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1. Introduction. Let X be a real locally convex (Hausdorff topological vector)
space. Consider the family ff i∶i ∈ Ig of proper convex functions on X , where I is a
(finite or infinite) index set. Let ψ denote the (pointwise) supremum function of
ff i∶i ∈ Ig, defined by

ψðxÞ ≔ supff iðxÞ∶i ∈ Ig for each x ∈ X:

Supremum functions arise in a variety of contexts, including dualities, extended Farkas
lemmas, semi-infinite programming, and convex optimization; see, for example, [3, 4, 5,
6, 7, 8, 12, 13, 14, 15, 16, 18, 19, 20, 21, 25, 29]. Calculus for subdifferentials of supremum
functions is one of the most important issues and plays a crucial role in convex analysis
and variational problems; it has been studied extensively and deeply under various de-
grees of generality (such as that X is finite dimensional, I is finite, or the data functions
f i are continuous/lower semicontinuous) by many authors, including Brøndsted [2],
Levin [17], Valadier [26], Ioffe and Tikhomirov [15], and others [10, 12, 20, 22, 23,
24, 25, 27, 28, 29]. The key problem considered by these authors in this connection
is to represent the subdifferential ∂ψðzÞ of the supremum function ψ at z ∈ domψ

in terms of the subdifferentials/ϵ-subdiffererntials of the data functions f i at z. Extend-
ing all the earlier works regarding this problem, Hantoute, López, and Zălinescu showed
recently in [11] that, for the most general situation (X is a real locally convex space and
the functions f i are not necessarily lower semicontinuous (lsc)), if the lsc hulls of ψ and
f i satisfy the condition

clψðxÞ ¼ sup
i∈I

cl f iðxÞ for each x ∈ X;ð1:1Þ

then
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∂ψðzÞ ¼ ⋂
L∈F z;ϵ>0

clðcoð∪i∈I ϵðzÞ ∂ϵf iðzÞÞ þ NL∩domψðzÞÞ for each z ∈ X;ð1:2Þ

where I ϵðzÞ ≔ fi ∈ I∶f iðzÞ ≥ ψðzÞ− ϵg and F z denotes the set of all finite-dimensional
subspaces L of X containing z; in particular, (1.2) entails

∂ψðzÞ ¼ ⋂
ϵ>0

clðcoð∪i∈I ϵðzÞ ∂ϵf iðzÞÞ þ NdomψðzÞÞ for each z ∈ X;ð1:3Þ

when X is a Euclidean space. The formulas such as (1.3) have been established in [9] and
[10] in the finite-dimensional space.

The main result of this paper reported in section 3 implies that, for the same con-
clusion of [11] mentioned above, (1.1) can be replaced by the following condition:

clψðxÞ ¼ sup
i∈I

clf iðxÞ for each x ∈
[
L∈F

clðL ∩ domψÞ;ð1:4Þ

where F is the set of all finite-dimensional subspaces; this new condition is strictly
weaker than (1.1) even when I is finite and X is finite dimensional (see Example 3.2).
We show, in fact, that (1.4) and (1.2) are equivalent if X is a Banach space.

The rest of the paper is organized as follows. In section 2, we list some basic concepts
and notations; we also prove several preliminary results on normal cones, epigraphs, and
supremum functions as well as the relationships between them. These results are needed
in section 3, where the main results and some examples are presented.

2. Notations and preliminary results. The notation used in the present paper is
standard (cf. [12, 29]). In particular, we assume throughout the whole paper (unless
otherwise specified) that X is a real locally convex Hausdorff topological vector space
and letX� denote the dual space ofX equipped with the weak*-topology, whereas hx�; xi
denotes the value of a functional x� in X� at x ∈ X , i.e., hx�; xi ¼ x�ðxÞ. Let Z be a set in
X (or X�). The interior (respectively, closure, convex hull, convex cone hull, linear hull,
affine hull) of Z is denoted by intZ (respectively, clZ , coZ , coneZ , spanZ , aff Z).
Following [29], the relative interior of Z is denoted by riZ and defined to be the interior
of Z in the topology relative to aff Z if aff Z is closed and the empty otherwise. Then, by
definition, one can easily prove that a point x ∈ riZ if and only if there exists δ > 0 such
that Bðx; δÞ ∩ aff Z ⊆ Z . Furthermore, for convex Z , we have that riZ ¼ riðclZÞ and so
(cf. [1, Lemma 3.1])

λxþ ð1− λÞy ∈ riðclZÞ ¼ riZ for any x ∈ riZ; y ∈ clZ; and λ ∈ ð0; 1�:ð2:1Þ

The negative polar cone Z⊖ of Z is defined by

Z⊖ ≔ fx� ∈ X�∶hx�; zi ≤ 0 for all z ∈ Zg:

The normal cone of Z at z0 ∈ Z is denoted by NZ ðz0Þ and is defined by NZ ðz0Þ ¼
ðZ − z0Þ⊖. The indicator function δZ and the support function σZ of Z are, respectively,
defined by

δZ ðxÞ ≔
�

0 x ∈ Z;
∞ otherwise;

and
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σZ ðx�Þ ≔ sup
x∈Z

hx�; xi for each x� ∈ X�:

Let f∶X → R̄ ≔ R ∪ fþ∞g be a proper function. Let f � denote its conjugate function,
that is,

f �ðx�Þ ≔ supfhx�; xi− f ðxÞ∶x ∈ Xg for each x� ∈ X�:

The epigraph of a function f on X is denoted by epi f and defined by

epi f ≔ fðx; rÞ ∈ X × R∶f ðxÞ ≤ rg:

It is easy to see that, for two proper functions f and g,

f ≤ g ⇒ f � ≥ g� ⇔ epi f � ⊆ epi g�:ð2:2Þ

The closure of f is denoted by cl f , which is defined by

epiðcl f Þ ¼ clðepi f Þ:

Then (cf. [29, Theorems 2.3.1]),

f � ¼ ðcl f Þ�:ð2:3Þ

For a proper convex function f , the subdifferential ∂fðxÞ of f at x ∈ X is defined by

∂f ðxÞ ≔ fx� ∈ X�∶fðxÞ þ hx�; y− xi ≤ f ðyÞ for each y ∈ Xg;

and, for ϵ > 0, one defines the ϵ-subdifferential ∂ϵfðxÞ of f at x ∈ X by

∂ϵf ðxÞ ≔ fx� ∈ X�∶fðxÞ þ hx�; y− xi ≤ f ðyÞ þ ϵ for each y ∈ Xg:

As is well known, the Young–Fenchel inequality below holds:

f ðxÞ þ f �ðx�Þ ≥ hx�; xi for each pair ðx�; xÞ ∈ X × X�.ð2:4Þ

Moreover, by [29, Theorem 2.4.2 (iii)],

f ðxÞ þ f �ðx�Þ ¼ hx�; xi if and only if x� ∈ ∂fðxÞð2:5Þ

(the equality in (2.5) is usually referred to as Young’s equality). In particular,

ðx�; hx�; xi− f ðxÞÞ ∈ epi f � for each x� ∈ ∂f ðxÞ;ð2:6Þ

and the following statements hold for a convex subset Z of X :

σZ ¼ δ�
Z ; NZ ðxÞ ¼ ∂δZ ðxÞ for each x ∈ Z:ð2:7Þ

The following lemma is well known; see, for example, [29, Theorem 2.8.7].
LEMMA 2.1. Let g, h∶X → R̄ be convex lower semicontinuous functions satisfying

dom g ∩ dom h ≠ ∅. Then the following assertion regarding epigraphs holds:

epiðgþ hÞ� ¼ clðepi g� þ epi h�Þ:ð2:8Þ
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2.1. Normal cones and epigraphs. We begin this subsection with the following
lemma.

LEMMA 2.2. Consider convex sets E and B in X . Suppose that E is closed and
E ∩ riB ≠ ∅. Let x ∈ E ∩ B. Then we have that

epiσE∩B ¼ clðepiσE þ epiσBÞ:ð2:9Þ

If E is additionally affine, we have that

NE∩BðxÞ ¼ clðNEðxÞ þNBðxÞÞ:ð2:10Þ

Proof. We note by assumption that cl½E ∩ B� ¼ E ∩ clB and so epiσE∩B ¼
epi δ�

E∩ðclBÞ (see (2.7)). It follows from Lemma 2.1 that

epiσE∩B ¼ epiðδE þ δclBÞ� ¼ clðepiδ�
E þ epi δ�

clBÞ ¼ clðepiσE þ epiσBÞ

and (2.9) is shown.
Now assume additionally that E is affine. To show (2.10), we have by the assump-

tion that ðE − xÞ ∩ riðB − xÞ ≠ ∅. This implies that ðE − xÞ ∩ ri½coneðB − xÞ� ≠ ∅.
Thus, using (2.1), one easily sees that

cl½ðE − xÞ ∩ coneðB − xÞ� ¼ ðE − xÞ ∩ cl½coneðB − xÞ�:

Moreover, it is clear that cone½ðE ∩ BÞ− x� ¼ ðE − xÞ ∩ coneðB − xÞ and so

cl½coneððE ∩ BÞ− xÞ� ¼ ðE − xÞ ∩ cl½coneðB − xÞ�:

We apply the bipolar theorem to conclude that

NE∩BðxÞ ¼ ððE − xÞ ∩ cl½coneðB − xÞ�Þ⊖
¼ cl½coððE − xÞ⊖ ∪ ðcl½coneðB − xÞ�Þ⊖Þ�
¼ clðNEðxÞ þ NBðxÞÞ

and (2.10) is seen to hold. ▯
For any convex subset D of X , we use ~FD to denote the family of all subspaces L of

X , satisfying the property that riðL ∩ DÞ ≠ ∅. Let FD denote the subfamily of ~FD con-
sisting of all finite-dimensional subspaces L ∈ ~FD. The families ~F domψ and F domψ will
be denoted by ~Fψ andFψ for simplicity. Similar understanding is for ~F clψ andF clψ. For
x ∈ D,F x;D stands for the subfamily ofFD consisting of all L inFD containing x. Similar
understanding is for ~F x;D, F x;ψ, etc.

LEMMA 2.3. Let D ⊆ X , H ⊆ X�, and E ⊆ X� × R be convex subsets. Then the
following formulas hold for each x ∈ D:

⋂
L∈ ~F x;D

clðE þ epiσL∩DÞ ¼ ⋂
L∈F x;D

clðE þ epiσL∩DÞ ¼ ⋂
L∈FD

clðE þ epiσL∩DÞð2:11Þ

and

⋂
L∈ ~F x;D

clðH þ NL∩DðxÞÞ ¼ ⋂
L∈F x;D

clðH þNL∩DðxÞÞ:ð2:12Þ

Furthermore, if additionally riD ≠ ∅, then the following formulas hold:
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⋂
L∈FD

clðE þ epiσL∩DÞ ¼ clðE þ epiσDÞð2:13Þ

and

⋂
L∈F x;D

clðH þ NL∩DðxÞÞ ¼ clðH þ NDðxÞÞ for each x ∈ D:ð2:14Þ

Proof. Let x ∈ D. Evidently, F x;D ⊆ FD, and on the other hand, for any L ∈ FD

and Lx ≔ spanðL ∪ fxgÞ, one has Lx ∈ F x;D and epiσLx∩D ⊆ epiσL∩D. Thus the second
equality in (2.11) is clear. For the first equality, it suffices to verify that

⋂
L∈ ~F x;D

clðE þ epiσL∩DÞ ⊇ ⋂
L∈F x;D

clðE þ epiσL∩DÞ;ð2:15Þ

because the converse inclusion holds automatically (noting F x;D ⊆ ~F x;D). To establish
(2.15), let V ⊆ X� be a weak* neighborhood of 0. Let L 0 ∈ ~F x;D and choose L0 ∈ F x;D

such that L⊥
0 ⊆ V . Without loss of generality, we assume that L0 ∩ riðL 0 ∩ DÞ ≠ ∅

(replaced by the span generated by L0 with an element of riðL  0 ∩ DÞ if necessary). It
follows from (2.9) that

epiσL0∩ðL 0∩DÞ ¼ clðepiσL0
þ epiσL 0∩DÞ ¼ clðL⊥

0 × Rþ þ epiσL 0∩DÞ;

where Rþ ≔ ½0;þ∞Þ as usual. Hence, for any δ > 0,

⋂
L∈F x;D

clðE þ epiσL∩DÞ ⊆ clðE þ epiσL0∩ðL 0∩DÞÞ

¼ clðE þ L⊥
0 × Rþ þ epiσL 0∩DÞ

⊆ E þ epiσL 0∩D þ 2V × ð−δ;þδÞ:

Since V is an arbitrary neighborhood, we get that

⋂
L∈F x;D

clðE þ epiσL 0∩DÞ ⊆ ⋂
V∈V;δ>0

ðE þ epiσL 0∩D þ V × ð−δ;þδÞÞ ¼ clðE þ epiσL 0∩DÞ;

where V denotes the set of all weak* neighborhoods of 0. Since L  0 ∈ ~F x;D is arbitrary, it
follows that (2.15) holds.

Now assume that riD ≠ ∅. Let L0 ≔ spanD. Then L0 ∈ ~F x;D and L0 ∩ D ¼ D.
Hence

⋂
L∈ ~F x;D

clðE þ epiσL∩DÞ ⊆ clðE þ epiσL0∩DÞ ¼ clðE þ epiσDÞ:

The converse inclusion is clear because clðE þ epiσDÞ ⊆ clðE þ epiσL∩DÞ for any
L ∈ ~F x;D. Thus, together with (2.11), we see that (2.13) is true. Assertions regarding
(2.12) and (2.14) are proved similarly, but one applies (2.10) in place of (2.9). ▯

2.2. Supremum functions. In the remainder of this paper, let ff i∶i ∈ Ig denote a
family of proper convex functions onX , where I is an index set. Letψ ≔ supi∈I f i denote
the sup-function of ff i∶i ∈ Ig, that is,

ψðxÞ ≔ supff iðxÞ∶i ∈ Ig for each x ∈ X:
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The sup-function of fcl f i∶i ∈ Ig will be denoted by ψcl, that is,

ψclðxÞ ≔ supfðcl f iÞðxÞ∶i ∈ Ig for each x ∈ X:

Note that ψcl is lower semicontinuous, ψcl ≤ ψ, and so

ψcl ≤ clψ ≤ ψ:ð2:16Þ

We always assume that ψ and ψcl are proper. Lemma 2.4 below is known in [19].
LEMMA 2.4. The following assertion regarding epigraphs holds:

epiψ�
cl ¼ cl

�
co
[
i∈I

epi f �i

�
:ð2:17Þ

For a convex set D in X and a proper convex function F on X , we say that ðD;FÞ is
an associate pair of convex set and convex function for ff i∶i ∈ Ig if

F jD ¼ ψjD and domF ⊆ D ⊆ domψcl:ð2:18Þ

Remark 2.1. ðdomψ;ψÞ and ðdomψcl;ψÞ are examples of such pairs.
Remark 2.2. The condition (2.18) implies that

domF ¼ D ∩ domψ; F ¼ ψþ δD;ð2:19Þ

epiF� ⊇ ⋂
L∈FD

clðco ∪i∈I epi f
�
i þ epiσL∩DÞ ⊇ clðco ∪i∈I epi f �i þ epiσDÞ;ð2:20Þ

and that

ðclFÞðxÞ ≥ sup
i∈I

ðcl f iÞðxÞ for each x ∈ X:ð2:21Þ

Indeed, (2.19) and the second inclusion of (2.20) are evident (assuming (2.18)). By de-
finition and (2.19), it is easily seen that ψþ δD ≥ f i, i.e., F ≥ f i and so clF ≥ cl f i for
each i; thus (2.21) is also clear. By a direct verification together with the fact that D ¼
∪L∈FD

ðL ∩ DÞ we have ðψþ δDÞ� ¼ supL∈FD
ðψþ δL∩DÞ�, and so it follows from (2.19)

that

epiF� ¼ epið sup
L∈FD

ðψþ δL∩DÞ�Þ ¼ ⋂
L∈FD

epiðψþ δL∩DÞ�:

This implies that the first inclusion of (2.20) holds since, for each L ∈ FD,
epiðψþ δL∩DÞ� is weak* closed, convex, and

epiðψþ δL∩DÞ� ⊇ epiψ� þ epi δ�
L∩D ⊇ epi f �i þ epiσL∩D for each i ∈ I :

The next proposition addresses the following question: When do the inclusions/
inequalities in (2.20) and (2.21) become equalities?

PROPOSITION 2.5. Let ðD;FÞ be an associate pair of convex set and convex function
for ff i∶i ∈ Ig. Consider the following statements:

epiF� ¼ clðco ∪i∈I epi f
�
i þ epiσDÞ:ð2:22Þ
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ðclFÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈ clD:ð2:23Þ

epiF� ¼ ⋂
L∈FD

clðco ∪i∈I epi f
�
i þ epiσL∩DÞ:ð2:24Þ

ðclFÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈
[

L∈FD

clðL ∩ DÞ:ð2:25Þ

Then the following implications/equivalences hold:

ð2.22Þ ⇔ ð2.23Þ ⇒ ð2.24Þ ⇔ ð2.25Þ:

Proof. In view of (2.20) and (2.21), we have the following chain of equivalences:

ð2.25Þ ⇔ ðclFÞðxÞ ≤ supi∈I ðcl f iÞðxÞ for each x ∈ clðL ∩ DÞ and L ∈ FD

⇔ ðclFÞ ≤ supi∈I ðcl f i þ δclðL∩DÞÞ for each L ∈ FD

⇔ epiF� ⊆ clðco ∪i∈I epiðcl f i þ δclðL∩DÞÞ�Þ for each L ∈ FD

⇔ epiF� ⊆ clðco ∪i∈I epi f
�
i þ epiσL∩DÞ for each L ∈ FD

⇔ ð2.24Þ;

where the third equivalence holds because of (2.2) and Lemma (2.4), and the fourth
equivalence holds because, by Lemma 2.1,

epiðcl f i þ δclðL∩DÞÞ� ¼ clðepiðcl f iÞ� þ epiσclðL∩DÞÞ ¼ clðepi f �i þ epiσL∩DÞ:

A similar argument shows ð2.22Þ ⇔ ð2.23Þ. Since implication ð2.23Þ ⇒ ð2.25Þ is trivial,
the proof is complete. ▯

Remark 2.3. In view of Lemma 2.3 (applied to co ∪i∈I epi f
�
i in place of E), we see

that if riD ≠ ∅, then statements (2.22)–(2.25) are equivalent.
COROLLARY 2.6. The following equalities are equivalent:

epiψ� ¼ ⋂
L∈F clψ

clðco ∪i∈I epi f
�
i þ epiσL∩domψcl

Þ:ð2:26Þ

epiψ� ¼ clðco ∪i∈I epi f
�
i þ epiσdomψcl

Þ:ð2:27Þ
epiψ� ¼ clðco ∪i∈I epi f

�
i Þ:ð2:28Þ

ðclψÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈ X:ð2:29Þ

ðclψÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈ domψcl:ð2:30Þ

Proof. By Proposition 2.5 (applied to ðdomψcl; ψÞ in place of ðD; FÞ), (2.26)
implies (in fact, is equivalent to) that

ðclψÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈
[

L∈F clψ

clðL ∩ domψclÞ;ð2:31Þ

which in turn implies (2.30) because domψcl ⊆
S

L∈F clψ
clðL ∩ domψclÞ. The equiva-

lence ð2.29Þ ⇔ ð2.30Þ is evident because, by (2.16), þ∞ ¼ ψcl ≤ clψ on X \ domψcl.
Since (2.29) means that clψ ¼ ψcl (which in turn entails that epiψ� ¼ epiψ�

cl, the
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set expressed on the right-hand side of (2.28) by Lemma 2.4), it follows that
ð2.29Þ ⇒ ð2.28Þ. Hence the proof is complete as implications ð2.28Þ ⇒ ð2.27Þ ⇒
ð2.26Þ are trivially true after taking into account (2.20). ▯

3. Subdifferentials of supremum functions. Let x ∈ X and ϵ > 0. We define

I ϵðxÞ ≔ fi ∈ I∶f iðxÞ ≥ ψðxÞ− ϵg

and

I ðxÞ ≔ I 0ðxÞ ¼ fi ∈ I∶f iðxÞ ¼ ψðxÞg:

We are now ready to present our main result below. In view of Remark 2.1, this result is
applicable for the special pairs ðdomψ;ψÞ and ðdomψcl;ψÞ, and thereby we establish
some equivalent conditions ensuring the subdifferential calculus rules for supremum
functions to hold.

THEOREM 3.1. Let ðD;FÞ be an associate pair of convex set and convex function for
ff i∶i ∈ Ig. Let η > 0. Then the following formulas are equivalent for any x ∈ D:

ð∂FðxÞ× RÞ ∩ epiF� ⊆ ⋂
L∈FD

clðco ∪i∈I epi f
�
i þ epiσL∩DÞ:ð3:1Þ

∂FðxÞ ¼ ⋂
L∈F x;D;ϵ>0

clðco ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þ NL∩DðxÞÞ:ð3:2Þ

Moreover, if additionallyX is assumed to be a Banach space, then formula (3.2) holds for
each x ∈ D if and only if the following statement holds:

ðclFÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈
[

L∈FD

clðL ∩ DÞ:ð3:3Þ

Proof. For the proof of ð3.1Þ ⇔ ð3.2Þ, let x ∈ D. We may assume that x ∈ domF
(otherwise, x ∈= domψ by (2.18) and x ∈= dom f i for each i ∈ I ϵðxÞ with ϵ > 0, and con-
sequently, formulas (3.1) and (3.2) hold trivially since ∂FðxÞ and each ∂ηϵf iðxÞ are
empty).

[ð3.1Þ ⇒ ð3.2Þ]. For any ϵ > 0 and L ∈ F x;D, set

HL;ϵ ≔ clðco ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þNL∩DðxÞÞ:
Clearly, (3.2) can be rewritten as

∂FðxÞ ¼ ⋂
L∈F x;D;ϵ>0

HL;ϵ:ð3:4Þ

Noting (2.18) and that domF ⊆ D ¼∪L∈F x;D
L ∩ D, it is not difficult to verify that

∂ð1þηÞϵFðxÞ ⊇ ⋂
L∈F x;D

HL;ϵ:

Since ∂FðxÞ ¼⋂α>0 ∂αFðxÞ, we see that, to show (3.4), it is sufficient to show that

∂FðxÞ ⊆ ⋂
L∈F x;D;ϵ>0

HL;ϵ:ð3:5Þ

To do this, let x� ∈ ∂FðxÞ, L ∈ F x;D, and ϵ > 0. For (3.5), it suffices to show that

x� ∈ HL;ϵ:ð3:6Þ
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Set

α ≔ hx�; xi− FðxÞ ¼ hx�; xi− ψðxÞ:

Then, by (2.6), ðx�;αÞ ∈ ð∂FðxÞ× RÞ ∩ epiF�. By (3.1),

ðx�;αÞ ∈ clðco ∪i∈I epi f
�
i þ epiσL∩DÞ;ð3:7Þ

so that there exists a net fðx�τ;ατÞg ⊆ co
S

i∈I epi f
�
i þ epiσL∩D such that

x�τ→
w�
x� and ατ → α;ð3:8Þ

and each ðx�τ;ατÞ can be represented in the form

ðx�τ;ατÞ ¼
X
j∈J τ

tjτðx�jτ;αj
τÞ þ ðy�τ;α0

τÞ;ð3:9Þ

where ∅ ≠ J τ ⊆ I is finite, ff jτ∶j ∈ J τg ⊆ ff i∶i ∈ Ig,

ðy�τ;α0
τÞ ∈ epiσL∩D; ðx�jτ;αj

τÞ ∈ epi f jτ
�; and tjτ > 0 for each j ∈ Jτð3:10Þ

with
P

j∈Jτ
tjτ ¼ 1. Write

L̂0 ≔ clðconeðL ∩ D − xÞÞ:
Then L̂⊖

0 ¼ NL∩DðxÞ and

z�0 þ L̂⊖
0 ⊆ HL;ϵ for each z�0 ∈ HL;ϵ:ð3:11Þ

We will construct a net fw�
τg ⊆ HL;ϵ satisfying the property that

hx�; yi ≤ lim supτhw�
τ; yi for each y ∈ L̂0:ð3:12Þ

If this is the case, then (3.6) holds. Indeed, if x� ∈= HL;ϵ, it would follow from the separa-
tion theorem that, for some ȳ ∈ X ,

hx�; ȳi > sup
w�∈HL;ϵ

hw�; ȳi:ð3:13Þ

Pick z�0 ∈ HL;ϵ and it follows from (3.11) that

hx�; ȳi > hz�0; ȳi þ sup
z�∈L̂⊖

0

hz�; ȳi;

which entails that ȳ ∈ L̂0 because L̂0 is a closed convex cone. But (3.13) and (3.12) (with
y ¼ ȳ) are not consistent as fw�

τg ⊆ HL;ϵ.
Therefore we need only to find a net fw�

τg ⊆ HL;ϵ with the stated property. To do
this, we first pick a ∈ riðL ∩ DÞ and, for simplicity, write L0 ≔ spanðL ∩ D − xÞ.
Clearly,

L̂0 ⊆ L0 ¼ coneðL ∩ D − aÞ:ð3:14Þ

Without loss of generality, we assume that the convergent nets fατg and fhx�τ; aig are
bounded. Since D ⊆ domψcl by (2.18), we regard each ατ − x�τ − ψcl as a function on
L ∩ D, and we can use (3.9) to represent this function as follows:
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ατ − x�τ þ ψcl ¼ ðα0
τ − y�τÞ þ

X
j∈J τ

tjτðαj
τ − x�jτ þ cl f jτÞ þ

X
j∈J τ

tjτðψcl − cl f jτÞ:ð3:15Þ

By (3.10) and the definition ofψcl, each term of the above summations is nonnegative, i.e.,

ðα0
τ − y�τÞ ≥ 0; ðαj

τ − x�jτ þ cl f jτÞ ≥ 0; and ðψcl − cl f jτÞ ≥ 0 on L ∩ D:ð3:16Þ

Since a ∈ L ∩ D, it follows from (3.15) that

0 ≤ α0
τ − hy�τ; ai ≤ ατ − hx�τ; ai þψclðaÞ;ð3:17Þ

and so the net fα0
τ − hy�τ; aig is bounded as fατg and fhx�τ; aig are. Consequently,

fhy�τ; yig is bounded above for any y ∈ L ∩ D − a because, for any z ∈ L ∩ D, one has
by (3.16)

hy�τ; z − ai ≤ α0
τ − hy�τ; ai for all τ:

Therefore, the net fy�τg of linear functionals is bounded above on L0 (see (3.14)). Thus,
without loss of generality, we may assume that there exists y�0 ∈ X� such that

limτhy�τ; vi ¼ hy�0; vi for each v ∈ L0:ð3:18Þ

On the other hand, note that f jðxÞ ≤ ψðxÞ ¼ FðxÞ < þ∞ (since x ∈ domF as assumed
at the beginning of the proof). Similar to (3.15) and (3.16), we have

ðατ − x�τ þψÞðxÞ ¼ ðα0
τ − hy�τ; xiÞ þ

X
j∈J τ

tjτðαj
τ − hx�jτ; xi þ f jτðxÞÞ þ

X
j∈J τ

tjτðψðxÞ− f jτðxÞÞ;

ð3:19Þ
0 ≤ ðα0

τ − hy�τ; xiÞ;ð3:20Þ

0 ≤ tjτðαj
τ − hx�jτ; xi þ f jτðxÞÞ;ð3:21Þ

and

0 ≤ tjτðψðxÞ− f jτðxÞÞ:ð3:22Þ

Recalling from (3.8) and our choice of α, we also have

limτðατ − x�τ þ ψÞðxÞ ¼ ðα− x� þ ψÞðxÞ ¼ 0;ð3:23Þ

and it follows that the quantity on the right-hand side of each (3.20)–(3.22) converges to
zero and for any constant ξ > 0,

limτ

� X
j∈J τðξÞ

tjτ

�
¼ 0;ð3:24Þ

where

J τðξÞ ≔ fj ∈ J τ∶ξ ≤ α
j
τ − hx�jτ; xi þ f jτðxÞ or ξ ≤ ψðxÞ− f jτðxÞg:
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Let us fix ξ ≔ minfϵ;ηϵg. Denote λτ ≔
Pftjτ∶j ∈ J τ \ J τðξÞg and z�τ ≔ 1

λτ

Pftjτx�jτ∶j ∈
J τ \ J τðξÞg. Since

P
j∈J τ

tjτ ¼ 1, it follows from (3.24) that λτ → 1, and so we may assume
(as we have done) that λτ ≠ 0. If j ∈ J τ \ JτðξÞ, then j ∈ I ϵðxÞ and

ηϵ ≥ ξ ≥ α
j
τ − hx�jτ; xi þ f jτðxÞ ≥ hx�jτ; z − xi− f jτðzÞ þ f jτðxÞ

for each z ∈ X , i.e., x�jτ ∈ ∂ηϵf
j
τðxÞ. This implies that

z�τ ∈ co ∪i∈I ϵðxÞ ∂ηϵf iðxÞ:ð3:25Þ

Note also that, since limτðα0
τ − hy�τ; xiÞ ¼ 0 as noted earlier, one has, by (3.16) and (3.18),

hy�0; y− xi ¼ limτhy�τ; y− xi ≤ limτðα0
τ − hy�τ; xiÞ ¼ 0 for eachy ∈ L ∩ D;

that is, y�0 ∈ NL∩DðxÞ, and we have

w�
τ ≔ z�τ þ y�0 ∈ co ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þ NL∩DðxÞ ⊆ HL;ϵ:

Finally, we verify that the net fw�
τg satisfies (3.12). Indeed, let z ∈ L ∩ D (so ψclðzÞ <

þ∞ by (2.18)). Then, for the following summation over j ∈ J τðξÞ, one has, by (3.16),

�X
j

tjτx�
j
τ; z − x

�
≤

X
j

tjτðαj
τ − hx�jτ; xi þ ðcl f jτÞðzÞÞ

≤
X
j

tjτðαj
τ − hx�jτ; xi þ ψðxÞÞ þ

X
j

tjτðψclðzÞ− ψðxÞÞ;

where, on the right-hand side, the first summation converges to zero by (3.23) and the
second summation also does because of (3.24) and ðψclðzÞ− ψðxÞÞ is a finite constant.
This implies that

lim supτ
X

j∈J τðξÞ
tjτhx�jτ; z − xi ≤ 0 for each z ∈ L ∩ D:ð3:26Þ

Since x�τ ¼ λτz
�
τ þ y�τ þ

P
j∈J τðξÞt

j
τx�

j
τ, one has

lim supτhðx�τ − ðλτz�τ þ y�τÞÞ; yi ≤ 0 for each y ∈ L̂0:

Since λτ → 1 and hy�τ; z − xi → hy�0; z − xi (by (3.18) and (3.14)), it follows that

lim supτhðx� − z�τ − y�0Þ; z − xi ≤ 0 for all z ∈ L ∩ Dð3:27Þ

and (3.12) follows.
[ð3.2Þ ⇒ ð3.1Þ]. Let L ∈ F x;D, ϵ > 0, and let ðx�;βÞ ∈ ð∂FðxÞ× RÞ ∩ epiF�. Then

x� ∈ ∂FðxÞ and

α ≔ hx�; xi− FðxÞ ≤ β:

By assumption, x� ∈ HL;ϵ. Then there exists a net fx�τg ⊆ co ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þ NL∩DðxÞ
such that
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x�τ ≔
X
j∈J τ

tjτx�
j
τ þ y�τ→

w�
x�;ð3:28Þ

where ∅ ≠ J τ ⊆ I ϵðxÞ is a finite subset, ff jτ∶j ∈ Jτg ⊆ ff i∶i ∈ Ig,

y�τ ∈ NL∩DðxÞ; x�jτ ∈ ∂ð1þηÞϵf
j
τðxÞ; and tjτ > 0 for each j ∈ J τ;ð3:29Þ

satisfying that
P

j∈J τ
tjτ ¼ 1 and

f jτðxÞ > ψðxÞ− ϵ ¼ FðxÞ− ϵ for each j ∈ J τ:

Write

α0
τ ≔ hy�τ; xi and α

j
τ ≔ hx�jτ; xi− FðxÞ þ ð2þ ηÞϵ for each j ∈ Jτ:ð3:30Þ

Then

α
j
τ ≥ hx�jτ; xi− f jτðxÞ þ ð1þ ηÞϵ;

and it follows from (3.29) that

ðy�τ;α0
τÞ ∈ epiσL∩D and ðx�jτ;αj

τÞ ∈ epi f jτ
� for each j ∈ J τ:ð3:31Þ

Set

ατ ≔
X
j∈J τ

tjτα
j
τ þ α0

τ ¼
�X

j∈J τ

tjτx�
j
τ þ y�τ; x

�
− FðxÞ þ ð2þ ηÞϵ

¼ hx�τ; xi− FðxÞ þ ð2þ ηÞϵ

and note that

ατ → hx�; xi− FðxÞ þ ð2þ ηÞϵ ¼ αþ ð2þ ηÞϵ

(by (3.28) and our choice of α). Moreover, by (3.30) and (3.31), we have that

ðx�τ;ατÞ ¼
X
j∈Jτ

tjτðx�jτ;αj
τÞ þ ðy�τ;α0

τÞ ∈ co ∪i∈I epi f
�
i þ epiσL∩D:

Passing to the limits, we get

ðx�;αþ ð2þ ηÞϵÞ ∈ clðco ∪i∈I epi f
�
i þ epiσL∩DÞ:ð3:32Þ

Since ϵ > 0 is arbitrary and since α ≤ β, it follows from (3.32) that ðx�;βÞ ∈
clðco ∪i∈I epi f

�
i þ epiσL∩DÞ. Since L ∈ F x;D is arbitrary, the proof of the implication

is complete.
For the remainder of the proof, we consider the case when X is a Banach space. Note

that (2.25) and (3.3) are identical, and so (3.3) is equivalent to (2.24) by Proposition 2.5.
Thus we have to show that (3.2) holds for each x ∈ D if and only if (2.24) is valid. The
sufficiency part of the above required assertion follows immediately from the equivalence
of (3.1) and (3.2) established above, as (2.24) evidently implies (3.1) for each x ∈ D.
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Conversely, suppose that (3.2) holds for each x ∈ D and let ðx�;αÞ ∈ epiF�. To
show (2.24), we have to show that

ðx�;αÞ ∈ ⋂
L∈FD

clðco ∪i∈I epi f
�
i þ epiσL∩DÞ:ð3:33Þ

For this purpose, we assume without loss of generality that

α ¼ sup
x∈X

ðhx�; xi− FðxÞÞ ¼ F�ðx�Þ:ð3:34Þ

Since X is a Banach space, one can apply [29, Theorem 3.1.4(ii)] and there exist
sequences fxng ⊆ X and fx�ng ⊆ X� with each x�n ∈ ∂FðxnÞ such that

kx�n − x�k → 0 and F�ðx�nÞ → F�ðx�Þ:ð3:25Þ

Let n ∈ N. By (2.5), we have that

αn ≔ hx�n; xni− FðxnÞ ¼ F�ðx�nÞ:ð3:36Þ

Combining (3.34), (3.35), and (3.36), we obtain that ðx�n;αnÞ → ðx�;αÞ. Clearly,
ðx�n;αnÞ ∈ ð∂FðxnÞ× RÞ ∩ epiF�. Since the formula (3.2) holds at xn in place of x, it
follows from the equivalence of (3.1) and (3.2) established above that

ðx�n;αnÞ ∈ ⋂
L∈FD

clðco ∪i∈I epi f
�
i þ epiσL∩DÞ:

Thus (3.33) follows as required to show. ▯
Remark 3.1. Suppose that riD ≠ ∅. Then by Lemma 2.3 (applied to

co ∪i∈I ϵðxÞ ∂ηϵf iðxÞ in place of H) and Remark 2.3, a variant version of Theorem 3.1 also
holds in which ∩L∈FD

clðco ∪i∈I epi f
�
i þ epiσL∩DÞ in (3.1) is replaced by clðco ∪i∈I

epi f �i þ epiσDÞ, ∩L∈F x;D;ϵ>0 clðco ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þNL∩DðxÞÞ in (3.2) is replaced by
∩ϵ>0 clðco ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þ NDðxÞÞ, and ∪L∈FD

clðL ∩ DÞ in (3.3) is replaced by clD.
Part (ii) of the following corollary was inaccurately stated (see a counterexample

given at the end of this section) in [11, Corollary 8] without assumption (3.37), which
was used indeed in its proof.

COROLLARY 3.2. Suppose that

ðclψÞðxÞ ¼ sup
i∈I

ðcl f iÞðxÞ for each x ∈ clðdomψÞ:ð3:37Þ

Let η > 0. Then the following assertions hold:
(i) The formula

∂ψðxÞ ¼ ⋂
L∈F x;ψ;ϵ>0

clðco ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þ NL∩domψðxÞÞð3:38Þ

holds for each x ∈ domψ.
(ii) If additionally riðdomψÞ ≠ ∅, then the formula

∂ψðxÞ ¼ ⋂
ϵ>0

clðco ∪i∈I ϵðxÞ ∂ηϵf iðxÞ þNdomψðxÞÞð3:39Þ

holds for each x ∈ domψ.
Proof. Take F ¼ ψ and D ¼ domψ. Thanks to assumption (3.37), (2.23) holds

(and so does (2.22) by Proposition 2.5). Thus, a fortiori, (3.1) holds for each x ∈ D
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and so does (3.2) by Theorem 3.1. This means that (i) is true. Moreover, if
riðdomψÞ ≠ ∅, then the set expressed on the right-hand side of (3.38) and that of
(3.39) are equal (see Lemma 2.3) and so (ii) holds by (i). ▯

We end this section with two simple examples. The first example shows that the
assumption (3.37) in Corollary 3.2 cannot be dropped, and the second example demon-
strates a case that our result is applicable but not the main result in [11], i.e., [11,
Theorem 4].

Example 3.1. Let X ¼ R and I ¼ N. Consider the family ff i∶i ∈ Ig defined by

f iðxÞ ≔

8>>><
>>>:

ð−iÞx− 1; x ∈ ð−∞;− 1
i�;

0; x ∈ ½− 1
i ; 0Þ;

1; x ¼ 0;
þ∞; x ∈ ð0;þ∞Þ;

for each i ∈ I :

Then ψ ¼ δf0g þ 1, and so ∂ψð0Þ ¼ R. Moreover, for any 0 ≤ ϵ < 1 and i ∈ I ,
∂ϵf ið0Þ ¼ ∅. Therefore, formula (3.39) does not hold for x ¼ 0 while f0g ¼ domψ

(and (3.37) fails).
Example 3.2. Let X ¼ R2 and I ¼ f1; 2g. Define the sets A1 and A2, respectively, by

A1 ≔ fðt1; t2Þ ∈ R2∶t2 < 0g ∪ fð0; 0Þg and A2 ≔ fðt1; t2Þ ∈ R2∶t2 > 0g ∪ fð0; 0Þg:

Consider the family ff i∶i ∈ Ig with each f i ≔ δAi
. Then cl f i ¼ δclAi

for each i ∈ I and
ψ ≔ supi∈I f i ¼ δf0g. Therefore, clðdomψÞ ¼ f0g and (3.37) is satisfied by the family
ff i∶i ∈ Ig but not condition (1.1) (which is a part of assumptions in [11, Theorem 4]).
Thus Corollary 3.2 is applicable but not [11, Theorem 4].

4. Conclusions. We have established, by using the powerful epigraph technique,
the subdifferential formula for the supremum function ψ at z ∈ domψ in terms of the
ϵ-subdifferentials of the data functions f i at z. In particular, our Corollary 3.2 extends
and improves the latest results due to Hantoute, López, and Zălinescu in [11]. It is
tempting to prove Corollary 3.2 by virtue of the corresponding known results and
via the following approach.

Define a new family ff̂ i∶i ∈ Ig of proper convex functions on X by

f̂ i ≔ f i þ δclðdomψÞ for each i ∈ I :

We use ψ̂ to denote the corresponding sup-function, that is, ψ̂ ¼ supi∈I f̂ i. Then it is
clear that

ψ̂ ¼ sup
i∈I

f i þ δclðdomψÞ ¼ ψþ δclðdomψÞ ¼ ψ:

Moreover, by definition, we can show directly that condition (3.37) implies the following
one:

cl ψ̂ ¼ sup
i∈I

ðcl f̂ iÞ:

Thus, under the assumption of Corollary 3.2, we can apply [11, Theorem 4] (to
ff̂ i∶i ∈ Ig) to obtain that
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∂ψðxÞ ¼ ∩
ϵ > 0

L ∈ F x;clðdomψÞ

clðco ∪i∈I ϵðxÞ ∂ηϵðf i þ δclðdomψÞÞðxÞ þNL∩domψðxÞÞ:ð4:1Þ

To proceed further, we have to calculate the ϵ-subdifferential of f i þ δclðdomψÞ at x for
each i ∈ I ϵðxÞ. To the best of our knowledge, the known formulas for the ϵ-subdifferential
of the sum of two proper convex functions f and g (see [29, Corollary 2.6.7]) require that
the involved functions f and g are lsc. They can probably be extended to the case when the
involved two functions f and g have the property

clðf þ gÞ ¼ cl f þ cl g;ð4:2Þ

even so, they cannot be applied in our situation here because, in general, condition (3.37)
does not imply that (4.2) holds with f ≔ f i and g ≔ δclðdomψÞ even for i ∈ I ϵðxÞ as shown
by the following example of the family ff i∶i ∈ Ig. Therefore, we guess, the approach out-
lined above does not work for deriving Corollary 3.2.

Example 4.1. Let X ≔ R2 and I ≔ ð0; 1�. Consider the family ff i∶i ∈ Ig consisting
of proper convex functions f i defined by

f iðxÞ ≔
8<
:

0; x ∈ ½0; 1�× f0g;
−i; x ∈ ½0; 1�× ð0; i�;
þ∞; otherwise;

for each i ∈ I :

Then we have that ψ ¼ supi∈I f i ¼ δ½0;1�×f0g and

cl f i ¼ −iþ δ½0;1�×½0;i� for each i ∈ I :

This means that clðdomψÞ ¼ ½0; 1�× f0g and condition (3.37) is satisfied. Moreover, for
any x ∈ ½0; 1�× f0g and any ϵ > 0, one sees that I ϵðxÞ ¼ I and that, for each i ∈ I ,

clðf i þ δclðdomψÞÞ ¼ δclðdomψÞ > −iþ δclðdomψÞ ¼ cl f i þ δclðdomψÞ on ½0; 1�× f0g:

Hence (4.2) does not hold with f ≔ f i and g ≔ δclðdomψÞ for each i ∈ I ϵðxÞ.
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