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We introduce the notion of a smooth set in a locally convex topological vector space and extend
Asplund’s result on the strong differentiability space. We also establish Gateaux differentiability
of a continuous convex function in a locally convex topological vector space. In particular, we
extend Mazur’s classical theorem on Gateaux differentiability from a separable Banach space to
a separable locally convex topological vector space.
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1. Introduction

In 1968, Asplund in his pioneering paper [1] introduced and studied a strong dif-
ferentiability space: a Banach space X is said to be a strong differentiability space
if every continuous convex function on an open convex subset D of X is Frechet
differentiable at each point of a dense Gδ subset of D; in particular he proved that
if a Banach space X can be given an equivalent norm such that the corresponding
dual norm in X∗ is locally uniformly rotund then X is a strong differentiability
space. In 1975, Namioka and Phelps [8] renamed a strong differentiability space
as an Asplund space. Afterwards Asplund spaces have been extensively studied
with many significant results (cf. [5, 9, 7] and the references therein). Recall that
a Banach space X is Fréchet smooth if its norm is Fréchet differentiable at each
point of X \ {0}. It is known that X is Fréchet smooth if the dual space X∗ is
locally uniformly rotund. Hence the following theorem by Ekeland and Lebourg
is a valuable improvement over Asplund’s theorem (cf. [3, 10]).
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Theorem A. Every Fréchet smooth Banach space is an Asplund space.
The Mazur theorem is a classical result on differentiability theory on Banach
spaces, which was proved by Mazur [7] in 1933 and can be stated as follows:
Theorem M. If D is a nonempty open convex subset of a separable Banach
space and f : D → R is a continuous convex function then there exists a sequence
{Gn} of dense open subsets of D such that f is Gâteaux differentiable at each

point of
∞⋂
n=1

Gn.

In this paper, we introduce the notion of smoothness of a bounded closed convex
set Ω in a locally convex topological vector space X. In the special case when X
is a Banach space, X is Fréchet smooth if and only if its unit ball BX is smooth.
In terms of a smooth set, we extend Theorem A to a locally convex topological
vector space. Moreover, we establish Gateaux differentiability of continuous con-
vex functions on a locally convex topological vector space, which extends Mazur’s
theorem to the locally convex topological vector space setting.

2. Preliminaries

In what follows, X is always assumed to be a locally convex topological vector
space with the topological dual X∗. Let φ : X → R ∪ {+∞} be a proper lower
semicontinuous convex function. For x ∈ dom(φ), let ∂φ(x) denote the subdiffer-
ential of φ at x, that is,

∂φ(x) := {x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ φ(u)− φ(x) ∀u ∈ X}.

It is known that if φ is continuous at x ∈ dom(φ) then ∂φ(x) 6= ∅.

For a nonempty set A in X, we say that φ is A-differentiable at x ∈ dom(φ) if
there exists u∗ ∈ X∗ such that the limit

lim
t→0

φ(x+ th)− φ(x)

t
= 〈u∗, h〉

holds uniformly with respect to h in A.
Recall that a nonempty set Ω in X is balanced if λΩ ⊂ Ω for all λ ∈ R with |λ| ≤ 1
(so, in particular, a balanced set is symmetric and contains the origin). Let Ω
be a balanced convex closed subset of X and let µΩ : X → R+ ∪ {+∞} be the
Minkowski functional of Ω defined by

µΩ(x) := inf{t > 0 : x ∈ tΩ} ∀x ∈ X,

where inf ∅ is understood as +∞. Then, dom(µΩ) = span(Ω) :=
⋃
t>0

tΩ,

µΩ(x+ y) ≤ µΩ(x) + µΩ(y), µΩ(tx) = |t|µΩ(x) ∀(x, y, t) ∈ X ×X × R (1)

and Ω = {x ∈ X : µΩ(x) ≤ 1}. (2)

Hence µΩ is lower semicontinuous.
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The following lemma is a straightforward consequence of [4, Proposition 2.5] and
useful for our later analysis.
Lemma 2.1. Let f : X → R ∪ {+∞} be a convex function. Let a ∈ X and V be
a balanced convex neighborhood V of 0 such that

sup
x∈V

|f(x)| < +∞ ∀x ∈ a+ 2V. (3)

Then there exists L ∈ (0, +∞) such that

|f(x1)− f(x2)| ≤ LµV (x1 − x2) ∀x1, x2 ∈ a+ V, (4)

where µV is the Minkowski functional of V .

The following lemma provides a characterization for the A-differentiability of a
continuous convex function on a locally convex topological vector space, which is
known in the case when X is a normed space and A = BX (cf. [9]). For complete-
ness, we provide its proof which follows the idea of the proof of [9, Proposition
1.25].
Lemma 2.2. Let G be an open convex subset of a locally convex topological vector
space X and φ : G → R be a continuous convex function. Let A be a bounded
subset of X. For each n ∈ N, let

Gn :=

{
x ∈ G : ∃t > 0 s.t. sup

h∈A

φ(x+ th) + φ(x− th)− 2φ(x)

t
<

1

n

}
.

Then, each Gn is an open subset of G, and φ is A-differentiable at x ∈ G if and
only if x ∈

∞⋂
n=1

Gn.

Proof. First we prove that each Gn is open. To do this, let u ∈ Gn, and we have
to show that u is an interior point of Gn. By the continuity of φ, there exists a
balanced convex neighborhood V of 0 such that u+ 2V ⊂ G and

sup
x∈u+2V

|φ(x)| < +∞.

This and Lemma 2.1 imply that there exists L ∈ (0, +∞) such that

|φ(x1)− φ(x2)| ≤ LµV (x1 − x2) ∀x1, x2 ∈ u+ V, (5)

where µV is the Minkowski functional of V . Since u ∈ Gn and A is bounded, the
definition of Gn and the convexity of φ imply that there exists r > 0 such that
rA ⊂ 1

2
V and

ε :=
1

n
− sup

h∈A

φ(u+ rh) + φ(u− rh)− 2φ(u)

r
> 0. (6)
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Take η ∈ (0, 1
2
) such that 4Lη

r
< ε, and let

Γ(x,h) :=
φ(x+ rh) + φ(x− rh)− 2φ(x)

r
− φ(u+ rh) + φ(u− rh)− 2φ(u)

r

for all (x, h) ∈ G× A. Then, by (5), one has

|Γ(x,h)| ≤
4LµV (x− u)

r
≤ 4Lη

r
< ε ∀(x, h) ∈ (u+ ηV )× A.

It follows from (6) that

sup
h∈A

φ(x+ rh) + φ(x− rh)− 2φ(x)

r
<

1

n
∀x ∈ u+ ηV.

This implies that u + ηV ⊂ Gn. Hence, u is an interior point of Gn. It is clear

that x ∈
∞⋂
n=1

Gn if φ is A-differentiable at x ∈ G. Next suppose that x ∈
∞⋂
n=1

Gn.

Then, from the convexity of φ, it is easy to verify that the limit

lim
t→0+

φ(x+ th) + φ(x− th)− 2φ(x)

t
= 0

uniformly holds with respect to h in A. Noting that ∂φ(x) 6= ∅ and

φ(x)− φ(x− th)

t
≤ 〈x∗, h〉 ≤ φ(x+ th)− φ(x)

t

for all (x∗, h, t) ∈ ∂φ(x)×X × (0, +∞), it follows that

lim
t→0

φ(x+ th)− φ(x)

t
= 〈x∗, h〉

and holds uniformly with respect to h in A for each x∗ ∈ ∂φ(x). This show that
φ is A-differentiable at x. The proof is complete.

Definition 2.3. We say that a balanced convex set Ω in X is smooth if for each
x ∈ Ω with µΩ(x) = 1, the limit

lim
t→0

µΩ(x+ th) + µΩ(x− th)− 2µΩ(x)

t
= 0

holds uniformly with respect to h in Ω.

In the case when X is a Banach space, it is easy to verify that the norm of X is
Fréchet differentiable at each x ∈ X \ {0} if and only if the unit ball BX of X is
a smooth set in X.
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Let Ω be a smooth set and x an arbitrary element in span(Ω) such that µΩ(x)> 0.
Then, Ω is balanced and convex, the Minkowski functional µΩ is positively ho-
mogenous, and the limit

lim
t→0

µΩ(x+ th) + µΩ(x− th)− 2µΩ(x)

t
= 0

holds uniformly with respect to h in Ω. It follows from (1) and (2) that

µ′
Ω(x, h) := lim

t→0

µΩ(x+ th)− µΩ(x)

t
≤ 1

exists uniformly with respect to h in Ω, and so

lim
t→0

µΩ(x+ th)2 − µΩ(x)
2

t
= 2µΩ(x)µ

′
Ω(x, h) for all h ∈ Ω.

This and the convexity of µΩ imply that

0 ≤ µΩ(x+ th)2 − µΩ(x)
2

t
− 2µΩ(x)µ

′
Ω(x, h)

=
(µΩ(x+ th)− µΩ(x))

2 + 2µΩ(x)(µΩ(x+ th)− µΩ(x)− µ′
Ω(x, h)t)

t

≤ µΩ(h)
2t+ 2µΩ(x)

(
µΩ(x+ th)− µΩ(x)

t
− µ′

Ω(x, h)

)
for all (h, t) ∈ Ω× (0, +∞), and so

lim
t→0+

µΩ(x+ th)2 − µΩ(x)
2

t
= 2µΩ(x)µ

′
Ω(x, h)

holds uniformly with respect to h in Ω. Noting that Ω is balanced, this implies

lim
t→0

µΩ(x+ th)2 + µΩ(x− th)2 − 2µΩ(x)
2

t
= 0

uniformly with respect to h in Ω, that is, for any ε > 0 there exists δ > 0 such that∣∣∣∣µΩ(x+ th)2 + µΩ(x− th)2 − 2µΩ(x)
2

t

∣∣∣∣ < ε ∀(h, t) ∈ Ω× (−δ, δ). (7)

Proposition 2.4. Let Ω be a smooth set in a locally convex topological vector
space X, {vn} ⊂ X and let {αn} ⊂ (0, +∞) be such that

∞∑
n=1

αn < +∞. (8)
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Define f(x) :=
∞∑
n=1

αnµΩ(x− vn)
2 for all x ∈ X. Then, for any L ∈ (0, +∞) and

x ∈
∞⋂
n=1

(vn + LΩ) the limit

lim
t→0+

f(x+ th) + f(x− th)− 2f(x)

t
= 0

holds uniformly with respect to h in Ω.

Proof. Let L ∈ (0, +∞) and x ∈
∞⋂
n=1

(vn + LΩ). Then

µΩ(x− vn + th) ≤ µΩ(x− vn) + µΩ(th) ≤ L+ |t| ∀(t, h) ∈ R× Ω. (9)

Hence

| 4Ω (n, t, h)| = (µΩ(x− vn + th) + µΩ(x− vn))|µΩ(x− vn + th)− µΩ(x− vn)|
≤ (µΩ(x− vn + th) + µΩ(x− vn))µΩ(th)

≤ (2L+ 1)|t|

for all (t, h) ∈ [−1, 1]× Ω, where 4Ω(n, t, h) := µΩ(x− vn + th)2 − µΩ(x− vn)
2.

It follows that

0 ≤ µΩ(x− vn + th)2 + µΩ(x− vn − th)2 − 2µΩ(x− vn)
2

t

=
4Ω(n, t, h) +4Ω(n,−t, h)

t
≤ 4L+ 2

for all (n, t, h) ∈ N × (0, 1] × Ω. Let ε ∈ (0, +∞). Then, by (8), there exists
N ∈ N such that

0 ≤
∞∑

n=N

αn
µΩ(x− vn + th)2 + µΩ(x− vn − th)2 − 2µΩ(x− vn)

2

t
<

ε

2

for all (t, h) ∈ (0, 1]× Ω. On the other hand, by (7), there exists δ ∈ (0, 1) such
that

0 ≤
N∑

n=1

αn
µΩ(x− vn + th)2 + µΩ(x− vn − th)2 − 2µΩ(x− vn)

2

t
<

ε

2

for all (t, h) ∈ (0, δ)× Ω. Therefore, by the definition of f ,

0 ≤ f(x+ th) + f(x− th)− 2f(x)

t
< ε ∀(t, h) ∈ (0, δ)× Ω.

The proof is complete.
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Proposition 2.5. Let X be a locally convex topological vector space and assume
that {v1, · · · , vn}⊂X is linearly independent. Then

Ω :=

{ n∑
k=1

tkvk :
n∑

k=1

t2k ≤ 1

}
is a compact smooth subset of X.

Proof. Clearly, Ω is a compact balanced convex subset of X, and it is easy to
verify that

µΩ(x) =
( n∑

k=1

t2k
) 1

2 ∀x =
n∑

k=1

tkvn ∈ span{v1, · · · , vn}.

Since (t1, . . . , tn) 7→
( n∑
k=1

t2k
) 1

2 is continuously differentiable on Rn \ {0}, it follows

that µΩ is uniformly differentiable at each x ∈ (span{v1, · · · , vn}) \ {0} in Ω.
Hence Ω is a smooth subset of X.

3. Main results

In this section, we extend the two classical theorems on the differentiability of
convex functions mentioned in Section 1 to the general case of locally convex
topological vector spaces.
Theorem 3.1. Let X be a locally convex topological vector space and let Ω be a
bounded balanced convex closed subset of X such that the following conditions hold:

(i) Ω is smooth, and (ii) Ω is either compact or sequentially complete.

Then, for every open convex subset G of X and every continuous convex function

φ : G → R there exists a sequence {Gn} of open subsets of G such that
∞⋂
n=1

Gn is

dense in G and φ is Ω-differentiable at each point of
∞⋂
n=1

Gn.

Proof. For each n ∈ N, let

Gn :=

{
x ∈ G : ∃t > 0 s.t. sup

h∈Ω

φ(x+ th) + φ(x− th)− 2φ(x)

t
<

1

n

}
.

By Lemma 2.2, each Gn is open, and φ is Ω-differentiable at x ∈ G if and only if

x ∈
∞⋂
n=1

Gn. Hence we only need to show that
∞⋂
n=1

Gn is dense in G. Let v0 ∈ G

and U be a neighborhood of v0 such that U ⊂ G. It suffices to show that there
exists v ∈ U such that φ is Ω-differentiable at v. By the continuity of φ, there
exists a balanced convex neighborhood V of 0 such that φ is bounded on

X0 := v0 + 2cl(V ) ⊂ U (10)

and φ(v0) + 1 > sup{φ(u) : u ∈ X0}, that is,

f0(v0)− 1 < inf{f0(u) : u ∈ X0}, (11)
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where f0 := −φ. Since Ω is bounded, there exists λ > 0 such that

λΩ ⊂ V. (12)

Now we construct inductively sequences {fn} and {vn} as follows. Define the
function f1 : X0 → R ∪ {+∞} by

f1(x) := f0(x) +
µΩ(x− v0)

2

2λ2
∀x ∈ X0. (13)

Then, since f0 is bounded on X0, one has

−∞ < inf
x∈X0

f1(x) ≤ f1(v0) = f0(v0). (14)

Thus, we can choose v1 ∈ X0 such that

f1(v1) ≤
1

4
f1(v0) + (1− 1

4
) inf
x∈X0

f1(x) ≤ f0(v0). (15)

We also note that

f1(v1)− inf
x∈X0

f1(x) ≤
1

4
(f1(v0)− inf

x∈X0

f1(x)) ≤
1

4
(16)

(thanks to (11)). Given n ∈ N := {1, 2, · · · }, suppose that fn and vn ∈ X0 have
been chosen. We define fn+1 as follows:

fn+1(x) := fn(x) +
µΩ(x− vn)

2

2n+1λ2
= f0(x) +

n∑
k=0

µΩ(x− vk)
2

2k+1λ2
∀x ∈ X0. (17)

Then −∞ < inf
x∈X0

fn+1(x) ≤ fn+1(vn) = fn(vn) (18)

and hence there exists vn+1 ∈ X0 such that

fn+1(vn+1) ≤
1

4n+1
fn+1(vn) + (1− 1

4n+1
) inf
x∈X0

fn+1(x) ≤ fn(vn). (19)

As a consequence of (17) inf
x∈X0

fn+1(x) ≥ inf
x∈X0

fn(x), and it follows that the se-

quence {fn(vn)− infx∈X0 fn(x)} is decreasing. Further, inf
x∈X0

f1(x) ≥ inf
x∈X0

f0(x) by

the definition of f1 in (13), and one also has f1(v1) ≤ f0(v0). Consequently

fn(vn)− inf
x∈X0

fn(x) ≤ f1(v1)− inf
x∈X0

f1(x) ≤ f0(v0)− inf
x∈X0

f0(x) < 1

thanks to (11). Therefore, by (19) and (18), one has

0 ≤ fn+1(vn+1)− inf
x∈X0

fn+1(x) ≤
1

4n+1
(fn+1(vn)− inf

x∈X0

fn+1(x))

≤ 1

4n+1
(fn(vn)− inf

x∈X0

fn(x)) <
1

4n+1
.

(20)
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This combined with (16) implies that

0 ≤ fn(vn)− inf
x∈X0

fn(x) <
1

4n
∀n ∈ N. (21)

For each n ∈ N, we define a closed set Dn containing vn by

Dn := {x ∈ X0 : fn(x) ≤ fn(vn) +
1

4n
}. (22)

Then Dn+1 ⊂ Dn ∀n ∈ N (23)

because of the inequalities fn+1(vn+1) ≤ fn(vn) and fn(x) ≤ fn+1(x) for all x ∈ X0

(see (19) and (17)). Next we show that

Dn ⊂ vn−1 +

√
5λ

2
n
2

Ω ∀n ∈ N. (24)

For n = 1, let u ∈ D1. Then, by (13) and (15),

f0(u) +
µΩ(u− v0)

2

2λ2
= f1(u) ≤ f1(v1) +

1

4
≤ f0(v0) +

1

4
.

(11) implies µΩ(u−v0)2

2λ2 < 1+ 1
4

and therefore µΩ(u−v0) <
√
5λ√
2

; thus u−v0 ∈
√
5λ√
2
Ω.

This shows that (24) holds when n = 1. Let n ∈ N and u ∈ Dn+1. Then

fn+1(u) = fn(u) +
µΩ(u− vn)

2

2n+1λ2
≤ fn+1(vn+1) +

1

4n+1
.

It follows from (19) and (21) that

µΩ(u− vn)
2

2n+1λ2
≤ fn+1(vn+1)− fn(u) +

1

4n+1

≤ fn(vn)− inf
x∈X0

fn(x) +
1

4n+1
<

1

4n
+

1

4n+1
.

Therefore,

µΩ(u− vn) <

√
5λ

2
n+1
2

∀n ∈ N and ∀u ∈ Dn+1. (25)

This shows that (24) also holds for all n ∈ N \ {1}. Since each Dn is a closed set
containing vn and Ω is bounded and either compact or sequentially complete, it
is easy to verify from (23) and (24) that there exists v ∈ v0 +

√
5λ√
2
Ω such that

v = lim
n→∞

vn and
∞⋂
n=1

Dn = {v}. (26)

By (10) and (12), one has v ∈ v0 +
√
5√
2
V ⊂ U . Therefore, it suffices to show that

φ is Ω-differentiable at v. To do this, let

ρ∞(x) :=
1

λ2

∞∑
n=1

µΩ(x− vn−1)
2

2n
∀x ∈ X.
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Since Ω is balanced, it is easy from (24) and (26) to verify that v ∈
∞⋂
n=0

(vn+
√
5λΩ).

Thus, by Proposition 2.4,

lim
t→∞

ρ∞(v + th) + ρ∞(v − th)− 2ρ∞(v)

t
= 0

uniformly holds with respect to h in Ω. In consequence, for any ε > 0 there exists
δ ∈ (0, (2−

√
5√
2
)λ) such that

ρ∞(v + th) + ρ∞(v − th)− 2ρ∞(v)

t
< ε ∀(t, h) ∈ (0, δ)× Ω. (27)

We claim that
ρ∞(v)− φ(v) = inf

x∈X0

(ρ∞(x)− φ(x)). (28)

Granting this, one has

φ(v + th) + φ(v − th)− 2φ(v)

t
≤ ρ∞(v + th) + ρ∞(v − th)− 2ρ∞(v)

t
(29)

for all (t, h) ∈ (0, δ)× Ω because

v ± th ∈ v0 +

√
5λ√
2
Ω± tΩ ⊂ v0 + 2λΩ ⊂ v0 + 2V ⊂ X0

for all (t, h) ∈ (0, δ)× Ω (thanks to (12), (24) and (26)). Let x∗ ∈ ∂φ(v). Then,
by the convexity of φ,

0 ≤ φ(v + th)− φ(v)

t
− 〈x∗, h〉 ≤ φ(v + th) + φ(v − th)− 2φ(v)

t

for all (t, h) ∈ (0, δ)× Ω. It follows from (27) and (29) that

0 ≤ φ(v + th)− φ(v)

t
− 〈x∗, h〉 < ε ∀(t, h) ∈ (0, δ)× Ω.

This shows that φ is Ω-differentiable at v. It remains to show that (28) holds. To
show this, suppose to the contrary that there exists z ∈ X0 such that

ρ∞(z)− φ(z) < ρ∞(v)− φ(v). (30)

By (17) and recalling φ = −f0,

fn(z) = −φ(z) +
1

λ2

n∑
k=1

µΩ(z − vk−1)
2

2k
< ρ∞(v)− φ(v) ∀n ∈ N. (31)

On the other hand, by (26), (22) and (19), one has

fn+k(v) ≤ fn+k(vn+k) +
1

4n+k
≤ fn(vn) +

1

4n
∀n, k ∈ N.
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Letting k → ∞, it follows that

−φ(v) + ρ∞(v) = lim
k→∞

fn+k(v) ≤ fn(vn) +
1

4n
∀n ∈ N.

Thus, by (22) and (31), we see that z ∈
∞⋂
n=1

Dn = {v}, contradicting (30). This

shows that (28) holds. The proof is complete.

Remark 3.2. The Borwein-Preiss smooth variational principle is fundamental in
variational analysis and can be stated as follows (cf. [2, Theorem 2.6]): Let X be
a Banach space, g : X → R ∪ {+∞} be a proper lower semicontinuous function,
and let the constants ε > 0, λ > 0 and p ≥ 1 be given. Suppose that x0 ∈ X
satisfies g(x0) < inf

x∈X
g(x) + ε. Then there exist v ∈ X and sequences {vn} in X

and {µn} in (0, +∞) with
∞∑
n=1

µn = 1 such that ‖x0 − v‖ < λ and

g(x) +
ε

λp

∞∑
n=1

µn‖x− vn‖p ≥ g(v) +
ε

λp

∞∑
n=1

µn‖v − vn‖p ∀x ∈ X.

The proof of Theorem 3.1 uses the main ideas of the proof of [2, Theorem 2.6]. In
particular, our proof uses the auxiliary function

fn+1(x) := fn(x) +
µΩ(x− vn)

2

2n+1λ2
= f0(x) +

n∑
k=0

µΩ(x− vk)
2

2k+1λ2

which is only a slight modification of the corresponding one in the proof of [2,
Theorem 2.6] (with µΩ(x− vn) replacing the norm ‖x− vn‖ in [2]).

In the special case when X is a Fréchet smooth Banach space and Ω is the unit ball
of X, Theorem 3.1 reduces to Theorem A in Section 1. With the help of Theorem
3.1, we can extend Mazur’s classical theorem on the Gateaux differentiability to
general separable locally convex topological vector spaces in place of separable
Banach spaces.
Theorem 3.3. Let X be a separable locally convex topological vector space, G be
a nonempty open convex subset of X, and let φ : G → R be a continuous convex
function. Then there exists a sequence {Gn} of open dense subsets of G such that
φ is Gâteaux differentiable at each point of

⋂∞
n=1Gn.

Proof. By the separability of X, take a sequence {vn} of X such that {v1, · · · , vn}
is linearly independent for each n ∈ N and

X = cl(span({vn : n ∈ N})). (32)

Let Ωn :=

{
n∑

k=1

tkvk :
n∑

k=1

t2k ≤ 1

}
∀n ∈ N. (33)
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Then, by Proposition 2.5, each Ωn is a compact smooth subset of X. It follows
from Theorem 3.1 that for each n ∈ N there exists a sequence {Gn

k} of open subsets

of G such that φ is Ωn-differentiable at each point of
∞⋂
k=1

Gn
k and Gn

k is dense in G

for each k ∈ N. Therefore, it suffices to show that φ is Gateaux differentiable at

each point of
∞⋂
n=1

∞⋂
k=1

Gn
k . To do this, let x ∈

∞⋂
n=1

∞⋂
k=1

Gn
k and x∗

1, x
∗
2 ∈ ∂φ(x). Then,

φ is Ωn-differentiable at x, and so

〈x∗
1, h〉 = 〈x∗

2, h〉 ∀h ∈ Ωn and ∀n ∈ N.

It follows from (32) and (33) that x∗
1 = x∗

2, and so ∂φ(x) is a singleton. This
shows that φ is Gâteaux differentiable at x. The proof is complete.
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