
Section 3. Standard Riemann
Semigroup Approach

For the Cauchy problem for Burgers equation ∂t u + ∂x

(
u2

2

)
= 0

u(x , 0) = u0(x),
(3.1)

The following contraction principle holds:

If u1(x , t), u2(x , t) are “right” solutions to (3.1), then

||u2(x , t)− u1(x , t)||L1(R1) ≤ ||u1(x , 0)− u2(x , 0)||L1(R1) ∀ t ≥ 0

This can generate a semigroup St u0 = u(x , t).



B. Temple gave an example to show that one cannot obtain the
L1-contraction principle for systems of conservation laws. However,

Definition 3.1: (Bressan): The system (2.7) is said to admit a
standard Riemann semi-group (SRSG). If for some C0 and δ0,
there exists a map St : D × [0,∞)′ → D and constant L such that

(1) S0 ū = ū, ∀ ū ∈ D

(2) Sτ Ss ū = Sτ+s ū, ∀ ū ∈ D

(3) ||St ū − St ν̄||L1(R) ≤ L||ū − ν̄||L1(R)



(4) If ū ∈ D and ū is piecewise with finitely many jumps, then
∃ τ = τ(ū) > 0 such that ∀ t ∈ [0, τ ], (St ū)(x) = u(x , t)
must coincide with uR(x , t) which solves{

∂t u + ∂x f (u) = 0
u(x , t = 0) = ū(x)

by piecing together all Riemann solutions together.

Main Idea: If the system (2.7) admits a SRSG, then every entropy
weak solution obtained as a limit of piecewise constant approximate
solutions in L1 must coincide with a trajectory of the SRSG.



Then the following statements are true:

(1) all the trajectories of the SRSG are entropy weak solutions,
i.e., St must be a solution operator.

(2) SRSG must be unique.

(3) the weak solution obtained by the front tracking method in
Proposition 2.2 is unique and depends Lipschits continuously
on its initial data.



Theorem 3.1: Assume that (2.7) admits a SRSG,
S : D × [0,∞)→ D. Let {uν} be a sequence of approximate
solutions constructed by the front tracking method, as given by
Proposition 2.1, with εi → 0, νi →∞, suppose that

uν(·, 0) −→ u0(·) in L1

uν −→ u in L1
loc(R1 × R1

+; Rn)

for u0 ∈ D. Then
u(x , t) = St u0.



To prove this theorem, we need two lemmas.

Lemma 3.1: Let u± ∈ Ω and |λ| < λ̄. Let w(x , t) be the
self-similar solutions

∂t w + ∂x f (w) = 0

w(x , t) =

{
u− x < 0
u+ x > 0

Set

ν(x , t) =

 u−
x

t
< λ

u+
x

t
> λ



Then

(1)
1

t

∫ +∞

−∞
|ν(x , t)− w(x , t)|dx = O(1)|u+ − u−|

(2) If, in addition, u+ = exp{σ γi}u−, λ = λi (u+) for σ > 0,
i ∈ {1, · · · , n}, then

1

t

∫ ∞
−∞
|ν(x , t)− w(x , t)|dx = O(1)σ2

(3) If λ = λ̃i , λ̃i is an eigenvalue of f ′(ũ), and
∇f (ũ)(u+ − u−) = λ(ũ)(u+ − u−), then

1

t

∫ ∞
−∞
|ν(x , t)−w(x , t)|dx = O(1) |u+−u−| (|u+−ũ|+|ũ−u−|)



Lemma 3.2: Let S be SRSG. Let u : D × [0,+∞)→ D whose
values are piecewise constant with finitely many polygonal lines,
say xα(t), α = 1, · · · ,m, then

||u(·,T )−ST u(·, 0)||L1 ≤ L

∫ T

0
limh→0+

||u(t + h)− Sh u(t)||L1

h
dt (F)

Remark: There is a localized version of (F) due to finite speed of
propagation. For any given a, b, b > a, constants, define

It = (a + λ̄t, b − λ̄t) for t <
b − a

2λ̄
,

||u(t)−St u(0)||L1(It) ≤ L

∫ t

0
limh→0+

||u(τ + h)− Sh u(τ)||L1(Iτ+h)

h
dτ

We assume Lemma 3.1 and Lemma 3.2 for a moment and
continue the proof.



Proof of Theorem 3.1 It suffices to show

||u(T )− ST u0||L1 = 0 for any T > 0.

This is equivalent to say limν→+∞ ||uν(T )− ST u0||L1 = 0. Note
that

||uν(T )− ST u0||L1 ≤ ||uν(T )− ST uν0 ||L1 + ||ST uν0 − ST u0||L1

≤ ||uν(T )− ST uν0 ||L1 + L ||uν0 − u0||L1

It will suffice to prove that

limν→+∞ ||uν(T )− ST uν0 ||L1 = 0



However, by Lemma 3.2,

||uν(T )− ST uν0 ||L1 ≤ L

∫ T

0
limh→0+

||uν(t + h)− Sh u
ν(t)||L1

h
dt

It suffices to compute that

for t ∈ [0,T ], limh→0+

||uν(t + h)− Sh u
ν(t)||L1

h
.

Let S = {α ∈ {1, · · · ,m}, such that uν(x−α , t) =
uν−, u

ν(x+
α , t) = uν+ are connected either

by shock wave or contact discontinuity}.

R = {α ∈ {1, · · · ,m}, such that uν− and uν+ corresponding to a
rarefaction wave in the kα−th family, so that
ẋα(t) = λkα(uν+), uν+ = exp(εα γkα)uν−, εα ∈ [0, ε]}.



Set α ∈ S ∪R, wα(x , t) satisfies
∂t w

α + ∂x f (wα) = 0

wα(x , t = 0) =

{
u− = uν(x−α , t)
u+ = uν(x+

α , t)

Define 
∂t w

β + ∂x f (wβ) = 0

wβ(x , t = 0) =

{
u− = uν(x−β , t)

u+ = uν(x+
β , t)

where x = xβ(t) is associated with a pseudo-shock.

Note that if t ∈ [0,T ] such that t is NOT a node point (i.e. t is
not a time two of xα’s interact)

u(x , t + h)− Sh u(x , t) = 0



in a region away from a ρ-neighborhood of xα ∈ R and xβ for a
non-physical wave for some ρ > 0 small. Therefore

limh→0+
||uν(t + h)− Sh u

ν(t)||
h

=
∑
α∈R

lim
h→0

1

h

∫ xα(t)+ρ

xα(t)−ρ
|uν(t + h)− wα(x − xα(t), h)| dx

+
∑
β

1

h

∫ xβ(t)+ρ

xβ(t)−ρ
|uν(t + h)− wβ(x − xβ(t), h)| dx

= C
∑
α∈R
|εα|2 + C ·

∑
β

|u−ν − u+
ν |

≤ C · εν
∑
α∈R
|εα|+ C ·

∑
β

|u−ν − u+
ν |

≤ εν(C · T .V .uν + C1)
−→ 0 as ν →∞



Proof of Lemma 3.1

(1)
1

t

∫ ∞
−∞
|w(x , t)− ν(x , t)|dx =

1

t

∫ λ̄t

−λ̄t
|w(x , t)− ν(x , t)|dx

=
1

t

∫ λ̄t

−λ̄t
O(1) |u− − u+|dx = O(1) |u− − u+|λ̄.

(2) u+ = exp{σγi}(u−), σ ≥ 0, λ = λi (u
+)

Case 1: The i-th family is linearly degenerate, w is a contact
discontinuity with speed λ = λi (u

+) = λi (u
−),

w(x , t) = ν(x , t).



Case 2: The i-th family is genuinely nonlinear. σ > 0, w(x , t) is an
i-th rarefaction wave.

1

t

∫ ∞
−∞
|w(x , t)− ν(x , t)|dx

=
1

t

∫ λi (u
−)t

−∞
|w(x , t)− ν(x , t)|dx

+
1

t

∫ λi (u
+)t

λi (u−)t
|w(x , t)− ν(x , t)|dx

+
1

t

∫ +∞

λi (u+)t
|w(x , t)− ν(x , t)|dx

=
1

t

∫ λi (u
+)t

λi (u−)t
|w(x , t)− ν(x , t)|dx

= O(1) |u+ − u−| · |λi (u+)− λi (u−)|
= O(1)σ2



(3) ∇f (ũ)(u+ − u−) = λ̃i (u
+ − u−), λ̃i = λi (ũ), therefore

u+ − u− = θ ri (ũ).

Solving Riemann problem, ∃ w0,w1, · · · ,wn such that
w0 = u−, wn = u+, such that wj is connected wj−1 by an
elementary wave. Let the strength of the j-th wave in w(x , t)
be σj(θ, ũ).

If ũ = u−,
∂ σj(θ, u

−)

∂ θ

∣∣∣∣
θ=0

= δij

∣∣∣∣∂ σj(θ, ũ)

∂ θ
− δij

∣∣∣∣ ≤ O(1) (|θ|+ |u− − ũ|)



Claim:

(i) |σj(θ, ũ)| ≤ O(1) |θ| (|u+ − ũ|+ |u− − ũ|) for j 6= i ;

(ii) max(|wi − u+|, |wi−1 − u−|)
≤ O(1) |θ| (|u+ − ũ|+ |u− − ũ|);

(iii) max
{
|λi (wi )− λ̃i |, |λi (wi−1)− λ̃i |

}
≤ O(1) (|u+ − ũ|+ |u− − ũ|).

Thus

1

t

∫ ∞
−∞
|w(x , t)− ν(x , t)|dx =

1

t

∫ λ̄t

−λ̄t
|w(x , t)− ν(x , t)|dx



Proof of Lemma 3.2

Step 1: Let the node points be at times τ1, τ2, · · · , τm. Note that
except at τi , then

limh→0+
||u(t + h)− Sh u(t)||L1

h
is constant, t ∈ (τi , τi+1).

Step 2: ∀ε > 0, fixed, let τ be defined as

τ = max{t ∈ [0,T ] | such that ||ST−t u(t)− ST u(o)||L1

≤ L

(
εt +

∫ t

0
lim

h→0+

||u(s + h)− Sh u(s)||L1

h
ds

)
+ε
∑

τi<t 2−i}



Fact 1: τ exists 1. Since A 6= φ, due to t = 0 ∈ A.

Fact 2: τ ∈ A, because the left hand side of the above expression
is continuous, and right hand side is lower semi-continuous.

Fact 3: Lemma will be proved if we can show τ = T .

Claim: τ = T .

If not, τ < T .



Case 1: ∃ j , such that τ = τj .
Then by the continuity of semi-group S , ∃ δ > 0 such that

||ST−t u(t)− ST u(0)||L1

≤ ||ST−τ u(τ)− ST u(0)||L1 + ε 2−j t ∈ [τ, τ + δ]

≤ L

(
ε τ +

∫ τ

0
limh→0+

||u(s + h)− Sh u(s)||L1

h
ds

)
+ε
∑
τi<τ

2−i + ε 2−j

≤ L

(
ε t +

∫ t

0
limh→0+

||u(s + h)− Sh u(s)||L1

h
ds

)
+ε
∑
τi<t

2−i

This implies t ∈ A contradiction.



Case 2: τ 6∈ {τi , i = 1, 2, · · · ,m}

∃ δ∗ > 0, such that

limh→0+
||Sh u(s)− u(s + h)||L1

h
= const. for S ∈ [τ, τ + δ∗]

We now choose δ∗ small enough such that

||u(τ + δ)− Sδ u(τ)||
δ

≤ ε+limh→0+
||u(τ + h)− Sh u(τ)||

h
, δ ∈ [0, δ∗]



||ST−(τ+δ) u(τ + δ)− ST u(0)||L1

≤ ||ST−(τ+δ) u(τ + δ)− ST−(τ+δ) Sδ u(τ)||L1 + ||ST−τ u(τ)− ST u(0)||L1

≤ L||u(τ + δ)− Sδ u(τ)||L1

+L

(
ε τ +

∫ τ

0

lim
h→0+

||u(s + h)− Sh u(s)||L1

h
ds

)
+ ε

∑
τi<τ

2−i

≤ L δ

(
ε+ limh→0+

||u(τ + h)− Sh u(τ)||L1

h

)
+L

(
ε τ +

∫ τ

0

lim
h→0+

||u(s + h)− Sh u(s)||L1

h

)
+ ε

∑
τj<τ+δ

2−j

= L

(
ε(τ + δ) +

∫ τ+δ

0

limh→0+
||Sh u(s)− u(s + h)||L1

h
ds

)
+ε

∑
τj<τ+δ

2−j

Remark: The standard Riemann Semigroup for (2.7) exists. The
existence follows from the construction of front tracking method
summarized in Proposition 2.1.


