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a b s t r a c t

In this paper, we introduce and study the notions of Hölder weak sharp minimizers,
stable Hölder weak sharp minimizers and Hölder tilt-stable weak minimizers for a
proper lower semicontinuous function f on a Banach space. In terms of the Hölder
metric subregularity/regularity of ∂f , we consider optimality conditions for Hölder
weak sharp minimizers and stable Hölder weak sharp minimizers. We prove that x̄
is a stable Hölder weak sharp minimizer (resp. a Hölder tilt-stable weak minimizer)
of f if and only if it is a stable Hölder sharp minimizer (resp. a Hölder tilt-stable
minimizer) of f .

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

LetX be a Banach space, and we consider a proper lower semicontinuous function f : X → R := R∪{+∞}
(with the effective domain and the Clarke–Rockafellar subdifferential denoted by dom(f) and ∂f ; see the
next section for definitions and notations). Recall (cf. [3,7]) that x̄ ∈ dom(f) is a sharp minimizer (or strong
local minimizer) of f if there exist positive constants κ and δ such that

κ∥x− x̄∥ ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, δ), (1.1)

where BX(x̄, δ) denotes the open ball ofX with center x̄ and radius δ (and BX [x̄, δ] will be used to denote the
corresponding closed ball). The notion of sharp minimizers has been recognized to be useful in convergence
analysis of algorithms in optimization. However, the sharp minimizer notion in the sense of (1.1) is a rather
strong condition: for example, it can be shown easily that a smooth function does not have any sharp
minimizer. Replacing ∥x− x̄∥ in (1.1) by ∥x− x̄∥q with some constant q > 1, one can consider the following
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weaker notion of a q-order (sharp) minimizer of f : there exist κ, δ ∈ (0,+∞) such that

κ∥x− x̄∥q ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, δ). (1.2)

In the case of q = 2, the 2-order (sharp) minimizer notion in the sense of (1.2) is well-known and has
played an important role in perturbation theory and convergence analysis in optimization. Recently, many
authors studied the stable 2-order minimizers when the function f undergoes small linear perturbations by
considering the functions

fu∗ := f − u∗ (1.3)

with u∗ inX∗ (cf. [2,5,6,12,15,17,16,18,20,21]). Replacing 2 by general q in (1,+∞), Zheng and Ng [28] further
introduced the stable Hölder sharp minimizer: a point x̄ ∈ dom(f) is said to be a stable q-order (sharp)
minimizer of f if there exist δ, r, κ ∈ (0,+∞) such that for each u∗ ∈ BX∗(0, δ) there exists xu∗ ∈ BX(x̄, r),
with x0 = x̄, satisfying the following property:

κ∥x− xu∗∥q ≤ fu∗(x)− fu∗(xu∗) ∀x ∈ BX(x̄, r). (1.4)

Motivated by the tilt-stability of Poliquin and Rockafellar (see [21]), Zheng and Ng [28] also introduced the
following notion: x̄ is said to be a tilt-stable p-order minimizer of f (or say that x̄ gives a tilt-stable p-order
minimum of f) with p ∈ (0,+∞) if there exist r, δ, L ∈ (0, ∞) andM : BX∗(0, δ)→ BX [x̄, r] withM(0) = x̄
such that

fu∗(M(u∗)) = min
x∈BX [x̄,r]

fu∗(x) ∀u∗ ∈ BX∗(0, δ) (1.5)

(where fu∗ is as in (1.3)) and

∥M(x∗)−M(u∗)∥ ≤ L∥x∗ − u∗∥p ∀x∗, u∗ ∈ BX∗(0, δ). (1.6)

Significant advances have been made regarding the stable minimizers and the tilt-stable sharp minimizers
for the case when q = 2 and p = 1 (cf. [1,2,5,6,12,15,16,18,20,21]). In particular, under the assumption that
f is a proper lower semicontinuous function on a Hilbert space and x̄ is a local minimizer of f such that
f is subdifferentially continuous and proximally regular at (x̄, 0), the following statements are known to be
equivalent:

(i) 0 ∈ ∂f(x̄) and the generalized second order subdifferential ∂2f(x̄, 0) (whose graph is the Mordukhovich
normal cone of the graph of ∂f to (x̄, 0)) is positively definite.

(ii) the subdifferential mapping ∂f is strongly metrically regular at x̄ for 0.
(iii) x̄ is a stable 2-order (sharp) minimizer of f .
(iv) x̄ is a tilt-stable (1-order) minimizer of f .

Note that the above (i) has no counterpart in the general case when q is any number in (1,+∞) \ {2},
majorly due to the fact that we do not have a satisfactory notion/theory for the corresponding higher order
subdifferentials (especially no ‘fractional-order’ subdifferentials has been considered). Zheng and Ng [28]
extended the mutual equivalences of (ii), (iii) and (iv) to the general case of q ∈ (1,+∞).

The q-order (sharp) minimizer in the sense of (1.2) is sufficiently strong to ensure that arg minx∈BX(x̄,δ)f =
{x̄} is a singleton. In many cases, it is desirable to consider minimizers which are not necessarily isolated
ones such as the weak sharp minimizers considered in the seminal paper by Ferris [7]: x̄ is called a (local)
weak sharp minimizer of f if there exist r, κ ∈ (0, ∞) such that f(x̄) = infx∈BX [x̄,r] f(x) and

κd(x, S(f, x̄, r)) ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, r), (1.7)

where

S(f, x̄, r) :=

x ∈ BX [x̄, r] : f(x) = inf

u∈BX [x̄,r]
f(u)

.
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The weak sharp minimizer has been well studied and is useful in convergence analysis of algorithm (cf.
[3,7,24,25,29] and the references therein). Extending this notion of Ferris, we make the following definition.

Definition 1.1. Let x̄ ∈ dom(f) and q ∈ (1,+∞). We say that x̄ is a q-order weak sharp minimizer of f if,
in place of (1.7), it holds that

κd(x, S(f, x̄, r))q ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, r). (1.8)

Motivated by (1.4), (1.6) and Definition 1.1, we are naturally led to make the following two definitions.

Definition 1.2. Let x̄ ∈ dom(f) and q ∈ (1,+∞). We say that x̄ is a stable q-order weak sharp minimizer of
f if there exist δ, r, κ ∈ (0,+∞) such that f(x̄) = infx∈BX [x̄,r] f(x) and

κd(x, S(fu∗ , x̄, r))q ≤ fu∗(x)− min
x∈BX [x̄,r]

fu∗(x) (1.9)

for all x ∈ BX(x̄, r) and u∗ ∈ BX∗(0, δ), where

S(fu∗ , x̄, r) :=

u ∈ BX [x̄, r] : fu∗(u) = inf

x∈BX [x̄,r]
fu∗(x)


. (1.10)

Definition 1.3. Let x̄ ∈ dom(f) and p ∈ (0,+∞). We say that x̄ is a tilt-stable weak p-order minimizer of f
if there exist r, δ, L ∈ (0, ∞) and a neighborhood V of x̄ such that x̄ ∈ S(f, x̄, r) and

S(fx∗ , x̄, r) ∩ V ⊂ S(fu∗ , x̄, r) + L∥x∗ − u∗∥pBX∗ ∀x∗, u∗ ∈ BX∗(0, δ). (1.11)

Clearly, the reason that the word “weak” appears in Definitions 1.1–1.3 is because we are now in the
broader situation that minimizers under consideration are not longer required to restrict to be isolated ones.

The rest of the paper is organized as follows. Section 2 provides some notions and results in variational
analysis, which are often used in the sequel. In Section 3, we mainly consider a Hölder weak sharp minimizer
for a proper lower semicontinuous function f on a Banach space. In terms of the Hölder metric subregularity
of the subdifferential mapping ∂f , we provide some optimality conditions for Hölder weak sharp minimizers
of f . In the case when f is a twice smooth function on a Euclidean space, we establish the relationship
between the positive definiteness of f ′′(x̄) on the normal cone N(S(f, x̄, r), x̄) and the fact that x̄ is a
2-order weak sharp minimizer of f . In Section 4, we consider the stable Hölder weak sharp minimizers and
the tilt-stable Hölder weak minimizers. Unlike the occurrence of two distinct notions of the Holder weak
sharp minimizers and the Holder minimizers, a somewhat surprising result established in Corollary 4.1 is
that x̄ is a stable q-order weak sharp minimizer (resp. a tilt-stable p-order weak minimizer) of f if and only
if it is a stable q-order sharp minimizer (resp. a tilt-stable p-order minimizer) of f .

2. Preliminaries

Let X be a Banach space with the topological dual X∗. For a proper lower semicontinuous function
f : X → R, the Clarke–Rockafellar subdifferential ∂f(x̄) of f at x̄ ∈ dom(f) is defined as

∂f(x̄) := {x∗ ∈ X∗|⟨x∗, h⟩ ≤ f↑(x̄, h) ∀h ∈ X}

where

f↑(x̄, h) := lim
ε↓0

lim sup
x
f→x̄,t↓0

inf
w∈h+εBX

f(x+ tw)− f(x)
t

.
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In the case when f is locally Lipschitzian around x̄, f↑(x̄, h) reduces to the Clarke directional derivative

f◦(x̄, h) := lim sup
t→0+,x→x̄

f(x+ th)− f(x)
t

.

It is well known that if f is convex then

∂f(x̄) = {x∗ ∈ X∗ : ⟨x∗, x− x̄⟩ ≤ f(x)− f(x̄)∀x ∈ X}.

The following lemmas are well known and fundamental in variational analysis.

Lemma 2.1. Let X be a Banach space and f1, f2 : X → R∪{+∞} be proper lower semicontinuous functions.
Let x̄ ∈ dom(f1) ∩ dom(f2) be such that f1 is locally Lipschitzian around x̄. Then

∂(f1 + f2)(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄).

Lemma 2.2. Let X,Y be Banach spaces, φ : Y → R be a proper lower semicontinuous convex function,
g : X → Y be a smooth function, and let x̄ ∈ dom(φ ◦ g) be such that the derivative g′(x̄) is surjective. Then

∂(φ ◦ g)(x̄) = g′(x̄)∗(∂f(g(x̄))).

We will also need the following lemma (cf. [14, Theorem 1.57] and [26, Lemma 3.6]).

Lemma 2.3. Let X,Y be Banach spaces and g : X → Y be a smooth function. Let x̄ ∈ X be such that ▽g(x̄)
is surjective. Then there exist δ, τ, L0, L,M ∈ (0,+∞) such that

d(x, g−1(y)) ≤ τ∥y − g(x)∥ ∀(x, y) ∈ BX(x̄, δ)×BY (g(x̄), δ), (2.1)
∥g(x2)− g(x1)∥ ≤ L0∥x2 − x1∥ ∀x1, x2 ∈ BX(x̄, δ), (2.2)
LBY ⊂ ▽g(x)(BX) ∀x ∈ BX(x̄, δ), (2.3)
L∥y∗∥ ≤ ∥▽g(x)∗(y∗)∥ ≤M∥y∗∥ ∀(x, y∗) ∈ BX(x̄, δ)× Y ∗. (2.4)

Let F be a multifunction between two Banach spaces X and Y . For p ∈ (0,+∞) and (x̄, ȳ) ∈ gph(F ), we
say that F is

(i) p-order metrically regular at x̄ for ȳ if there exist τ, δ ∈ (0,+∞) such that

d(x, F−1(y)) ≤ τd(y, F (x))p ∀(x, y) ∈ BX(x̄, δ)×BY (ȳ, δ). (2.5)

(ii) p-order strongly metrically regular at x̄ ∈ X for ȳ if there exist τ, δ, η ∈ (0,+∞) such that (2.5) holds
and F−1(y) ∩BX(x̄, η) is a singleton for each y ∈ BY (ȳ, δ).

(iii) p-order (strongly) metrically subregular at x̄ for ȳ if there exist τ, δ ∈ (0,+∞) such that (F−1(ȳ) ∩
BX(x̄, δ) = {x̄} and)

d(x, F−1(ȳ)) ≤ τd(ȳ, F (x))p ∀x ∈ BX(x̄, δ). (2.6)

In the case of p = 1, the metric regularity/subregularity has been well studied (cf. [1,4,9,26,27] and
the references therein). But, there are only few studies for p-order metric regularity/subregularity with
p ∈ (0,+∞) \ {1} (cf. [8,11,13]).
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Finally, we recall the notion of the limiting normal cone defined by Mordukhovich. For a closed subset
A of Rn and x̄ ∈ A, let NP (A, x̄) denote the proximal normal cone of A to x̄, namely h ∈ NP (A, x̄) if and
only if

t∥h∥ = d(x̄+ th,A) for all sufficiently small t > 0 (cf. [22]).

The limiting normal cone of A to x̄ is denoted by

N(A, x̄) := {h ∈ Rn : ∃xk → x̄ and hk → h such that hk ∈ NP (A, xk)}.

3. Hölder weak sharp minimizer

In this section, in terms of Hölder metric subregularity of the subdifferential mapping ∂f , we mainly
consider the Hölder weak sharp minimizers for a proper lower semicontinuous function f .

The following result is inspired by [28, Theorem 4.1] (and [23, Theorems 3.1 and 3.1’]). To the best
knowledge of us, [28] was the first to note the exact quantitative relationship among the Hölder order of
the strong metric regularity/subregularity of ∂f at x̄ for 0, the Hölder order of the sharp minimizer x̄ of
f and the Hölder order of the metric regularity of the corresponding subdifferential mapping even though
Hölder metric regularity has been studied by many authors, while somewhat earlier [23] considered the more
generalized metric subregularity for the subdifferential mapping with respect to an admissible function.

Theorem 3.1. Let X be a Banach space and f : X → R be a proper lower semicontinuous function. Let
p ∈ (0,+∞), r ∈ (0,+∞] and let x̄ ∈ A ⊂ (∂f)−1(0). Then the following statements hold:

(i) Suppose that there exist κ, δ ∈ (0,+∞) such that

κd(x,A) ≤ d(0, ∂f(x))p ∀x ∈ BX(x̄, δ), (3.1)

and let τ and η be positive constants defined by

τ := pκ
1
p

(1 + p)
1+p
p

and η := 1 + p
1 + 2p min{r, δ}. (3.2)

Then

τd(x,A)
1+p
p ≤ f(x)− inf

u∈BX [x̄,r]
f(u) ∀x ∈ BX(x̄, η). (3.3)

(ii) Suppose that f is convex and that there exist τ, δ ∈ (0,+∞) such that

τd(x,A)
1+p
p ≤ f(x)− inf

u∈BX [x̄,r]
f(u) ∀x ∈ BX(x̄, δ). (3.4)

Then

τpd(x,A) ≤ d(0, ∂f(x))p ∀x ∈ BX(x̄, δ). (3.5)

Consequently, under the convexity assumption on f, x̄ is a 1+p
p -order weak sharp minimizer of f if and

only if ∂f is p-order metrically subregular at x̄ for 0.
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Proof. (i) Suppose to the contrary that (3.3) is not true, namely there exists x0 ∈ B(x̄, η) such that

f(x0) < inf
x∈BX [x̄,r]

f(x) + τd(x0, A)
1+p
p .

Take a τ ′ ∈ (0, τ) sufficiently close to τ such that

f(x0) < inf
x∈BX [x̄,r]

f(x) + τ ′d(x0, A)
1+p
p .

Then, by the Ekeland variational principle, there exists z ∈ BX [x̄, r] such that

∥z − x0∥ <
p

1 + pd(x0, A) (3.6)

and

f(z) ≤ f(x) + (1 + p)τ ′d(x0, A)
1
p

p
∥x− z∥ ∀x ∈ BX [x̄, r]. (3.7)

Note, by (3.6), that

d(x0, A)
1 + p ≤ d(z,A) (3.8)

(as d(x0, A)− d(z,A) ≤ ∥z − x0∥) and that

∥z − x̄∥ ≤ ∥z − x0∥+ ∥x0 − x̄∥ ≤
1 + 2p
1 + p ∥x0 − x̄∥ <

(1 + 2p)η
1 + p

(because x̄ ∈ A and x0 ∈ BX(x̄, η)). By the definition of η, it follows that z ∈ BX(x̄, r) ∩ BX(x̄, δ). Hence,
by (3.1) and (3.7), we have

κd(z,A) ≤ d(0, ∂f(z))p

and 0 ∈ ∂

f + (1+p)τ ′d(x0,A)

1
p

p ∥ · −z∥


(z) which implies by Lemma 2.1 that

0 ∈ ∂f(z) + (1 + p)τ ′d(x0, A)
1
p

p
BX∗ .

Consequently it follows from (3.8) that

κd(x0, A)
1 + p ≤ d(0, ∂f(z))p ≤


(1 + p)τ ′

p

p
d(x0, A)

and so κ
1+p ≤


(1+p)τ ′
p

p
, that is τ = pκ

1
p

(1+p)
1+p
p

≤ τ ′ (by (3.2)), which contradicts the choice τ ′ < τ .

(ii) Let x ∈ BX(x̄, δ) and take a sequence {an} in A such that

d(x,A) = lim
n→∞
∥x− an∥.

Since x̄ ∈ A ⊂ (∂f)−1(0), it follows from the convexity of f that f(an) = f(x̄) = infu∈X f(u) for all n ∈ N.
Let x∗ ∈ ∂f(x). Then

f(x)− f(x̄) = f(x)− f(an) ≤ ⟨x∗, x− an⟩ ≤ ∥x∗∥ ∥x− an∥ ∀n ∈ N.

This and (3.4) imply that

τd(x,A)
1+p
p ≤ ∥x∗∥ ∥x− an∥ ∀n ∈ N.

Letting n → ∞, one has τd(x,A)
1
p ≤ ∥x∗∥. Since x∗ is arbitrary in ∂f(x), we have that (3.5) holds. The

proof is complete.
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In the case when X = A, the part (i)⇒(ii) of [19, Theorem 3.4] is similar to Theorem 3.1, which replaces
our infx∈B(x̄,r) f(x) with f(x̄) but needs a additional condition ((3.4) in [19]). Moreover, (ii) of [19, Theorem
3.4] says that there are two positive numbers α and η such that

f(x) ≥ f(x̄) + ⟨x̄∗, x− x̄⟩+ qα

1 + q d(x, (∂f)
−1(x̄∗))

1+q
q ∀x ∈ B(x̄, η).

Thus, their modulus qα
1+q and radius η are only of the existence, while our modulus τ and radius η have

exact quantitative relation with the modulus κ and radius δ in (3.1), which is important in the proofs of the
later main theorems.

If one drops the convexity assumption, the characterization given in Theorem 3.1 is not valid (see an
example given at the end of this section). Nevertheless, the characterization does remain to hold if f is a
composition function of the form f := φ ◦ g, where φ : Y → R is a proper lower semicontinuous convex
function and g : X → Y is a smooth function such that ▽g(x̄) is surjective (thus, by Lemma 2.3, (2.1)–(2.4)
hold with some positive constants δ, τ, L0, L,M).

Theorem 3.2. Let X,Y be Banach spaces, φ : Y → R be a proper lower semicontinuous convex function, and
let g : X → Y be a smooth function. Define f : X → R as follows

f(x) := φ(g(x)) ∀x ∈ X.

Let p ∈ (0,+∞) and let x̄ ∈ dom(f) be a local minimizer of f such that ▽g(x̄) is surjective; explicitly
suppose that there exist r, δ, τ, L0, L,M ∈ (0,+∞) such that (2.1)–(2.4) hold and

f(x̄) = min
x∈BX [x̄,r]

f(x). (3.9)

Then the following assertions hold:

(i) If there exist κ0, δ0 ∈ (0,+∞) such that

κ0d(x, (∂f)−1(0)) ≤ d(0, ∂f(x))p ∀x ∈ BX(x̄, δ0) (3.10)

and τ0 and δ′0 are positive constants defined by

τ0 := pκ
1
p

0

(1 + p)
1+p
p

and δ′0 := min

r

2 ,
δ

2 ,
(1 + p)δ0

1 + 2p


, (3.11)

then

τ0d(x, S(f, x̄, r))
1+p
p ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, δ′0). (3.12)

(ii) Conversely, if there exist τ1, δ1 ∈ (0,+∞) such that

τ1d(x, S(f, x̄, r))
1+p
p ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, δ1) (3.13)

and κ1 and δ′1 are positive constants defined by

κ1 :=

τ1L

L0

p
and δ′1 := min


r,
δ

2 , δ1

, (3.14)
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then

κ1d(x, (∂f)−1(0)) ≤ d(0, ∂f(x))p ∀x ∈ BX(x̄, δ′1). (3.15)

Consequently, x̄ is a 1+p
p -order weak sharp minimizer of f if and only if ∂f is p-order metrically

subregular at x̄ for 0.

Proof. By (2.3), ▽g(x) is surjective on BX(x̄, δ) and so, by Lemma 2.2, one has

∂f(x) = ▽g(x)∗(∂φ(g(x))) ∀x ∈ BX(x̄, δ). (3.16)

Now suppose that there exist κ0, δ0 ∈ (0,+∞) such that (3.10) holds. Then, by Theorem 3.1(i),

τ0d(x, (∂f)−1(0))
1+p
p ≤ f(x)− f(x̄) ∀x ∈ BX(x̄, η0), (3.17)

where τ0 is as in (3.11) and η0 := 1+p
1+2p min{r, δ0}. Let γ := 1

2 min

r, δ


. We claim that

(∂f)−1(0) ∩BX(x̄, 2γ) ⊂ S(f, x̄, r). (3.18)

Granting this, one has

d(x, S(f, x̄, r)) ≤ d(x, (∂f)−1(0) ∩BX(x̄, 2γ)) = d(x, (∂f)−1(0)) ∀x ∈ BX(x̄, γ)

(the above equality holds because x̄ ∈ (∂f)−1(0)). Noting that δ′0 = min{η0, γ}, it follows from (3.17) that
(3.12) holds. Thus, to prove (i), it remains to show that (3.18) holds. Let u ∈ (∂f)−1(0) ∩BX(x̄, 2γ). Then
0 ∈ ∂f(u) = ▽g(u)∗(∂φ(g(u))) (thanks to (3.16)). Thus, by (2.4), one has 0 ∈ ∂φ(g(u)). Hence g(u) is a
minimizer of the convex function φ and so

f(u) = φ(g(u)) ≤ φ(g(x′)) = f(x′) ∀x′ ∈ X.

Since ∥u− x̄∥ ≤ 2γ < r, it follows from (3.9) that u ∈ S(f, x̄, r). Hence (3.18) holds.

To prove (ii), suppose that there exist τ1, δ1 ∈ (0,+∞) such that (3.13) holds. Let x ∈ BX(x̄, δ′1) and
x∗ ∈ ∂f(x), where δ′1 is as in (3.14). By (3.16) and (2.4), x∗ can be represented as x∗ = ▽g(x)∗(y∗) for some
y∗ ∈ ∂φ(g(x)) with L∥y∗∥ ≤ ∥x∗∥. For (3.15), it suffices to show that

κ1d(x, (∂f)−1(0)) ≤ (L∥y∗∥)p. (3.19)

To do this, take a sequence {xn} in S(f, x̄, r) such that

∥x− xn∥ → d(x, S(f, x̄, r)). (3.20)

Since x̄ ∈ S(f, x̄, r) and ∥x− x̄∥ < δ′1 ≤ δ2 , we may assume without loss of generality that the sequence {xn}
lies in B(x̄, δ). By (3.13) and the convexity of φ, for each n ∈ N, one has

τ1d(x, S(f, x̄, r))
1+p
p ≤ f(x)− f(x̄) = f(x)− f(xn)

= φ(g(x))− φ(g(xn))
≤ ⟨y∗, g(x)− g(xn)⟩
≤ ∥y∗∥ |g(x)− g(xn)|
≤ L0∥y∗∥ ∥x− xn∥

(thanks to (2.2)). Passing to the limit as n → ∞ and making use of (3.20), we have τ1d(x, S(f, x̄, r))
1
p ≤

L0∥y∗∥. Since S(f, x̄, r) ⊂ (∂f)−1(0) and κ1 :=

τ1L
L0

p
, this implies that (3.19) holds. The proof is complete.
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Dropping the composite-convexity assumption, Theorem 3.2 is not necessarily true. Indeed, for any
p ∈ (0,+∞), take two sequences {an} and {εn} in (0, 1) such that

an → 0, εn + εpn
an

→ 0, and an + 2εn < an−1 ∀n ∈ N.

Define f : R→ R as follows:

f(x) :=



0, if x ≤ 0
an + (2− εn)(x− an), if an < x ≤ an + εn (n ∈ N)
an + 2εn − ε2n + εn(x− an − εn), if an + εn < x ≤ an + 2εn (n ∈ N)
x, if an + 2εn < x ≤ an−1 (n ∈ N)
x, if a0 < x.

Then, f is a nonnegative Lipschitz function, x ≤ f(x) for all x ∈ [0,+∞), and

S(f, 0) := {u ∈ R : f(u) = min
x∈R
f(x)} = (−∞, 0].

Hence

d(x, S(f, 0))
1+p
p = x

1+p
p ≤ f(x)− f(0) ∀x ∈ (0, 1].

This implies that 0 is a 1+p
p -order weak sharp minimizer of f . On the other hand, it is easy to verify that

∂f(x) =



{0}, if x ∈ (−∞, 0)
[0, 2], if x = 0
[1, 2− εn], if x = an (n ∈ N)
{2− εn}, if an < x < an + εn (n ∈ N)
[εn, 2− εn], if x = an + εn (n ∈ N)
{εn}, if an + εn < x < an + 2εn (n ∈ N)
[εn, 1], if x = an + 2εn (n ∈ N)

{1}, if x ∈
∞
n=1


an + 2εn, an−1


∪ [a0,+∞).

Hence (∂f)−1(0) = (−∞, 0] and so

lim
n→∞

d(0, ∂f(an + εn))p

d(an + εn, (∂f)−1(0)) = lim
n→∞

εpn
an + εn

= 0.

This implies that ∂f is not p-order metrically subregular at 0 for 0.
Let f be a proper lower semicontinuous function on Rn and let x̄ ∈ dom(f) be a local minimizer of f

such that f is twice smooth around x̄. It is well known that the following statements are equivalent:

(i) x̄ is a 2-order sharp minimizer of f .
(ii) x̄ is a stable 2-order sharp minimizer of f .
(iii) f ′′(x̄) is positive definite (i.e., 0 < f ′′(x̄)(h2) for all h ∈ Rn \ {0}).

Next we consider the corresponding issue for the 2-order weak sharp minimizer case. To do this, we adopt
the following notation:

S(f, x̄) := {x ∈ X : f(x) = f(x̄)}.

It is clear that S(f, x̄, r) = S(f, x̄) ∩B[x̄, r] if f(x̄) = minx∈B[x̄,r] f(x).
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Proposition 3.1. Let f : Rn → R be a proper lower semicontinuous function and let x̄ ∈ dom(f) be a local
minimizer of f such that f is twice smooth around x̄. Then x̄ is a 2-order weak sharp minimizer of f if
and only if

0 < f ′′(x̄)(h2) ∀h ∈ N(S(f, x̄), x̄) \ {0}. (3.21)

Proof. Since f is twice smooth around x̄ and x̄ is a local minimizer of f , there exists r > 0 such that

f(x̄) = min
x∈BRn [x̄,r]

f(x),

f is twice smooth on BRn [x̄, r] and S(f, x̄, r) = S(f, x̄) ∩BRn [x̄, r] is closed.

To prove the sufficiency part, suppose to the contrary that (3.21) holds but there exists a sequence
{xk} ⊂ Rn convergent to x̄ such that

d(xk, S(f, x̄))2

k
> f(xk)− f(x̄) ∀k ∈ N. (3.22)

Thus, each xk does not lie in S(f, x̄). For each k ∈ N, take a uk ∈ S(f, x̄) ∩ BRn [x̄, r] such that ∥xk − uk∥
= d(xk, S(f, x̄))∩BRn [x̄, r]). It is easy to verify that uk → x̄ and so ∥xk − uk∥ = d(xk, S(f, x̄)) for all k ∈ N
sufficiently large. Hence xk−uk

∥xk−uk∥ ∈ N
P
S(f,x̄)(uk) for all k ∈ N sufficiently large. Without loss of generality, we

assume that xk−uk
∥xk−uk∥ → h0 (passing to a subsequence if necessary). Then

h0 ∈ N(S(f, x̄), x̄) \ {0}. (3.23)

On the other hand, (3.22) and the Taylor theorem imply that

∥xk − uk∥2

k
> f(xk)− f(x̄) = f(xk)− f(uk) = f ′′(uk + θk(xk − uk))((xk − uk)2),

where θk ∈ (0, 1). Hence 1
k > f

′′(uk + θk(xk − uk))


xk−uk
∥xk−uk∥

2
. Letting k → ∞, it follows that 0 ≥

f ′′(x̄)(h20), contradicting (3.21) and (3.23).

Next suppose that x̄ is a 2-order weak sharp minimizer of f : there exist τ, δ ∈ (0,+∞) such that

τd(x, S(f, x̄, r))2 ≤ f(x)− f(x̄) ∀x ∈ BRn(x̄, δ). (3.24)

Let h ∈ N(S(f, x̄), x̄). Then there exist sequences {uk} ⊂ S(f, x̄) and {hk} ⊂ Rn such that

uk → x̄, hk → h and hk ∈ NPS(f,x̄)(uk) ∀k ∈ N.

Hence there exists a sequence {tk} ⊂ (0,+∞) convergent to 0 such that

tk∥hk∥ = d(uk + tkhk, S(f, x̄)) ∀k ∈ N.

Noting that d(uk+tkhk, S(f, x̄, r)) = d(uk+tkhk, S(f, x̄)) for all sufficiently large k (because uk+tkhk → x̄),
it follows from (3.24) that

τt2k∥hk∥2 ≤ f(uk + tkhk)− f(uk) = 1
2f
′′(uk + θktkhk)(t2kh2k)

for all sufficiently large k, where θk ∈ (0, 1). Noting that f ′′ is continuous at x̄, it follows that
τ∥h∥2 ≤ 1

2f
′′(x̄)(h2). This shows that (3.21) holds and hence the necessity part holds. The proof is complete.

In the case when x̄ is a local isolated minimizer of f , it is well known and easy to verify that
N(S(f, x̄), x̄) = Rn; so (3.21) means that f ′′(x̄) is positively definite (on the entire Rn). Thus, Proposition 3.1
partially extends the above mentioned characterization on 2-order sharp minimizer. However, different from
the isolated minimizer case, (3.21) does not imply that x̄ is a stable 2-order weak sharp minimizer of f .
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Indeed, let f : R2 → R be such that f(x, y) = x2 for all (x, y) ∈ R2. Clearly, (0, 0) is a global minimizer of
f, S(f, (0, 0)) = {0} × R, N(S(f, (0, 0)), (0, 0)) = R× {0}, and

f ′′(0, 0)(h2) = 2u2 > 0 ∀h = (u, 0) ∈ N(S(f, (0, 0)), (0, 0)) \ {(0, 0)}.

On the other hand, for any ε > 0, let u∗ε = (0, ε); then fu∗ε (x, y) = x2 − εy for all (x, y) ∈ R2 and fu∗ε has no
local minimizers. Hence (0, 0) is not a stable 2-order weak sharp minimizer of f .

4. Stable Hölder weak sharp minimizer and stable Hölder sharp minimizer

Regarding the stable Hölder (sharp) minimizers and tilt-stable Hölder minimizers, Zheng and Ng [28] has
recently proved the following result.

Theorem SH. Let X be a Banach space and f : X → R be a proper lower semicontinuous function. Let
x̄ ∈ dom(f) be a minimizer of f and p be a positive number. Consider the following statements:

(i) x̄ is a tilt-stable p-order minimizer of f .
(ii) x̄ is a stable 1+p

p -order sharp minimizer of f .
(iii) ∂f is p-order strongly metrically regular at x̄ for 0.
(iv) f∗ is C1,p-smooth on some neighborhood of 0.

Then (i)⇔ (ii)⇐ (iii) always hold. If, in addition, f is convex, then (i)⇔ (ii)⇔ (iii)⇔ (iv) are true. �

In this section, we consider the corresponding issues regarding weak sharp versions namely in exploring
relationship between p-order tilt-stable weak sharp minimizers and the q-order stable weak sharp minimizers
for functions f together with the metric regularity of their subdifferentials.

Theorem 4.1. Let X be a Banach space and f : X → R be a proper lower semicontinuous function. Let
x̄ ∈ dom(f) and p ∈ (0,+∞). Suppose that there exist r, δ ∈ (0,+∞) and a multifunction A : BX∗(0, δ) ⇒
BX [x̄, r] with x̄ ∈ A(0) such that

A(u∗) ⊂ S(fu∗ , x̄, r) ∀u∗ ∈ BX∗(0, δ) (4.1)

and A has p-order Aubin property on BX∗(0, δ): there exist a neighborhood V of x̄ and L ∈ (0,+∞) such
that

A(u∗) ∩ V ⊂ A(x∗) + L∥u∗ − x∗∥pBX ∀x∗, u∗ ∈ BX∗(0, δ), (4.2)

where fu∗ and S(fu∗ , x̄, r) are defined by (1.3) and (1.10), respectively. Then there exists δ′ ∈ (0, δ) such
that, on BX∗(0, δ′),A is single-valued, the conjugate function (f + δBX [x̄,r])∗ is C1,p-smooth and

S(fu∗ , x̄, r) = A(u∗) = {▽(f + δBX [x̄,r])∗(u∗)} ∀u∗ ∈ BX∗(0, δ′); (4.3)

in particular,

∥▽(f + δBX [x̄,r])∗(x∗)− ▽(f + δBX [x̄,r])∗(u∗)∥ ≤ L∥x∗ − u∗∥p (4.4)

for all x∗, u∗ ∈ BX∗(0, δ′).

Proof. Let x∗ ∈ BX∗(0, δ) and x ∈ S(fx∗ , x̄, r). Then, by (1.10),

(f + δBX [0,r])∗(x∗) = ⟨x∗, x⟩ − f(x). (4.5)
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This implies that x ∈ ∂(f + δBX [x̄,r])∗(x∗) (cf. [25]). Hence

S(fx∗ , x̄, r) ⊂ ∂(f + δBX [x̄,r])∗(x∗) ∀x∗ ∈ BX∗(0, δ). (4.6)

Since x̄ ∈ A(0) ∩ V , (4.2) implies that

x̄ ∈ A(u∗) + L∥u∗∥BX ∀u∗ ∈ BX∗(0, δ)

and so there exists δ′ ∈ (0, δ) such that

A(u∗) ∩ V ̸= ∅ ∀u∗ ∈ BX∗(0, δ′).

Let u∗ ∈ BX∗(0, δ′) and u ∈ A(u∗)∩ V . Then, by (4.2), for each x∗ ∈ BX∗(0, δ) there exists x ∈ A(x∗) such
that

∥u− x∥ ≤ L∥u∗ − x∗∥p. (4.7)

By (4.1) and (4.6), one has

u ∈ ∂(f + δBX [0,r])∗(u∗) and x ∈ ∂(f + δBX [0,r])∗(x∗).

Since the conjugate function (f + δBX [0,r])∗ is convex, it follows that

0 ≤ (f + δBX [0,r])∗(x∗)− (f + δBX [0,r])∗(u∗)− ⟨u, x∗ − u∗⟩
≤ ⟨x− u, x∗ − u∗⟩ ≤ L∥x∗ − u∗∥1+p

where the last inequality holds thanks to (4.7). Hence (f + δBX [0,r])∗ is differentiable at u∗ with ▽(f +
δBX [x̄,r])∗(u∗) = u, and so

∂(f + δBX [0,r])∗(u∗) = {▽(f + δBX [x̄,r])∗(u∗)} = {u}.

Thus, (4.3) follows from (4.1) and (4.6), while (4.4) follows from (4.2). The proof is complete.

Remark. Under assumptions (4.1) and (4.2), one can prove that the mapping u∗ → A(u∗)∩V is single-valued
on some neighborhood of 0 based on the idea of the proof of Kenderov’s result [10, Proposition 2.6].

Applying Theorem 4.1 to A(u∗) = S(fu∗ , x̄, r), we have the following corollary.

Corollary 4.1. Let X be a Banach space and f : X → R be a proper lower semicontinuous function. Let
x̄ ∈ dom(f) and p ∈ (0,+∞). Then x̄ is a tilt-stable p-order weak minimizer of f if and only if x̄ is a
tilt-stable p-order minimizer of f .

Theorem 4.2. Let X be a Banach space and f : X → R be a proper lower semicontinuous function. Let
x̄ ∈ dom(f) and q ∈ (1,+∞). Suppose that there exist r, r′, δ, κ ∈ (0,+∞) such that x̄ ∈ S(f, x̄, r) and

κd(x, S(fu∗ , x̄, r))q ≤ fu∗(x)− inf
u∈BX [x̄,r]

fu∗(u) (4.8)

for all x ∈ BX(x̄, r′) and u∗ ∈ BX∗(0, δ), where fu∗ and S(fu∗ , x̄, r) are defined by (1.3) and (1.10),
respectively. Then there exists δ′ ∈ (0, δ) such that

S(fu∗ , x̄, r) ∩BX

x̄,
r′

4


⊂ S(fv∗ , x̄, r) +


λ∥u∗ − v∗∥
κ

 1
q−1

BX (4.9)

for all u∗, v∗ ∈ BX∗(0, δ′) and all λ ∈ (1,+∞).



198 X.Y. Zheng, K.-F. Ng / Nonlinear Analysis 120 (2015) 186–201

Proof. By definition, we have, for any u∗ ∈ X∗,

fu∗(x̄)− inf
u∈BX [x̄,r]

fu∗(u) = f(x̄)− inf
u∈BX [x̄,r]

(f(u)− ⟨u∗, u− x̄⟩)

≤ f(x̄)− inf
u∈BX [x̄,r]

(f(u)− ∥u∗∥r)

= ∥u∗∥r

as f(x̄) = infu∈BX [x̄,r] f(u) thanks to the assumption that x̄ ∈ S(f, x̄, r). Hence there exists δ′ ∈ (0, δ) such
that

fu∗(x̄)− inf
u∈BX [x̄,r]

fu∗(u) < κ
r′

4
q ∀u∗ ∈ BX∗(0, δ′).

It follows from (4.8) that d(x̄, S(fu∗ , x̄, r)) < r
′

4 , and so

d


z, S(fu∗ , x̄, r) ∩BX


x̄,
r′

4


<
r′

2 ∀u∗ ∈ BX∗(0, δ′) and ∀z ∈ BX

x̄,
r′

4


. (4.10)

Let u∗, v∗ ∈ BX∗(0, δ′) and xu∗ ∈ S(fu∗ , x̄, r) ∩BX

x̄, r

′

4

. Take a sequence {xnv∗} in S(fv∗ , x̄, r) such that

d(xu∗ , S(fv∗ , x̄, r)) = lim
n→∞
∥xu∗ − xnv∗∥. (4.11)

This implies that

lim sup
n→∞

∥xnv∗ − x̄∥ ≤ lim
n→∞
∥xnv∗ − xu∗∥+ ∥xu∗ − x̄∥

≤ d

xu∗ , S(fv∗ , x̄, r) ∩BX


x̄,
r′

4


+ r

′

4 <
3r′

4 ,

where the last inequality holds thanks to (4.10). Thus, without loss of generality, we assume that xnv∗ ∈
BX(x̄, r′) for all n ∈ N. Noting that

fu∗(xu∗) = inf
u∈BX [x̄,r]

fu∗(u) and fv∗(xnv∗) = inf
u∈BX [x̄,r]

fv∗(u) ∀n ∈ N,

we have, by (4.8) (applied to xu∗ , fv∗ in place of x, fu∗),

κd(xu∗ , S(fv∗ , x̄, r))q ≤ fv∗(xu∗)− fv∗(xnv∗) ∀n ∈ N

and, similarly

0 ≤ κd(xnv∗ , S(fu∗ , x̄, r))q ≤ fu∗(xnv∗)− fu∗(xu∗) ∀n ∈ N.

Hence

κd(xu∗ , S(fv∗ , x̄, r))q ≤ fv∗(xu∗)− fv∗(xnv∗) + fu∗(xnv∗)− fu∗(xu∗)
= ⟨u∗ − v∗, xu∗ − xnv∗⟩,

and it follows that

κd(xu∗ , S(fv∗ , x̄, r))q ≤ ∥u∗ − v∗∥ ∥xu∗ − xnv∗∥.

This and (4.11) imply that

d(xu∗ , S(fv∗ , x̄, r)) ≤

∥u∗ − v∗∥
κ

 1
q−1

.

Since xu∗ is arbitrary in S(fu∗ , x̄, r) ∩BX

x̄, r

′

4

, this shows that (4.9) holds for all u∗, v∗ ∈ BX∗(0, δ′) and

all λ ∈ (1,+∞). The proof is complete.
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Theorem 4.3. Let X be a Banach space and f : X → R be a proper lower semicontinuous function. Let
x̄ ∈ dom(f) be a minimizer of f and p be a positive number. Consider the following statements:

(i) x̄ is a tilt-stable p-order weak minimizer of f .
(ii) x̄ is a tilt-stable p-order minimizer of f .
(iii) x̄ is a stable 1+p

p -order weak sharp minimizer of f .
(iv) x̄ is a stable 1+p

p -order sharp minimizer of f .
(v) ∂f is p-order metrically regular at x̄ for 0.
(vi) ∂f is p-order strongly metrically regular at x̄ for 0.
(vii) f∗ is C1,p-smooth on a neighborhood of 0.

Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇐ (vi) ⇒ (v) always hold. If, in addition, f is convex, then (i) ⇔ (ii) ⇔
(iii)⇔ (iv)⇔ (v)⇔ (vi)⇔ (vii) are true.

Remark. If the convexity assumption is dropped, then each of the implications (iv)⇒ (vi) and (v)⇒ (vi) is
not longer valid. Indeed, even in the isolated minimizer case, a counter-example of (iv) ⇒ (vi) was already
provided for the case when p = 1 (see [5]). In the case when the solution sets are isolated around x̄, recall (by
Theorem SH) that (v) always implies (iii); therefore, it is natural to ask, in the nonconvex and nonisolated
case, whether or not (v) ⇒ (iii) still holds. The answer to this question is negative, and an example of
nonconvex f with a minimizer x̄ is given at the end of this paper such that x̄ is not a stable 1+p

p -order weak
sharp minimizer of f even though the subdifferential ∂f is p-order metrically regular at x̄ for 0. This also
shows that (v) does not necessarily imply (vi) (because it always holds that (vi)⇒ (iii)).

Proof of Theorem 4.3. (i)⇔ (ii)⇔ (iv)⇐ (vi) are immediate from Corollary 4.1 and Theorem SH, (iv)⇒
(iii) and (vi) ⇒ (v) are trivial, while (iii) ⇒ (ii) is immediate from Theorem 4.2 and Corollary 4.1.
Next consider the case when f is convex. By the first assertion and Theorem SH, it suffices to show
(v) ⇒ (vii) for the proof of the second assertion. Now suppose that (v) holds, namely suppose that there
exist δ, δ′, τ ∈ (0,+∞) such that

τd(x, (∂f)−1(x∗)) ≤ d(x∗, ∂f(x))p ∀(x, x∗) ∈ BX(x̄, δ)×BX∗(0, δ′).

Then,

(∂f)−1(u∗) ∩BX(x̄, δ) ⊂ (∂f)−1(x∗) + 2
τ
∥x∗ − u∗∥pBX ∀u∗, x∗ ∈ BX∗(0, δ′). (4.12)

By the convexity of f , we have

(∂f)−1(u∗) ⊂ S(fu∗ , x̄, r) ∀(u∗, r) ∈ X∗ × (0,+∞).

It follows from (4.12) and Theorem 4.1 that (vii) holds. The proof is complete.

We conclude with a counterexample to show that (v) does not imply (iii) in the general case. To do this,
let f : R→ R be such that

f(x) =


−x, if x < 0
0, if x = 0

1
2n+1 −

x− 3
2n+1

, if 1
2n < x ≤

1
2n−1 (n = 1, 2, . . .)

x− 1, if 1 < x.
Then f is a nonnegative Lipschitz function with

f


1
2n


= 0 and f


3

2n+1


= 1

2n+1 ∀n ∈ N.
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Moreover, it is easy to verify that

∂f(x) =



[−1, 1], if x ∈ {0} ∪


1
2n−1 : n ∈ N


∪


3
2n+1 : n ∈ N


{−1}, if x ∈ (−∞, 0) ∪


n∈N


3

2n+1 ,
1

2n−1


{1}, if x ∈


n∈N


1
2n ,

3
2n+1


∪ (1,+∞).

Hence
1
2 ≤ d(x

∗, ∂f(x)) ∀x ∈

−1

2 ,
1
2


\

{0} ∪


1

2n−1 : n ∈ N

∪


3
2n+1 : n ∈ N


and

(∂f)−1(x∗) = {0} ∪


1
2n−1 : n ∈ N


∪


3
2n+1 : n ∈ N


∀x∗ ∈ (−1, 1).

It follows that ∂f is p-order metrically regular at 0 for 0 (for any p ∈ (0,+∞)). On the other hand, noting
that 0 and each 1

2n are global minimizers of f, S(f, 0, r) is a infinite set for any r > 0. Hence, 0 is not a
1+p
p -order stable sharp minimizer. This and Theorem 4.3 implies that 0 is not a 1+p

p -order stable weak sharp
minimizer.
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