THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050B Mathematical Analysis I

Tutorial 3 (September 25, 27)

The following were discussed in the tutorial this week:

1 More on Limit of a Sequence

Example 1. Let (y_n) be a sequence of positive numbers such that $\lim_n y_n = 2$. By virtue of ε -N terminology, show that

$$\lim_{n} \frac{y_n}{y_n^2 - 3} = 2.$$

Solution. Let $\varepsilon > 0$ be given. For $n \in \mathbb{N}$,

$$\left| \frac{y_n}{y_n^2 - 3} - 2 \right| = \left| \frac{y_n - 2y_n^2 + 6}{y_n^2 - 3} \right| = \left| \frac{(2y_n + 3)(y_n - 2)}{y_n^2 - 3} \right|$$
$$= \frac{|2y_n + 3|}{|y_n^2 - 3|} \cdot |y_n - 2|.$$

Want: a positive lower bound of $|y_n^2-3|$ when n is large.

To archive this, we choose a neighbourhood of 2 that avoids the zeros of y^2-3 , that is $\pm\sqrt{3}\approx\pm1.73$. For example, $(2-\frac{1}{4},2+\frac{1}{4})$.

If
$$|y_n - 2| < \frac{1}{4}$$
, then

$$\frac{7}{4} < y_n < \frac{9}{4} \implies \frac{1}{16} < y_n^2 - 3 < \frac{33}{16}$$

and

$$|2y_n + 3| = |2(y_n - 2) + 7| \le 2|y_n - 2| + 7 \le 2(1) + 7 = 9.$$

Combining the two bounds, we have

$$|y_n - 2| < \frac{1}{4} \implies \left| \frac{y_n}{y_n^2 - 3} - 2 \right| \le \frac{9}{\frac{1}{16}} |y_n - 2| = 144|y_n - 2|.$$

Take $\varepsilon' := \min \left\{ \frac{1}{4}, \frac{\varepsilon}{144} \right\}$. Since $\lim_{n} y_n = 2$, there exists $N \in \mathbb{N}$ such that

$$|y_n - 2| < \varepsilon'$$
 for all $n \ge N$.

Now, for $n \geq N$, we have

$$\left| \frac{y_n}{y_n^2 - 3} - 2 \right| \le 144|y_n - 2| < 144\varepsilon' \le \varepsilon.$$

2

Example 2. Let (x_n) be a sequence of real numbers. Define

$$s_n = \frac{x_1 + x_2 \cdots + x_n}{n}$$
 for all $n \in \mathbb{N}$.

- (a) If $\lim(x_n) = \ell$, where $\ell \in \mathbb{R}$, show that $\lim(s_n) = \ell$.
- (b) Is the converse of (b) true?

Solution. (a) Without loss of generality, we assume that $\ell = 0$. (This can be done by letting $y_n = x_n - \ell$.)

For $1 \le m < n$, we separate s_n into two parts:

$$s_n = \frac{x_1 + \dots + x_m}{n} + \frac{x_{m+1} + \dots + x_n}{n}.$$

In order to show that $|s_n|$ is small when n is large, we will use different approaches to estimate the size of the first and second part.

Since (x_n) is convergent, it is bounded, so we can find M > 0 such that

$$|x_n| \le M$$
 for all $n \in \mathbb{N}$.

Let $\varepsilon > 0$ be given. Since $\lim(x_n) = 0$, there exists $m \in \mathbb{N}$ such that

$$|x_n| < \varepsilon/2$$
 for all $n \ge m$.

By Archimedean Property, choose $N \in \mathbb{N}$ such that $N > \max \left\{ \frac{mM}{\varepsilon/2}, m \right\}$.

Now, for $n \geq N$, we have

$$|s_n| \le \frac{|x_1| + \dots + |x_m|}{n} + \frac{|x_{m+1}| + \dots + |x_n|}{n}$$

$$< \frac{mM}{n} + \frac{(n-m)\varepsilon/2}{n}$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

Hence $\lim(s_n) = 0$.

(b) No. Consider $x_n := (-1)^n$. Then $s_n = \begin{cases} -\frac{1}{n} & n \text{ odd,} \\ 0 & n \text{ even.} \end{cases}$

Hence $\lim(s_n) = 0$ while (x_n) diverges.

2 Monotone Sequences

Monotone Convergence Theorem. A monotone sequence of real number is convergent if and only if it is bounded. Furthermore,

- (a) If (x_n) is a bounded increasing sequence, then $\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}.$
- (b) If (y_n) is a bounded decreasing sequence, then $\lim(y_n) = \inf\{y_n : n \in \mathbb{N}\}.$

Example 3. Establish the convergence or the divergence of the sequence (y_n) , where

$$y_n := \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
 for $n \in \mathbb{N}$.

Example 4. Let (x_n) be the sequence defined by

$$x_1 := 1,$$
 $x_{n+1} := \frac{3 + 2x_n}{3 + x_n}$ for $n \ge 1$.

Show that (x_n) is convergent and find its limit.