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Suggested Solution to Assignment 6

Exercise 6.1
2. Note that in the spherical coordinates (r, 6, ¢),
9% 290 1 0 ) 1o

Ag=o5t o+ 5 —opsinfog + 555,
37 or2 + ror + 2sinf o0 90 + r2sin? 0 Op?
Thus,

2
Upr + —up = Agu = k?u.
T

Let u = v/r, we get
Uy v Uppr 20, 20

=D U=y
Hence, by the equation of u, v,, = k?v, which implies v(r) = Ae™*" + BeF”, where A, B are constants.
Therefore, u(r) = A2e™*" + Blek™ where A, B are constants. O
4. We have known that —c;7~! + ¢5 is a solution, where ¢; and ¢ satisfy the equation:
—cra”t + e = A, —c1b ™t + ¢ =B.

Hence,

A-B B—-A
u(z:,t):abb 7“_1+A+bb , where r = /22 + y2 + 22,
a

is a solution. Therefore, it is the unique solution by the Uniqueness Theorem of the Dirichlet problem for
the Laplace’s equation. O

6. Firstly, we find a solution depending only on r. Let u(r), where r = /a2 4+ y2, is a solution. As before,
we have

1
u = ZTQ + c1Inr + co, where ¢y, co are constants.

By the boundary conditions, we get

1 1
faQ—i—cllna—i—cQ:O, Zb2+cllnb—|—02:0,

4
Hence,
=—(r°— ——————(Inr—1
u(’:v’y) 4(T a ) 4(1nb—lna)(nr na)?
is the unique solution by the Uniqueness Theorem. O

7. Firstly, we look for a solution depending only on r = /22 + y? + 22. Let u(r) be a solution, then as
before,

2
Upp + —Up = 17
r

from which we have 1
C1
u = 67“2 4+ — + co9, wherecq, cy are constants.
T

Thus, by the boundary conditions, we get

1, a 1o, a
—a‘+—+c=0 b4+ —+c=0.
6" e 2 ’ 6 p 2
Hence,

a+b 1 1
(7_7)7

6 r a

1
u(z,y) = 6(T2 —a®) +ab

is the unique solution by the Uniqueness Theorem. 0
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9. (a) Firstly, we look for a solution depending only on r = /z2 + y2 + 22. Let u(r) be a solution, then as
before,

2
Upr + —up = 0,
T

c
from which we have u, = — + d, where ¢, d are constants. Thus, by the boundary conditions, we
r

have
¢+ d = 100, c=4y.

Therefore, u = 477 + 100 — 4. wu is unique by the maximal principle.
(b) The hottest temperature is 100 °C, the coldest is 100 — 2.
(c) By assumption, we have 100 — 2y = 20, therefore, v = 40.

11. Integrating the equation Au = f and using the divergence theorem,
ou
f dxdydz = Au drdydz = n ds = g ds.
n
D D bdy(D) bdy(D)
Hence, there is no solution unless

/D//fdxdydz: /gdS. O

bdy(D)

Exercise 6.2

1. By the boundary conditions, we can guess u,(z,y) = v — a and uy(z,y) = —y + b. Luckily these also
satisfy the equation. Hence,

1 1
u(z,y) = §£B2 — §y2 — ax + by + ¢, where c is any constant,
are solutions. Actually, we can prove that they are all solutions by the Hopf maximum principle. O

2. Let (m,n) # (m/,n’), then
/ / (sin my sin nz)(sinm’y sinn’2)dydz
0 0
:(/ sin my sin m’ydy) (/ sinnzsinn’zdz) = 0,
0 0

so the eigenfunctions {sinmysinnz} are orthogonal on the squre {0 <y <7, 0 <z < 7}. O

3. Let u(z,y) = X(z)Y (y), then

X/l Yl/
— =——=A X(0)=Y'(0) =Y'(r) =0.
Lo on x0=vY0 =Y
Hence,
Ao =12, Yo (y) = cos(ny), Xo =, X1 =sinh[(n+1)z], n=0,1,2,...
Therefore,

u(x,y) = Apgx + Z Ay, sinh(nx) cos(ny).

n=1
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By the inhomogeneous boundary condition, we get

Ao + Z Ay, sinh(n) cos(ny) = %(1 + cos 2y),

n=1
which implies
1 1
Ay=—, Ao = ——7——, 4, =0, if ,2.
07 27 77 2sinh(27)’ 0,ifn #0
Therefore,
1
u(z,y) = z —————sinh(2x) cos(2y). O

27 + 2 sinh(27)
4. Let u; satisfies

Auj; =0, in the squre {0 <z <1, 0 <y < 1},
’LLl(x,O) =, U1($, 1) = ul,x(oay) = ul,x(lvy) = 07

and ug satisfies

Aug =0, in the squre {0 <z <1, 0 <y < 1},
u2(x70) = UQ(.’E, 1) = u27$(0ay) =0, u2,w(1,y) = y27

then v = w1 + uo is a harmonic function which we want to find.

By the method of separate variables,

up = —@(y -1)+ Z A,, cos(nmzx)[cosh(nmy) — coth(nm) sinh(nmy)],

2
n=1
where )
2
Ap=1, A, = 2/ rcos(nrr)dr = - —[(=1)" =1, n=1,2,....
0 n=m
And -
ug = Z By, cosh(nmz) sin(nmy),
n=1
where
2 L,
By= ———— i
nm sinh(n) /0 y”sin(nmy)dy
2 (_1)n+1 2
= " -1 =1,2,....
sinh(n) { n?m2 ntmd (=1) lfyn=12
Therefore,
1 o0
u = —E(y -1)+ Z Ay, cos(nmx)[cosh(nmy) — coth(n) sinh(nmy)]
n=1
+ Z By, cosh(nmz) sin(nmy),
n=1
where
2 2 (—1)ntt 2
A, = - [(-1)" —1], B, = — -1y =12,
n?m? (=1) ] sinh(n) { R R (=1) Ipsm
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6. Let u(z,y,2) = X ()Y (y)Z(2), then

X/l Y/l Z/l

—t—+—==0, X'(0)=X'(1)=Y'(0)=Y'(1)=Z'(0) = 0.

vty Tz =0 XO=X1Q)=Y(0)=Y1)=2(0)
Hence,

Xm(z) = cos(mmzx), Yn(y) = cos(nmy), m,n=0,1,2,...,
and
7" = (m* 4+ nHr*Z, 7'(0) = 0.

Therefore,

1 1 o 1 —
u(z,y, z) :ZAOO + 3 Z Apo cos(mmzx) cosh(mmz) + 3 Z App, cos(nmy) cosh(nmz)

+ Z Z Ay, cos(mmz) cos(nmy) cosh(v/m? + n?nz).

m=0n=0
Finally, by the inhomogeneous boundary condition, we get

oo o0

1 1
g(z,y) =3 Z Amomm sinh(mm) cos(mmz) cosh(mmz) + 3 Z Appnm sinh(nm) cos(nmy) cosh(nrz)
m=0 n=0
+ Z Z AV m? 4+ n2rsinh(v/m?2 + n?nw) cos(mmx) cos(nmy) cosh(y/m? + n2rz),
m=0n=0

which implies

g(z,y) cos(mmx) cos(nmy)dzdy, m? +n? 0,

\/m2+n2 7 sinh(vm?2 + n27)
and Agg is any constant. We can prove that they are all solutions by the Hopf maximum. O

7(a). Let u(z,y) = X (z)Y (y), then

X// Y//
o0 x0)=x(m) =0
Hence,
X,(z) =sin(nw), n=1,2,..., and Y" = n?Y, lirr(le(y) =0.
Yy—
Thus,

z,y) = ZA" sin(nm)e .
n=1

o0
Finally, by the inhomogeneous condition h(z) = > A, sin(nz), we have
=1

2
A==
s

/OTr h(zx) sin(nx)dzx.

And the solution is

u(z,y) = ii < / sm(nx)da:) sin(nz)e. 0O

n=1
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Exercise 6.3

1.

Problem 4.

Problem 5.

(a) By the Maximum Principle,

max u = maxu = max(3sin26 + 1) = 4.
D oD 0

(b) By the Mean Value property,

2T
u(0,0) = 2;/0 (3sin20+ 1)db=1. O

. By the formula (10)-(12) in the textbook,

1 o
u(z,y) = 5140 + Z r"(Ay cosnf + B, sinnf),

n=1

where or or
A, = L h(0) cosnddl, B, = L h(0) sin nOdef.

n n
m™a 0 Ta 0

Since h(f) =1+ 3sinf, we get

3
Ay = 2, An:O(n>0), By = -
a

, B =0(m>1).

Hence,

u(r,0) =1+ Z%r sin 6.

. As before, since

1
h(#) = sin® 0 = Zsin@ — 4 sin30,

we get

3 1
An:O(nGN), B =—, By =

1a __47a3’ BmZO(m#LB)'

Use the same way, the solution should be
3

3
u(r,0) = P sin§ — 4%3 sin 36. O

By Poisson’s formula,

2w 2 2w
_ _ 2 u(1, ¢) dp _ 1—r dp 147
w(z,y) =u(r,d) =(1-r )/0 = 2rcos(f — @) +122m < (1—r)2/0 u(l,qﬁ)QW = 1_Tu(O,O),

since u > 0, cos(f — ¢) < 1 and u has the Mean-Value Property. Similarly,

2 2 27
_ 2 u(l, ¢) d¢ , 1—-r° d¢ _1-r
U(%y)—“(r’e)_(l_r)/o 1—27“(:05(9—¢>)+r227rZ (1—1—7“)2/0 u(1’¢)27r 1+

since u > 0, cos(f — ¢) > —1 and u has the Mean-Value Property.

(a)Use the Strong Maximum Principle.

(b)By Problem 4(r = 1/2), £ = ;1?; <u(z,y) < }—jg =3

CUHK
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Problem 6. Since w is a harmonic function in B;(0) \ (0,0), u(x,y) is smooth in B;1(0) \ (0,0). Define

1/4—r2 [*7 h(®)
27 /0 1/4 — 2cos(0 — ¢) + 12

o(e,y) = v(r,0) = dg, for v < 1/2,

where h(¢) = u(1/2,¢), and w := u — v, then v(x,y) is a harmonic function in By /5(0), w is a harmonic
function in B /5(0)\(0,0), w = 0 on 9B, /5(0) and w is bounded in By »(0). Now, it suffices to show that
w =0 in Bl/Q(O) \ (0,0)

For any fixed (zo,y0) € B1/2(0) \ (0,0), 7o := \/2§ +y5. Ve > 0, define v(r) := —elog(2r), which is
harmonic in By/5(0) \ (0,0). Since v = 0 on 9B, /5(0) and lim,_,o+ v- = 400, we can choose 71 small
enough such that 0 < r; < rg and v.(r) > SUPg, ,\(0,0)w on 7 =r1. Thus, by the Maximum Principle on

A= {(z,y) : 11 < Va? +y? < 1/2}, we get w(zo,y0) < —elog(2rg). Let € — 0T, we get w(zo,yo) < 0.
Similarly, for —w we get —w(zg,yo) < 0. Therefore, w(xg,yo) = 0.

Exercise 6.4

1. Since the only difference between the formulas of harmonic function in the interior and exterior of a disk
is that r and a are replaced by »~! and a~!. Therefore, by the result in the exercise 6.4.2

u(r,0) = 1+37asin0. O

6. Using the separation of variables technique, we have
©"+X0=0, r*R'+rR —AR=0.
So the homogenous conditions lead to
0"+ X0 =0, O(0)=06(r)=0.

Hence,
A =12 O(F) =sinnh, n=1,2,...,

and then
R,(r)=1",n=1,2,....
u(r,0) = Z Apr"sinnd.
n=1

Finally, the inhomogeneous boundary condition requires that

oo
wsinf — sin 20 = ZA” sinnf,

n=1

which implies

Alzﬂ', Agz—l, An:O(n#l,Q)

So the solution is
u(r,0) = mrsin @ — 2 sin 26. O

9. It is obvious that u(r,0) = 0 is a solution. Hence, by the uniqueness theorem, u(r,#) = 6 is the unique
solution. [
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10. By the example 1 in the textbook Section 6.4 (Please do it again) and letting S = /2, h(f) = 1, we have

o
u(r,0) = Z Apr®™sin 2n6,
n=1
where
A, = al_gni " sin(2n6)df = al_Qni[l —(=1)"]
" nm Jo n2m '
The first two nonzero terms are

2 2
—r%sin20, ———rYsin 66. O
arm 9adm

11. Multiplying u in the both sides of equation and using the divergence theorem,

Using Robin boundary condition,

—(I/ U2—/ |vu‘2:0’
oD D

which implies Vu = 0 in the D and v = 0 on 9D since ¢ > 0. So u =0 in D.

13. It is similiar to the Example 1 in Section 6.4 in the textbook. Here we only give the result and leave the
details to you.

For the eigenvalue problem of ©(#), we have

An = (

For the eigenvalue problem of R(r), we have

nm

R,(r) = AnrF-e + B,r e, n=12....

So the solution is

u(r,0) = Z(Anr/%a + B,r~ F-a ) sin mrﬁ(@_—aa)
n=1

By setting r = a and r = b the coefficients A,, and B,, should satisfy

nmw _nmw 2 B —
Apabf-a + Bpa B-a = / g(0) SinMdG
&7

08—« 08—«
n na 2 B nm(0 — «)
A,bf—o + Bb B = 0 db
+ 7 a /a (#) sin 5 o
then .
AaB-o — BbB-«a
An - a nm 2 nm
a~f-o — b F-a nmw
T B—a — B—a
BTL - Aa 2 n Bb2 nm
T4B—a b_ B—a
where
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Problem 7. Write u(r,0) = R(r)©(0), then 7“2%” + 7‘% = —% =:Aand ©'(0) =0=0(r),= X = fj%'gf > 0 since u
is nontrivial. = We can write A = 82, 8 > 0 and 0" + 3?0 =0,
= Bn=1/24+n, 0, =cos(8,0),n=0,1,2,...
= u(r,0) = 320 (cpr? + dpr =) cos(B,0)
By the boundary conditions, u(1,0) = cos®(6/2) = 1/4cos(36/2) + 3/4 cos(6/2) and u(2,6) = 4 cos(50/2)
=c1+dy =1/4; co+dog=3/4; cpt+dy=0if n#0,1; 2252 +do27%2 =4; ¢,2° +d,, 27 =0if n #2

= en=dy=0ifn#0,1,2 cg=—3/4, dy=3/2, c1 = —1/28, di = 2/T, e = 182 = _g,.




