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Abstract. Extending and improving some recent results of Hantoute, Lopez, and Zalinescu and others,
we provide characterization conditions for subdifferential formulas to hold for the supremum function of a
family of convex functions on a real locally convex space.
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1. Introduction. Let X be a real locally convex (Hausdorff topological vector)
space. Consider the family {f;:7 € I} of proper convex functions on X, where I is a
(finite or infinite) index set. Let ¢ denote the (pointwise) supremum function of
{f;:i € I}, defined by

Y (x) == sup{f;(z):i € I} foreachze X.

Supremum functions arise in a variety of contexts, including dualities, extended Farkas
lemmas, semi-infinite programming, and convex optimization; see, for example, [3, 4, 5,
6,7,8,12,13,14, 15, 16, 18, 19, 20, 21, 25, 29|. Calculus for subdifferentials of supremum
functions is one of the most important issues and plays a crucial role in convex analysis
and variational problems; it has been studied extensively and deeply under various de-
grees of generality (such as that X is finite dimensional, 7 is finite, or the data functions
fi are continuous/lower semicontinuous) by many authors, including Brendsted [2],
Levin [17], Valadier [26], Ioffe and Tikhomirov [15], and others [10, 12, 20, 22, 23,
24, 25, 27, 28, 29]. The key problem considered by these authors in this connection
is to represent the subdifferential 0y(z) of the supremum function ¥ at z € dom v
in terms of the subdifferentials/e-subdiffererntials of the data functions f; at z. Extend-
ing all the earlier works regarding this problem, Hantoute, Lopez, and Zalinescu showed
recently in [11] that, for the most general situation (X is a real locally convex space and
the functions f; are not necessarily lower semicontinuous (Isc)), if the Isc hulls of ¢ and
f; satisfy the condition

(L.1) cly(z) =sup clf(z) foreach z € X,

iel
then
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SUBDIFFERENTIAL RULES FOR SUPREMUM FUNCTIONS 783

(12) al//(z) = . }_r] CI(CO(UiEL(z) aefz(z)) + NLﬁdoml//(Z)) for each 2z € X’
eF,.e>0

where I.(z) :={i € I:f;(2) > ¥(2) — €} and F, denotes the set of all finite-dimensional
subspaces L of X containing z; in particular, (1.2) entails

(1.3) oy (2) = [el(co(Uier, () 0efi(2)) + Naomy(2)) for each z € X,

e>0

when X is a Euclidean space. The formulas such as (1.3) have been established in [9] and
[10] in the finite-dimensional space.

The main result of this paper reported in section 3 implies that, for the same con-
clusion of [11] mentioned above, (1.1) can be replaced by the following condition:

(1.4) cly(z) =supclf;(z) foreach z € U cl(L N domyr),
el LeF

where F is the set of all finite-dimensional subspaces; this new condition is strictly
weaker than (1.1) even when [ is finite and X is finite dimensional (see Example 3.2).
We show, in fact, that (1.4) and (1.2) are equivalent if X is a Banach space.

The rest of the paper is organized as follows. In section 2, we list some basic concepts
and notations; we also prove several preliminary results on normal cones, epigraphs, and
supremum functions as well as the relationships between them. These results are needed
in section 3, where the main results and some examples are presented.

2. Notations and preliminary results. The notation used in the present paper is
standard (cf. [12, 29]). In particular, we assume throughout the whole paper (unless
otherwise specified) that X is a real locally convex Hausdorff topological vector space
and let X* denote the dual space of X equipped with the weak*-topology, whereas (z*, x)
denotes the value of a functional z* in X* at 2 € X, i.e., (z*, x) = 2*(x). Let Z be a set in
X (or X*). The interior (respectively, closure, convex hull, convex cone hull, linear hull,
affine hull) of Z is denoted by int Z (respectively, cl Z, co Z, cone Z, span Z, aff Z).
Following [29], the relative interior of Z is denoted by ri Z and defined to be the interior
of Z in the topology relative to aff Z if aff Z is closed and the empty otherwise. Then, by
definition, one can easily prove that a point = € ri Z if and only if there exists § > 0 such
that B(z, ) N aff Z C Z. Furthermore, for convex Z, we have that ri Z = ri(cl Z) and so
(cf. [1, Lemma 3.1])

(21) Az+(1—-ADyeri(clZ)=riZ foranyzeriZ, yeclZ, and 1€(0,1].
The negative polar cone Z© of Z is defined by
7% :=={z* € X*:(z*,2) <0 forall z € Z}.

The normal cone of Z at 2y € Z is denoted by Ny(z) and is defined by N4(z;) =
(Z — 2)®. The indicator function 6 and the support function o, of Z are, respectively,
defined by

0 T €7,
oo otherwise,

87(x) = {

and
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784 CHONG LI AND KUNG FU NG

0z(2*) == sup(z*,z) for each z* € X*.
r€Z

Let f: X 2 R=RU {+00} be a proper function. Let f* denote its conjugate function,
that is,

fH(x*) == sup{(a*,z) — f(z):z € X} for each z* € X*.

The epigraph of a function f on X is denoted by epi f and defined by
epif={(z,r) € X xR:f(z) < r}.
It is easy to see that, for two proper functions f and g,
(2.2) f<g=f*> g <epif Cepigh
The closure of f is denoted by cl f, which is defined by
epi(cl f) = cl(epi f).
Then (cf. [29, Theorems 2.3.1]),
(2.3) fr= ey
For a proper convex function f, the subdifferential of(x) of f at z € X is defined by
0f(z) = {a* € X*: () + (", y— ) < f(y) for each y € X},
and, for € > 0, one defines the e-subdifferential d,f(x) of f at z € X by
0.f(z) =={r* € X*: f(z) + (z*,y — z) < f(y) + € for each y € X}.

As is well known, the Young—Fenchel inequality below holds:
(2.4) flz)+ f*(a*) > (z*,z) foreachpair (z*,z) € X x X*.
Moreover, by [29, Theorem 2.4.2 (iii)],
(2.5) f(z) + f*(z*) = (2%, z) if and only if z* € of(z)
(the equality in (2.5) is usually referred to as Young’s equality). In particular,
(2.6) (z*, (z*, ) — f(z)) € epi f* for each z* € af(x),
and the following statements hold for a convex subset Z of X:
(2.7) 07=206% Ny(z)=008z(x) foreachze Z.

The following lemma is well known; see, for example, [29, Theorem 2.8.7].
Lemma 2.1. Let g, h: X — R be convex lower semicontinuous functions satisfying
dom g Ndom h # @. Then the following assertion regarding epigraphs holds:

(2.8) epi(g + h)* = cl(epi g* + epi h*).
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SUBDIFFERENTIAL RULES FOR SUPREMUM FUNCTIONS 785

2.1. Normal cones and epigraphs. We begin this subsection with the following
lemma.

Lemva 2.2. Consider convex sets E and B in X. Suppose that E is closed and
ENriB#@. Let x € EN B. Then we have that

(2.9) epiopnp = cl(epioy + epiop).
If E is additionally affine, we have that
(2.10) Ngnp(z) = cl(Ng(z) + Np(z)).

Proof. We note by assumption that cl[EN B]=FENclB and so epiog,p =
epi & py (see (2.7)). It follows from Lemma 2.1 that

epiopnp = epi(8p + 8 p)” = cl(epi 8% + epi 87y 5) = cl(epioy + epiop)

and (2.9) is shown.

Now assume additionally that E is affine. To show (2.10), we have by the assump-
tion that (E—z) Nri(B—z)+# @. This implies that (£ — z) Nrijcone(B — )] # @.
Thus, using (2.1), one easily sees that

cl[(E — ) N cone(B — z)] = (E — z) N clcone(B — z)].
Moreover, it is clear that cone[(E N B) — z] = (E — z) N cone(B — z) and so
cllcone((E N B) — )] = (E — z) N cl[cone(B — z)].
We apply the bipolar theorem to conclude that

Nps(z) = (B — 2) 1 cllcone(B — 2)))°
= cllco((E — z)® U (cl[cone(B — 2)])°)]
= cl(Ng(z) + Njp(z))

and (2.10) is seen to hold. d

For any convex subset D of X, we use F p to denote the family of all subspaces L of
X, satisfying the property that r1(L N D) # @. Let F |, denote the subfamily of 7 con-
sisting of all finite-dimensional subspaces L € F p- The families F domy and F gy y will
be denoted by F w and F, for simplicity. Similar understanding is for 7, and F . For
r € D, F, p stands for the subfamily of 7, consisting of all L in F , containing x. Similar
understanding is for F, p, F,, etc.

Lemva 2.3. Let DC X, HC X*, and E C X* X R be convexr subsets. Then the
following formulas hold for each x € D:

(2.11) (1 (B +epiogp) = () cl(E+epiojp) = () cl(E+epiogp)
LeF, LEF,p LEF)
and
(2.12) M cl(H+Npap(x)) = ) cl(H + Nyp(z)).
LeF,p LeF.p

Furthermore, if additionally ri D # @, then the following formulas hold:
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786 CHONG LI AND KUNG FU NG

(2.13) () cl(E+epiojnp) = cl(E+epiop)
LeFp
and
(2.14) () cl(H 4+ Nyp(z)) = cl(H + Np(z)) for each z € D.
LEF, )

Proof. Let x € D. Evidently, F, p € Fp, and on the other hand, for any L € F
and L, := span(L U {z}), one has L, € F, p and epio, ~p C epionp. Thus the second
equality in (2.11) is clear. For the first equality, it suffices to verify that

(2.15) () cl(E+epiogp) 2 [\ cl(E+epiorp).
L€.7~:T,D LeF,p

because the converse inclusion holds automatically (noting F, p C F +.p)- To establish
(2.15), let V C X* be a weak™ neighborhood of 0. Let L' € ]é,,yD and choose Ly € F, p
such that Lg C V. Without loss of generality, we assume that Ly Nri(L' N D) # @
(replaced by the span generated by L, with an element of ri(L’ N D) if necessary). It
follows from (2.9) that

epi o, nnp) = cl(epio, +epioynp) = cl(Ly x Ry 4 epioynp),
where R, := [0, 4+00) as usual. Hence, for any § > 0,

Le@ cl(E + epionp) C cl(E + epioinp))
z.D
=cl(E+ Ly xR, +epiopnp)

C E+epiopqp+2V x (=68,496).
Since V is an arbitrary neighborhood, we get that

N cl(E+epiopnp) © [ (E+epiopnp+ V x (=6,46)) = cl(E+epiopnp).
LEF, p VeV.6>0

where V denotes the set of all weak* neighborhoods of 0. Since L' € F ».p Is arbitrary, it
follows that (2.15) holds. 3

Now assume that ri D # @. Let Ly :=spanD. Then Ly € F,p and LyN D = D.
Hence

O cl(E + epionp) C cl(E+epioynp) = cl(E +epiop).
LeF.p

The converse inclusion is clear because cl(£ +epiop) C cl(E +epiojqp) for any
L € F,p. Thus, together with (2.11), we see that (2.13) is true. Assertions regarding
(2.12) and (2.14) are proved similarly, but one applies (2.10) in place of (2.9). a

2.2. Supremum functions. In the remainder of this paper, let {f;:4 € I} denote a
family of proper convex functions on X, where I is an index set. Let ¥ := sup,c; f; denote
the sup-function of {f;:7 € I'}, that is,

Y(x) :==sup{f;(x):i € I} foreach z € X.
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SUBDIFFERENTIAL RULES FOR SUPREMUM FUNCTIONS 787

The sup-function of {cl f;:7 € I} will be denoted by ¥, that is,
Ya(x) == sup{(clf;)(z):i € I} for each z € X.

Note that i, is lower semicontinuous, ¥4 < ¥, and so

(2.16) Va <cly <.

We always assume that ¢ and ¥, are proper. Lemma 2.4 below is known in [19].
Lemma 2.4. The following assertion regarding epigraphs holds:

(2.17) epi i =cl (coUepi ff)
i€l
For a convex set D in X and a proper convex function F on X, we say that (D, F) is

an associate pair of convex set and convex function for {f;:i € I} if

(2.18) Flp=v¥|p and domF C D C domy.

Remark 2.1. (dom ¢, ) and (dom ¥, ¥) are examples of such pairs.
Remark 2.2. The condition (2.18) implies that

(2.19) dom F = D N dom v, F=1vy+dp,

(2.20) epi F* D [ cl(co User epi ff +epionp) 2 cl(co Uer epi fi +epiop),
LeFp

and that

(2.21) (cl F)(z) > sup(cl f;)(z) for each z € X.

iel

Indeed, (2.19) and the second inclusion of (2.20) are evident (assuming (2.18)). By de-
finition and (2.19), it is easily seen that ¥ + 8p > f;, i.e., F > f; and so cl F > cl f; for
each i; thus (2.21) is also clear. By a direct verification together with the fact that D =
Urer, (LN D) we have (¥ 4 6p)* = suprer, (¥ + 8.np)*, and so it follows from (2.19)
that

epi F* = epi(sup (¥ + 8,np)*) = [ epi(¥ + 81qp)"
LeFp LeFp

This implies that the first inclusion of (2.20) holds since, for each L & Fp,
epi(¥ 4+ 81qp)* is weak® closed, convex, and

epi(Y + 81np)* D epi ™ +epi 85, D epi fi +epiop foreach ie I

The next proposition addresses the following question: When do the inclusions/
inequalities in (2.20) and (2.21) become equalities?

ProposiTioN 2.5. Let (D, F') be an associate pair of convex set and convex function
for {f;:i € I}. Consider the following statements:

(2.22) epi F* = cl(co Ujcr epi fi + epiop).
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788 CHONG LI AND KUNG FU NG

(2.23) (cl F)(z) = sup(cl f;)(z) for each x € cl D.
icl
(224) ep1 F* = ﬂ CI(CO UiEI epl f;k + epl GLOD)'
LeFp
(2.25) (cl F)(z) = sup(cl f;)(z) for each z € U c(LN D).
=4 LeFp

Then the following implications/equivalences hold:
(2.22) & (2.23) = (2.24) & (2.25).
Proof. In view of (2.20) and (2.21), we have the following chain of equivalences:

(2.25) & (cl F)(z) < sup;er(cl fi)(z) foreach z €c(LN D) and LeFp
& (cl F) <supe;(cl f; + 8a(znp)) for each L € Fp
& epi I C cl(co Uie epi(cl f; + Saznp))*) for each L € Fp
< epi F* C cl(co Ujeg epi ff + epioqp) for each L € Fp
< (2.24),

where the third equivalence holds because of (2.2) and Lemma (2.4), and the fourth
equivalence holds because, by Lemma 2.1,

epi(cl f; + Saznp))* = cl(epi(cl f;)* + epioenp)) = cl(epi f; + epiop).

A similar argument shows (2.22) < (2.23). Since implication (2.23) = (2.25) is trivial,
the proof is complete. 0

Remark 2.3. In view of Lemma 2.3 (applied to co U;c; epi f# in place of E), we see
that if ri D # @, then statements (2.22)—(2.25) are equivalent.

COROLLARY 2.6. The following equalities are equivalent:

(2.26) epiy* = (1 cl(co Uses epi f + epio frdomy, )-
LEFay
(2.27) epi ¥* = cl(co Ucr epi f§ + epiogom wd).
(2.28) epi Y* = cl(co Ujcs epi fF).
(2.29) (cly)(z) = Sg?(cl fi)(z) for each z € X.
(2.30) (cly)(z) = su?(cl fi)(z) for each z € dom .
1€

Proof. By Proposition 2.5 (applied to (dom vy, ¥) in place of (D, F)), (2.26)
implies (in fact, is equivalent to) that

(2.31) (cly)(z) = sup(cl f;)(z) for each z € U cl(L N domyy),
= LEFqy

which in turn implies (2.30) because dom ¥, C LeFay cl(L Ndom ). The equiva-

lence (2.29) < (2.30) is evident because, by (2.16), 400 = ¥y < cly on X \ dom .
Since (2.29) means that cly = ¥y (which in turn entails that epiy* = epiy), the
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SUBDIFFERENTIAL RULES FOR SUPREMUM FUNCTIONS 789

set expressed on the right-hand side of (2.28) by Lemma 2.4), it follows that
(2.29) = (2.28). Hence the proof is complete as implications (2.28) = (2.27) =
(2.26) are trivially true after taking into account (2.20). O

3. Subdifferentials of supremum functions. Let z € X and ¢ > 0. We define
I (z) ={ieI:fi(z) 2 ¥(z) — €}
and
I(z) = Iy(z) = {i € I:fi(x) = ¥ (2)}.

We are now ready to present our main result below. In view of Remark 2.1, this result is
applicable for the special pairs (dom ¥, ¥) and (dom v, ¥), and thereby we establish
some equivalent conditions ensuring the subdifferential calculus rules for supremum
functions to hold.

TuroreM 3.1. Let (D, F) be an associate pair of convex set and convex function for
{fi:i € I}. Let n > 0. Then the following formulas are equivalent for any x € D:

(3.1) (0F(z) x R) Nepi F* C [ cl(co Uer epi ff +epionp).
LeF )
(3:2) 0F(z) = 1 ellco Uicr,i) yefila) + Ny(a).
LeF, p,e>0

Moreover, if additionally X is assumed to be a Banach space, then formula (3.2) holds for
each x € D if and only if the following statement holds:

(3.3) (cl F)(z) = sup(cl f;)(z) for each z € U cl(LN D).
i€l LEFp

Proof. For the proof of (3.1) & (3.2), let z € D. We may assume that z € dom F'
(otherwise, z ¢ dom ¥ by (2.18) and z ¢ dom f; for each i € I.(x) with ¢ > 0, and con-
sequently, formulas (3.1) and (3.2) hold trivially since dF(z) and each d,.f;(z) are

empty).
[(3.1) = (3.2)]. For any € > 0 and L € F, p, set

Hip = cl(co Uier (z) Opefi(7) + Npap(2)).

Clearly, (3.2) can be rewritten as

(34) oF(z)= (| Hp..
LeF, p.e>0

Noting (2.18) and that dom F' C D =Ujcr , LN D, it is not difficult to verify that

a(1+n)eF(I) :_) Le@ HL.e-
D

Since 0F(x) =(Ny=0 0o F'(x), we see that, to show (3.4), it is sufficient to show that

(35) @ C N Hi
LeF, p.e>0

To do this, let 2* € 0F(x), L € F, p, and € > 0. For (3.5), it suffices to show that

(3.6) v € H,,.
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790 CHONG LI AND KUNG FU NG
Set
o= (z*, ) — F(z) = («*, ) — ¥ ().
Then, by (2.6), (z*,a) € (0F(z) x R) Nepi F*. By (3.1),
(3.7 (z*,a) € cl(co Ujer epi f¥ + epionp),
so that there exists a net {(x}, )} C colU;cyepi fi + epiornp such that
(3.8) aﬁu—];x* and o, — «a,

and each (2f,a,) can be represented in the form

(3.9) (7%, ay) Zt] w1 al) + (yi, ),
jed,

where @ # J, C I is finite, {f1:j € J.} C{f;:i € I},
(3.10) (y%,a?) € epiop, (x*{a%) cepifl*, and >0 foreachjeJ,
with 320, 4 = 1. Write
Ly = cl(cone(L N D — z)).
Then Lj = Nznp(z) and

(3.11) z+ Ly C Hy, for each zy e Hy,.
We will construct a net {wi} C Hy . satisfying the property that
(3.12) (z*,y) < lim sup,(wi,y) for each y € L.

If this is the case, then (3.6) holds. Indeed, if z* ¢ H ., it would follow from the separa-
tion theorem that, for some y € X,

(3.13) (z*,y) > sup (w*,y).

w*eHp,

Pick 2z € H. and it follows from (3.11) that

(+".5) > (4.9) + sup (=", 7).
€Ly
which entails that j € Ly because L is a closed convex cone. But (3.13) and (3.12) (with
y = y) are not consistent as {wi} C Hj .
Therefore we need only to find a net {wi} C H, . with the stated property. To do
this, we first pick a € ri(L N D) and, for simplicity, write L :=span(L N D — z).
Clearly,

(3.14) Ly C Ly = cone(L N D — a).

Without loss of generality, we assume that the convergent nets {«,} and {(z}, a)} are
bounded. Since D C dom ¢ by (2.18), we regard each «, — zf — ¥ as a function on
LN D, and we can use (3.9) to represent this function as follows:
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SUBDIFFERENTIAL RULES FOR SUPREMUM FUNCTIONS 791

(3.15)  ar—ai+ g =(a) —y)+ Y Hlad — 2T+ fl)+ Y H(Yg—clfi).

jed, jed,

By (3.10) and the definition of ¥, each term of the above summations is nonnegative, i.e.,
(316) (@0—y5) >0, (e —a)+clfl)>0, and (Yq—clfi)>0 on LN D.
Since ¢ € L N D, it follows from (3.15) that
(3.17) 0<a? = (y.a) <o — (27, a) + Yala),
and so the net {a? — (yi, a)} is bounded as {a,} and {(zf,a)} are. Consequently,
{{y%,y)} is bounded above for any y € L N D — a because, for any z € L N D, one has
by (3.16)

(yt,z—a) <a?— (yt,a) forall 7.

Therefore, the net {y;} of linear functionals is bounded above on Lj (see (3.14)). Thus,
without loss of generality, we may assume that there exists y; € X* such that

(3.18) lim, (yi, v) = (y;, v) for each v € L.

On the other hand, note that f;(z) < ¥(z) = F(x) < +o0 (since z € dom F as assumed
at the beginning of the proof). Similar to (3.15) and (3.16), we have

(e — 27 +9)(2) = (e} — (yi.@ E;t] (@, 2) + fi(x E;tj ().
(3.19) ) :

(3.20) 0 < (e = (y;.2)).

(3.21) 0 < t(af — (24, 2) + fi(@)).

and

(3.22) 0 < t(¥(z) — fi(2)).

Recalling from (3.8) and our choice of a, we also have
(3.23) lim, (e, — 77 + ¥)(z) = (& — 2" + ¥)(z) = 0,

and it follows that the quantity on the right-hand side of each (3.20)—(3.22) converges to
zero and for any constant & > 0,

(3.24) limr< > t{) =0,

jeJ(§)

where

J(§)={jeJaE<ai—(2h2) + fiz) or E<y(2)—fi(a)}.
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792 CHONG LI AND KUNG FU NG
Let us fix & :== min{e, ne}. Denote A, == > {t:j € J,\ J,(§)} and 2% ==L Z{t]fx*i JjE€

J N J(E)}. Since Y5, tr = 1,1t follows from (3.24) that A, — 1, and so we may assume
(as we have done) that 4, #0. If j € J, \ J (&), then j € I.(z) and

ne>§€>at — (e, 2) + fi(z) = (e, 2 — a) = fi(2) + fi(a)
for each z € X, ie., '] € anef{(m). This implies that
(3.25) 2t € €0 Uiep (a) Opefi().
Note also that, since lim,(a? — (y%, #)) = 0 as noted earlier, one has, by (3.16) and (3.18),
(Yo y — ) = lim (gt y — ) <lim(af — (y;,2)) =0 for eachy € LN D,
that is, i € Nyp(z), and we have
wy = 27 + Y € €0 Ujep,(z) Opefi(®) + Npap(x) € Hp.

Finally, we verify that the net {w?} satisfies (3.12). Indeed, let z € LN D (so ¥ 4(z) <
+00 by (2.18)). Then, for the following summation over j € J_(£), one has, by (3.16),

<;téx*i,z—x> S ted  (ahos) + ()G
< th :L’ r, Jrztr Wd ))

where, on the right-hand side, the first summation converges to zero by (3.23) and the
second summation also does because of (3.24) and (¥ 4(z) — ¥(z)) is a finite constant.
This implies that

(3.26) lim sup, Z t(z*d,z—x) <0 foreachze LN D.
JEJ+(8)

Since 77 = Ac2f + Yi + D s e £z*1, one has

lim sup, (25 — (4,25 + %)), 9) <0 for each y € L.
Since 4, — 1 and (yi, z — z) — (y, 2 — ) (by (3.18) and (3.14)), it follows that
(3.27) lim sup ((z* — zf —y3),2—2) <0 forallze LN D
and (3.12) follows.

[(3.2) = (3.1)]. Let L € F,p, € >0, and let (z*, 8) € (0F(z) x R) N epi F*. Then
x* € dF(z) and
o= (2", z) — F(z) < B.

By assumption, 2* € H .. Then there exists a net {z}} C co Ujes (5 Oyefi(2) + Nyap(2)
such that
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(3.28) = Hath 4+ yrar,

Jjet,
where @ # J, C I.(z) is a finite subset, {fJ:j € J,} C {f;:ie I},
(3.29) ys € Ninp(2), = d(Hn)gf{(x), and ¢ >0 foreachje J,,
satisfying that ). /=1 and
fi(z) > y(z) —e = F(z) —e for each j € J,.

Write

(3.30) o == (yr,2) and of == (2*),2) — F(z)+ (2+n)e for each j € J,.

Then
ol > (a4, 7) — fi(z) + (1 +n)e,

and it follows from (3.29) that

(3.31) (yt.a%) € epionp and (21, al) € epifi* for each j € J,.
Set
o= ol +at = (St 4 i) — Fla) + (24 e
jeJ, Jjed,

= (z7.7) = F(z) + (2 +n)e
and note that
o, = (52— Flx)+ 2+ ne=a+ (2+n)e
(by (3.28) and our choice of ). Moreover, by (3.30) and (3.31), we have that

] 0 . .
(2%, ap) g t(z*d, al) + (yt. ) € co Uses epi f7 + epionp.
jed,

Passing to the limits, we get

(3.32) (", 0 + (2 +n)e) € cl(co Ujes epi fF + epioap).

793

Since € > 0 is arbitrary and since o < g, it follows from (3.32) that (z*,B) €
cl(co Ujer epi f +epionp). Since L € F, p is arbitrary, the proof of the implication

is complete.

For the remainder of the proof, we consider the case when X is a Banach space. Note
that (2.25) and (3.3) are identical, and so (3.3) is equivalent to (2.24) by Proposition 2.5.
Thus we have to show that (3.2) holds for each z € D if and only if (2.24) is valid. The
sufficiency part of the above required assertion follows immediately from the equivalence
of (3.1) and (3.2) established above, as (2.24) evidently implies (3.1) for each z € D.
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Conversely, suppose that (3.2) holds for each z € D and let (2*, ) € epi F*. To
show (2.24), we have to show that

(3.33) (z*,) € () cl(co Uses epi ff + epioap)-
LeF)

For this purpose, we assume without loss of generality that

(3.34) a = sup({z*, z) — F(z)) = F*(z%).

zeX
Since X is a Banach space, one can apply [29, Theorem 3.1.4(ii)] and there exist
sequences {z,} C X and {z;} C X* with each z} € 0F(z,) such that

(3.25) |zt —2*| = 0 and F*(z3) — F*(z*).
Let n € N. By (2.5), we have that
(3.36) o, = {2k, z,) — F(z,) = F*(z}).

Combining (3.34), (3.35), and (3.36), we obtain that (z},o,) — (z*,a). Clearly,
(2}, a,) € (0F(x,) x R) Nepi F*. Since the formula (3.2) holds at z, in place of z, it
follows from the equivalence of (3.1) and (3.2) established above that

(zh.0,) € [ cl(co Uies epi f; + epionp).
LEF)

Thus (3.33) follows as required to show. O

Remark 3.1. Suppose that riD# @. Then by Lemma 2.3 (applied to
€0 Ujer, (z) Oyef () in place of H) and Remark 2.3, a variant version of Theorem 3.1 also
holds in which Npcz, cl(co Ues epi f; +epioqp) in (3.1) is replaced by cl(co U
epi f; +epiop), Ner, ,es0 cl(€O Uier () Opefi() + Npap(z)) in (3.2) is replaced by
Ne=0 €l(co Ujer (2) Opefi(®) + Np(z)), and Urer, cl(L N D) in (3.3) is replaced by cl D.

Part (ii) of the following corollary was inaccurately stated (see a counterexample
given at the end of this section) in [11, Corollary 8] without assumption (3.37), which
was used indeed in its proof.

COROLLARY 3.2. Suppose that

(3.37) (cly)(z) = Sllel?(clfl)(x) for each z € cl(dom ).

Let n > 0. Then the following assertions hold:
(i) The formula

(338) 01//(113) = ﬂ Cl(CO UiEIF(z) anefz(m) + NLﬂdmnW(x))
LeF, y.e>0

holds for each x € dom .
(i) If additionally ri(dom ) # &, then the formula

(3.39) oy (z) = ﬂod(co Uier,(z) Opefi(%) + Naomy (2))

holds for each r € dom .
Proof. Take F =1 and D = dom. Thanks to assumption (3.37), (2.23) holds
(and so does (2.22) by Proposition 2.5). Thus, a fortiori, (3.1) holds for each z € D
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and so does (3.2) by Theorem 3.1. This means that (i) is true. Moreover, if
ri(dom ¥) # @, then the set expressed on the right-hand side of (3.38) and that of
(3.39) are equal (see Lemma 2.3) and so (ii) holds by (i). 0

We end this section with two simple examples. The first example shows that the
assumption (3.37) in Corollary 3.2 cannot be dropped, and the second example demon-
strates a case that our result is applicable but not the main result in [11], i.e., [11,
Theorem 4].

Ezample 3.1. Let X =R and I = N. Consider the family {f;:7 € I} defined by

(—i)x—1, x€ (—o00,—1,

. 0, ze(-1,0),
fz(x) — 1’ T = O,

+00, z € (0, 400),

for each i € 1.

Then ¢ =680y +1, and so 9y (0) = R. Moreover, for any 0 <e<1 and i€ I,
0,.fi(0) = @. Therefore, formula (3.39) does not hold for z =0 while {0} = dom v
(and (3.37) fails).

Ezample 3.2. Let X = R? and I = {1, 2}. Define the sets A; and A, respectively, by

Ay ={(t, ty) €R?:ty <0} U{(0,0)} and Ay :={(t;,t) € R?:t, >0} U{(0,0)}.

Consider the family {f;:i € I'} with each f; == 64 . Then cl f; = 8, 4, for each i € I and
¥ :=sup;c; f; = (). Therefore, cl(dom ) = {0} and (3.37) is satisfied by the family
{fi:i € I} but not condition (1.1) (which is a part of assumptions in [11, Theorem 4]).
Thus Corollary 3.2 is applicable but not [11, Theorem 4].

4. Conclusions. We have established, by using the powerful epigraph technique,
the subdifferential formula for the supremum function ¥ at z € dom in terms of the
e-subdifferentials of the data functions f; at z. In particular, our Corollary 3.2 extends
and improves the latest results due to Hantoute, Lopez, and Zalinescu in [11]. Tt is
tempting to prove Corollary 3.2 by virtue of the corresponding known results and
via the following approach.

Define a new family {f;:i € I'} of proper convex functions on X by

A

fi=fi+ Saomy) foreachie I

We use 1} to denote the corresponding sup-function, that is, 1} = SUpj¢s }’i. Then it is
clear that

{” = SUE) fi + 501((101111#) =¥+ 5cl(domw) =y.

i€

Moreover, by definition, we can show directly that condition (3.37) implies the following
one:

1y = sup(cl 3‘1)

el

Thus, under the assumption of Corollary 3.2, we can apply [11, Theorem 4] (to
{fi:i € I}) to obtain that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



796 CHONG LI AND KUNG FU NG

(41) 61//(95) = Q 0 CI(CO Uielg(w) ane(f’é + 5c1(d0m¢))(x) + NLF‘IdOmW(z))'
€

Le Fa:,cl(dom 2}

To proceed further, we have to calculate the e-subdifferential of f; + 8¢gomy) at @ for
each i € I.(z). To the best of our knowledge, the known formulas for the e-subdifferential
of the sum of two proper convex functions f and g (see [29, Corollary 2.6.7]) require that
the involved functions f and g are Isc. They can probably be extended to the case when the
involved two functions f and g have the property

(4.2) cd(f+g)=clf+clg;

even so, they cannot be applied in our situation here because, in general, condition (3.37)
does not imply that (4.2) holds with f == f; and g := Sj(om y) €ven for i € I.(z) as shown
by the following example of the family {f;:4 € I'}. Therefore, we guess, the approach out-
lined above does not work for deriving Corollary 3.2.

Ezample 4.1. Let X := R? and I = (0, 1]. Consider the family {f,;:i € I} consisting
of proper convex functions f; defined by

0, z €[0,1] x {0},
fi(x):==4 —i, x€][0,1] x(0,4], foreachie I.
+o00, otherwise,

Then we have that ¥ = sup;e; fi = 6jg1)x40} and

clfi=—i+06p1xp, foreach i€ I.

This means that cl(dom ) = [0, 1] x {0} and condition (3.37) is satisfied. Moreover, for
any z € [0,1] x {0} and any e > 0, one sees that I.(z) = I and that, for each i € I,

Cl(ft + 6cl(d0m§0)) = 5cl(d0ml//) > —i+ 6(:1(dom§k) =cl fz + 5cl(dom y) on [O? 1] x {0}

Hence (4.2) does not hold with f == f; and g == S.(qomy) for each i € I ().
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