = ¢ and each J; contains amount of i-shock > 4.

t A

b 4



In Case 1 and Case 2, as v — 400, an uniformly positive amount
of interactions would take place in the u”, within a time of interval
[T, 7+ ce], c is uniform independent of . (However, ¢ may
depends on 9, this is due to entropy condition.) Thus

: : 52
limg_0 lim, o ’QV(T) - QV(T + C5)| > TO
2

lim [Q(7) — Q(7+)] > (1;0 contradiction.

Case 3: ujt({¢}) > 0. We show that this is impossible. Indeed,
Ve > 0. Let n; (t) minimal backward i-th characteristic through

(& —e, 7).



n;(t) maximal backward i-th characteristics through (£ + ¢, 7).

t A

; is proportional to the total amount of i-rarefaction
waves in the interval [n;,n:"] > & > 0 if no interactions take place.
Then nF(t) will meet in the interval [r — ce, 7], ¢ might depend
on ¢ but independent of . This is impossible.

Fact: 7'7,-+ —n:

Thus interactions must take place with [T — ce, 7], then this will
contradicts the continuity of Q(t) at t = 7.



Corollary 5.1 Q(7,/1) = O(1) (! \ {¢})
Step 3: Verification of the conditions for Viscosity Solutions

Lemma 5.4 Let i be a finite positive Radon measure defined on
the interval [a, b], assuming that A >0, 6 >0, ' € RY. For t >0,
we define

p(x) = ul(x—At, x+At])
b)) = pllx— (X +0)t, x— (X - 8)t])



Assume that [\ — 3, X' + 8] C [=A, A]. Then the following
estimates hold:

b—\t

(1) / o) dx < 2Atu((a b))
Aoy

2) /Ht Ax)dx < 2xt(u((a, b))
b—\t

(3) /aw b(x)dx < 26tu((a b))

Proof U(x) = p((a,x))

For almost all x, U(x + At) — U(x — A t) = ¢(x) and
Ux — (N =0)t) — U(x — (N +8)t) = ¥(x). Itis then trivial to
show (1), (2) and (3) by direct calculations.



Step 3.1

1 E+p—e .

g / _ |U(X7T+€)_U(u;§;r) (X,T—|—E)|dX < MT((E_p7£+p))2
E—p+re

forall § eR, 7€ (0,00)\N, 0<p, ek 1.

Now, for fixed &, p >0, I, = (£~ p,&+p),

D = {(x7t)‘tE[T,T—&-%},Xe(ﬁ—p—&-;\(t—T),§+p—5\(t—7))}
o= u7) = ulé+7)
A = Df(ﬂ)7 )\i7 /l'a :)’II'



Let (u™, u™) be a single wave of the i-th family with strength o,
then

<l vt—u > = O()o
<l ut—u"> = 0OQ1)o max{|u" — |, |u" — b}



Let x = v(s), Vs € [r, t] be a non-characteristic segment
contained in D. Then

(1) <Tu(x(t),t) = u(r(7),7) >
= 0(1) ¢ Xi(y) + sup |u(x, t) =@ Y Xi(v)
(x,t)eD i
(2)  lulx,t) —u(€, )| = O() plle ), ¥(x, ) € D
If follows from (2) that 3* > 0 constant such that

0 <5 = 0(1) ()

Ni—=0* < Ai(u(x, 1), u, (X', 1) < Ni40* < min N\ip1, Y(x,t), (xX,t')eD



Since

[Ai(u(x; 1), u(x', ) = Ail
= ilu(e 1), ol 1)) = Ai(ulE, ), u(E, 7))
< O(M)(Julx, £) = u(€ 7) + [u(x', ') — u(&, 7)]
= 0(1) plle )

Consider two linear problems

atV+A8XV:0

{ vix.t=7) = u(x,7) T
w4 (A+0*1) dew =0 o
w(x,t =7) = u(x,T)



SO,

<

IN

A

Z</,,u t—T) T) > 7

w(x, t) = Z <Tiy u(x =N +0*)(t —7),7) > 5

E+p—X(t—7)
/ |w(x, t) — v(x, t)|dx
3

—p+A(t—7)

Etp—A(t—7)
Z/ |< i, u(x —
&—

i p+)\(t T)

0o(1)
Z / E—pHN(t—T)

O(1)5*(t — 1) pir (ke )
O(1) (t = 7) (nr(le.p))?

E+p—X(t— T)

Ai(t —71),7)—u(x — (N + %) (t — 1),

(x=(Ai+0")(t=7), x = XNi(t = 7))

7)>5i



so it will be sufficient to show that

E+p—X(t—T)
/ ] |u(x, t) = w(x, t)]dx < O(1) (t — 7) (u(ke,p))*
E—p+A(t—T)

For each fixed (x, t), we consider a non-characteristic segment
7i(s) =25 0(s) =x — (X +8*)(t—s), T<s<t.
This is non-characteristic due to the choice of §*. Then

<Tiy u(x,t) —w(x, t) > = < T, u(x,t) — u(yi(),7) > .



Applying (1), we have

<Tiy u(x, t) = wix, t) >=< T, u(x, t) — u(y(7), 7) >

= 0(1) {X,-(’y,-)—l— sup |u(x,t) =] ) Xj(%‘)}
(x,t)eD £
= O(W{ullx = (N + )t = 7), x = (N = 6°)(t = 7)])
+Q(tlx— Mt —7), x+ At -}
+0(1) plle p) pllx = A(t = 7), x + A(t = 7)])



By definition: Q(7,/) < (u(1))?, so above estimates and Lemma
5.4 imply

E+p—X(t—T)
/ |u(x,t) — w(x, t)|dx
E—ptX(t—T7) -

IN

Erp-R(t-1)
o(1) Y / | < Ty u(x,t) — w(x,t) > |dx
E—p+A(t—T)

E+p—A(t—T) E+p—A(t—T)
o(1) Z{/5 w(x )dx+/ 22 (x) dx

pHN(t—T) E—p+A(t—7)

E+p—A(t—T)
+0)ule,) [ o) dx}

E—p+A(t—7)
(1) {26*(t = 7) pr (€ = p, €+ p) + 2X(t — ) (1 ((€ — p, §+ p)))?
O(1) pr(fe p) 2A(t = 7) pr(le ) }
) (t = 7) (1r(le.))?

IN

IN

O(
+
0]

IN

(1



S L |u( )= Ul ( )ld
tep3.2:/ ulx, 7 +¢)— _ X, T+ ¢€)ldx <
— ¢ Je_pire (u:€,7)

cpr((€ = p, &) U (£, € + )

Case 1: u({¢}) = u-({&}) = 0. Thus u(x, ) is continuous at
x =¢&. Then

plle.p) = plle.p \{€}) = m((€ = p, ) U (§,€ +p))
lu(x, t)—u(x,7)| = O(1) u([x—=A(t—7), x+X(t—7)]) V(x,t) e D



So it follows from the definition of U#, that

E+p—A(t—T)
/ T e t) — U ()l
E—p+A(t—T) >

= h+b+ £k 2%:

with

E=X(t-7)
b= )~ ux )l
E—p+A(t—T7)



EHN(t—T) .
T R Y o
3 o

E+p—X(t—T)
b= [ [u(x, 1) = u(x, 7)dx,
E+A(t—7)



Choose X such that the straight line between (X, t) and (&, 7) is
non-characteristic, then

E+N(t—T)

L = / lu(x, t) — O]dx
3

—X(t—7)

IA

E+A(t—T)
/f (lu(x; t) = u(k, )] + [u(k, £) — (€, 7)[)dx

—X(t—7)

O(1) (e ) 27(t —7)

IN

h

E-X(t—T)
/ U t) — u(x )
E—p+A(t—T)

IN

e R(t-r) ) )
0(1)/ (= Mt = 7). x4 At —7)))dx
E—p+A(t—T)

= O(1)2\(t — 7) ur((€ — p,8))



Similarly, _
k< O(1)2X(t — 7) pr((&, €+ p)).

Thus,

h+h+h<O0)(t—T7)u((§—p,§)U(E,E+p)

Case 2: pu({&}) > 0, then 34, such that p({¢}) = i({¢}) > 0, and
the j-th family is genuinely nonlinear, i.e. V;-~; > 0. Then in

this case, the Riemann problem with data (u({,7), u(é+,7)) is
solved by an i-shock.



For the solution u(x, t), there is a single i-th shock grows out at
(§,7), denoted by x = n(t), t € [r,7'].

tA

u€n) u@

Y



Let's assume that (x, t) € D, x < n(t). Let

s—=>(s)=x—At—s), te€]rt]

@0 (&7

This is a non-characteristic segment. It should be clear that all
i-waves which cross v intersect with the line t = 7 with a compact

interval contained in (£ — p,&). (This is true due to entropy
condition.)



Then
lu(x, t) —u(§—7)] < fulx,t) = u(y(7), ) + [u((7), 7) — u(§—, 7)]

< (M) + D X0 + (€ = p,€))
J#i
< 0(1)§ pr((€—p, )+ Q7 e p) + Z uj(/s,p)}
i
wille,) = wille, \ {€})
Q7, lep) = OQ)pr(lep\ {})



In conclusion, we have shown that

|u(x, t)=u(€=7)| = O(1) pr (I )\{€})  for (x,t) € D, x <n(t).

Exactly, we have

ulx, t) — u(&+, 7)| = O(1) ur(le ) \ {€})  ¥(x,t) € Dyx > n(t).

As a consequence, we get

7' (£) = Ai(u(€=,7), u(§+, 7)) = O(1) pr (e o \ {€})

E+p—A(t—T)
/ e t) — Ui, xolox= [ a0
E—p+A(t—T) 7 LUkUR



Iy is bounded by & + A\j(u(é—, 1), u(é+,7))(t — 1), n(t),

h=[¢-MNt—7), E+XNt—7)\h=1LUl,

with I,y = b n{x < n(t)}, = LN {x>n(t)},

I3 :I\{I:[UIQ}



u(x, t) — U?

u,g,T
h ¢

(x,t)]dx = O(1) |h]
O(1) pr(lep \ EH)(E = 7)

- ‘u(x, t) — Ujffﬂ' (X, t)|dX = f/; |U(X) t) - u(f—,T)|dX
2 = O(1) ulle,p \ {€}) 1Ly |
= O(1) u(lep \ {€}) 2A(t = 7)
Similarly,

|l t) = U (Bl < 0(1)alle, \ {€)) 22(¢ — 7).

The integral over I3 is the same as Case 1.



Case 3: u({¢}) = pi({£}) > 0 and the i-th family is linearly
degenerate. Then the Riemann problem with the data

(u(§—,7), u(¢+,7)) is a contact discontinuity. And furthermore,
in u(x, t), there exists contact discontinuity x = n(t) growing out
of (§,7), 7 < t < 7' for some 7/ > 7. Note that x = n(t) is the
unique i-th generalized characteristic curve through (&, 7).

Claim: All the analysis in Case 2 is true for this case. (exercise)



