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A UNIFIED SEPARATION THEOREM FOR CLOSED SETS
IN A BANACH SPACE AND OPTIMALITY CONDITIONS
FOR VECTOR OPTIMIZATION"
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Abstract. Using the technique of variational analysis and in terms of normal cones, we establish unified
separation results for finitely many closed (not necessarily convex) sets in Banach spaces, which not only cover
the existing nonconvex separation results and a classical convex separation theorem, but also recapture the
approximate projection theorem. With help of the separation result for closed sets, we provide necessary and
sufficient conditions for approximate Pareto solutions of constrained vector optimization problems. In parti-
cular, we extend some basic optimality results for approximate solutions of numerical optimization problems to
the vector optimization setting.
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1. Introduction. The separation theorems for convex sets play a key role in func-
tional analysis and optimization theory. The most well-known and useful version of
these theorems is probably the following: if A; and A, are disjoint closed convex sets
in X with one of them being compact, then there exists a continuous linear functional z*
on X such that

inf (z*, ) > sup(z*, =),
zEAy €A

where X is a Banach space (or more generally, a locally convex topological vector space).
In order to focus on the main issues and also for the simplicity of presentation, we assume
throughout that X is a Banach space (we shall explicitly make clear if X is required to
satisfy additional assumptions, such as that X is an Asplund space). In recent years, a lot
of attention has been directed to studying the more general case that A;, A, are closed
(not necessarily convex) subsets of X (cf. [14], [22], [23], and references therein). In an
Asplund space and in terms of Fréchet normal cone, Mordukhovich and Shao [15] first
established the extremal principle for two closed sets with an extremal point (a special
common point of these two sets). In some sense, this extremal principle can be regarded
as a kind of fuzzy separation theorem for two nonconvex closed subsets. Further,
Mordukhovich, Treiman, and Zhu [17] introduced the extremal point concept for finitely
many closed sets and established the extremal principle for finitely many closed sets. At
this point, let us define the so-called nonintersect index y(44, ..., 4,) by
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UNIFIED SEPARATION THEOREM FOR CLOSED SETS 887

n—1
V(AL ... A,) = inf{z la; — a,||: a; € Ay i =1, n}
i=1

Note that y(A;, ....4,) =0if (), A; # @ and that for any & > 0, there exists a; € A;
(1 <4< n) such that

n—1

(1.1) D llai = aull < y(Ar, ... Ay + .
i=1

Improving the extremal principles by Mordukhovich et al., the author [29] established
the following result.

TureoreM A. Consider closed sets A, ..., A, of a Banach (resp., Asplund) space X
such that (-, A; =@. Let e > 0 and a; € A; (1 < i< n) satisfy (1.1). Then, for any
A >0, there exist a; € A; and a} € X* such that

(1) 2 llai — aill <4, maxicic, @}l =1, and 37, af = 0;

(ii) af € N.(A;,a;) +5Bx (resp., aj € N(A;,a;) +5Bx-), i=1,....n,
where N (A;, a;) and N(AZ-, a;) denote, respectively, the Clarke and Fréchet normal
cones (see section 2 for their definitions).

Unfortunately, even in the case when n =2, A; = {z}, and A4, is convex (and
closed) such that z ¢ A,, this theorem and all other existing fuzzy separation results
for general closed sets cannot recapture the classical separation theorem stated at
the beginning of this section. On the other hand, by the approximate projection theorem
for a closed set (proved by the authors [30] and [12]), for any n € (0, 1), there exist as €
Ay and —ai € N (As, as) such that ||a}|| =1 and

(1.2) nlle = a,|| < (a3, a; — x).

Clearly, (1.2) does imply that A; = {z} and A, can be separated (in the usual sense) if
A, is convex. From the theoretical viewpoint as well as for applications, it is important
and interesting to have a new kind of fuzzy separation theorem that can result in existing
fuzzy separation theorems and classical convex separation results. It is one of our aims to
establish such fuzzy separation results for closed sets.

Vector optimization relates to functional analysis and mathematical programming
and has been found to play many important roles in economics theory, engineering de-
sign, management science, and so on. In recent years, the study of vector optimization
has received increasing attention in the literature (see [7], [10], [13], and references there-
in). Another aim of this paper is to study constrained vector optimization problems and
thereby improve and extend some well-known results on numerical optimization. Many
authors (cf. [14], [20], [23], and references therein) studied a numerical optimization pro-
blem with a constraint defined by finitely many inequalities and equalities. Most of the
earlier authors provide necessary/sufficient conditions for a feasible point to be a solu-
tion, and their studies are based on the assumption that the problem concerned does
have a (local or global) solution. On one hand, this assumption is too restrictive in some
contexts, while, on the other hand, we note a well-known fact: if a function ¢y: X — R is
smooth and bounded below, then for any € > 0 there exists x, € X such that

(1.3) ¢o(z;) < mf o(a) +& and |dy(z)| < e
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888 XI YIN ZHENG AND KUNG FU NG

Without the smoothness assumption, in a geometric constraint case, Chou, Ng, and
Pang [4] proved the following result: if ¢ is Lipschitz and bounded below on a closed
subset A of X, then for any & > 0 there exists x, € A such that

(1.4) P(z,) < }Ielfl Po(x) +¢ and d(0,0py(z.) + N(A,e)) < e.

Mordukhovich and Wang [18] studied suboptimality conditions for approximate solu-
tions for a numerical constraint optimization problem in infinite dimensional Asplund
spaces. In particular, they established the Lagrange rule of an approximate solution for
such a problem in terms of subdifferentials. With the help of the separation theorem for
finitely many closed sets, this and other related results, as well as the result of Chou, Ng,
and Pang mentioned above, are extended in section 4 for vector optimization problems.

2. Preliminaries. For convenience of the readers, this section recalls some known
notions and results in variational analysis, which will be used in our later analysis (see
[14], [22], [23] for more details).

We use By and Xy to denote the unit ball and unit sphere of X, respectively, and
B(z, r) denotes the open ball with center a and radius r. Let A be a closed subset of X
and a be a point in A. We denote by T,(A, a) and T(A, a) the Clarke tangent cone and
the contingent (Bouligand) cone of A at a, respectively; that is,

T.(A4,a)={veX: Vania and Vt, — 0% Jv, = vs.t. a, + t,v, € AVn €N}
and
T(A,a)={ve X: 3t, - 0" and v, > vs.t. a+t,v, € AVn e N}
The Clarke normal cone N (A, a) of A at a is defined by
N (A, a):=={z* € X*|(«*,h) <OV he T.A,a)}.

For ¢ > 0 and a € A, the nonempty set

]AVS(A, a) = {x* € X*|lim sup (@o=a) < 8}
A |z — all

T—a

is called the set of Fréchet e-normals of A at a, where xia means £ — a and z € A.
When & =0, N.(4, a) is a convex cone which is called the Fréchet normal cone of A
at a and is denoted by N(A, a). The Mordukhovich (limiting) normal cone N(A4, a)
of A at a is defined by

N(4,a)={z" € X*: T, = 0, ania and x;gx* s.t. xy, € NSH(A, a,) ¥n € N}.
It is known (cf. [14], [23]) that
N(A.,a) C N(A.a) C N(A. ).
Mordukhivich and Shao [16] proved that if X is an Asplund space, then

N.(A,a) =cl*(co(N(A4,a))) and N(A, a)= 1imAsup N(A, z),

T—a
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where cl* denotes the weak™ closure. It is well known that if A is a convex set, then
T.(A,a) = T(A, a) and

N.(A, a) = N(A,a) = {z* € X*|(z",2) < (2", a) V = € A}.

Let ¢p: X — R U {+oo} be a proper lower semicontinuous function. The Clarke—
Rockafellar subdifferential d.¢(z) of ¢ at z € dom(¢) is defined as

0.¢(z) = {a* € X*|{(x*, h) < ¢ (x,h) Vh € X},

where

tw) —
¢'(z,h) == limlim sup inf Pz +tw) — ¢(2) .
el0 R €h+eB, t

The Fréchet subdifferential of ¢ at z € dom(¢) is defined as

op(z) = {x* € X*|limﬁi.nf $(2) = ¢|(|i)—_a:<||x*7 k) > 0}.

It is well known (cf. [14]) that

~

(2.1) 0¢(z) C 9.¢(z)
and that if ¢ is convex, then
dep(x) = dp(z) = {a* € X"|(a".y —2) < d(y) — $(2) ¥y € X} ¥ x € dom(g)).

For a closed set A in X, let 64 denote the indicator function of A. It is known (see [14],
[23]) that

(CS) N.(A.a) =0,64(a), N(A,a) = 064(a) VacA
and
(CF) o.p(x) = {z* € X*[(2", —1) € N (epi(9). (z.¢()))} V z € dom(¢),

dp(x) = {a* € X*|(2", ~1) € N(epi(¢). (x.¢(x)))} V @ € dom(g)),

where epi(¢) = {(z.t) € X x R:¢p(z) < t}.

We recall the following known subdifferential rules for the sum-function (cf. [14],
[22], [23]), which plays a important role in our later analysis.

Lemma 2.1, Let ¢y, ¢po: X — R U {+00} be proper lower semicontinuous functions.
Let z € dom(¢) N dom(¢hy), and suppose that ¢, is locally Lipschitz around x. Then,

0c(¢1 + ¢2)(7) C 0.1 () + 0.2 (7).

If, in addition, X is an Asplund space, then for any z* € 5(451 + ¢o)(z) and any & > 0
there exist ©,, x5 € B(z,¢€) such that |¢p;(z;) — ¢p;(z)| <e (i=1,2) and

& € 0y (1) + Op(ws) + e By
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For a multifunction F between Banach spaces X and Y, we use Gr(F) to denote its
graph, and say that it is closed (resp., convex) if Gr(F') is a closed (resp., convex) subset
of X x Y. Recall (cf. [2], [9]) that F'is pseudo-Lipschitz at (Z, y) € Gr(F) if there exist L,
1, 79 € (0,+00) such that

F(z) N B(y.r1) C F(x) + ||y — 22| LBy V 1,25 € B(Z, 19).

Forz € X and y € F(z),let D" F(z,y) and D:F(z, y): Y* = X* denote the coderivatives
of F at (z, y) with respect to the Fréchet and Clarke normal cones, respectively; that is,

(22) D'F(z.y)(y") = {z* € X*:(¢". —y") € N(Gx(F). (z.9))} Yy €Y
and

DeF(z,y)(y7) = {2 € X*:(2", —y") € No(Gr(F), (2, 9))} Vy €Y

3. Fuzzy separation results. In this section, we establish fuzzy separation results
for finitely many closed sets, which not only unifies the convex separation theorem men-
tioned in section 1 and the existing nonconvex separation results, but also recaptures the
approximate projection theorem proved in [30] and [12].

Let 1 < p < +ooand y,(4;, ..., A4,) denote the (p-weighted) nonintersect index of
finitely many closed subsets A, ..., 4, of a Banach space X, which is defined by

n—1
Yp(Ay, ... A,) 1nf{(Z||x7—3:n|| ) xieAi,izl,...,n},

where (Y171 ||z — :r,L||7’)% is understood as maxg<;<,||z; — z,|| when p = +o0.
For a point e and two subsets S; and S, of a Banach space, let

d(Sy, So)=inf{|Ju — v|:u € S; and v € Sy} and d(e, Sy):=d({e}, Ss).

Tueorem 3.1. Let Ay, ..., A, be closed nonempty subsets of X such that
N, A;=@. Let1 < p, ¢ < +o0 with%—i—%: 1,6 >0,anda; € A; (1 <i<n)besuch
that

n—1 1
(3.1) (Zha=aull) <py o)
=1

Then, for any A > 0, there exzst a; € A; and a} € X* with the following properties:
(i) (2L ' l[a; — azll”)" <A 1
(i) (it flal)7 =1, S5, af =0, and (S0, d(a}, No(Ay, @) 1) <

1 -
(i) (i lan — ") = 3275 (ai. a, — ay).
Proof. Deflne ¢: X" = RU{+oc0} as follows:

PIY

n—1
P .. 1) = (anxnnp) B aen, (@ )

for all (x, ...,z,) € X", where X" is equipped with the norm
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UNIFIED SEPARATION THEOREM FOR CLOSED SETS 891

Vo oozl = (Zmnp) V(o1 o) € X
i=1

Then
Yp(Ar .. Ay) = inf{g(zy, ... 2) (24, ... 2,) € X7,
and (by (3.1)) there exists ¢’ € (0,¢) such that
dlag, ..., a,) <inf{p(z, ..., 2,): (z1, ..., 2,) € X"} + &',
Since ¢ is a lower semicontinuous function on the Banach space X", it follows from

the Ekeland variational principle (cf. [14, Theorem 2.26]) that there exists (ay, ..., a,) €
X" such that (i) holds and

, _ g (& Y
(32)  @lay, ..., a,) <Pz, ..., 2) —&-7 (Z |z — al-||7]) V(2 ..., z,) € XM
=1

Hence ¢(ay, ..., a,) < +oo and so a; € A; for each i. Noting that (7, 4, =@, it
follows that

(3.3) (@) = po s Gy — @) # (0, ... 0).

For each (z, ...,z,) € X", let

flzy, .o m,) = (:Zj“xi n”p) (Z o Z”p)l

Then f is a continuous convex function on X", and (3.2) means that f attains its mini-
mumover A;x --- xA,at (ay, ..., a,). Hence 0 € 0.(f 4+ 64,x...xa,)(@1. ... a,). This
and Lemma 2.1 imply that

!

_ _ _ _ &
0€adg(ay, ..., a,) + N (A, a1)x -+ XN (A, a,) +— By

A
where g(z1, ..., z,) = (O |z — a:n||p) for all (zy, ...,,) € X". Hence there exists
(—ai, ....—a}) € 9g(ay, ..., a,) such that
i: d(at, N,(A;, @,))? P
P (] C 1 1 — ﬂ A
Thus,
n i n—1
a0 Staa-as (Sa-ap) - (Sie- annﬂ)
=1
for all (z, ...,z,) € X". Setting x; =---= z,, = x, it follows that
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892 XI YIN ZHENG AND KUNG FU NG

S (-apa— ) (Zm—annp) Ve X,

i=1

and so > 7 ; af = 0. This and (3.4) imply that

n—1 % n—1 %
21— 2y — (@ — ) < (Z s — |) - (Z & - anup)
i=1 i=1

forall (z,, ...,z,) € X" Taking an arbitrary element (u,, ..., u, ;) in X" ! and letting
zi=u;+x, (1 <i<n-—1), it follows that

n—

i=1

n—1 n—1 % n—1 %
S t-aivn = @ - a0y < (Sl ) = (X 1a -l
i=1 =1 =1
and so
(—ai, ....—al_ 1) €0|| - |l xn1(A1 — Qo ooy Qo1 — Gyy).

It follows from (3.3) that
n—1 n—1 n—1 =
(Z la; |q) —1 and S (aa,—a) = (Z &, - annp) |
=1 =1

This completes the proof. O
TaeorEM 3.1 Let Ay, ..., A,, and p, q be as in Theorem 3.1. Suppose that

1

(ZHa n”,,> =7,(A1, ... A,).

Then, there exist a} € X* (1 < i < n) with the following properties:
i) oo 1Ha K )tzfl >riar=0,and af € N.(A;,a;),1=1,...,n

( ) (Zn 1Han z” )p = Il 11<ai’an a‘i>'
Proof. Let ¢ and g be as in the proof of Theorem 3.1. Then

Play, ... a,) =inf{p(z, ..., 2,): (2, ..., z,) € X"}
Hence
0€adp(a, ...,a,) Coglay, ...,a,)+ N (A1, a1)x -+ XN (A4,,a,).

It follows that (af, ..., aks) € dg(xy, ..., x,) such that af € N.(4;,a;) (i=1,...,m).
Noting that (a1 — ay, ..., ay_1 — a,) # (0, ...,0), as in the corresponding part of the
proof of Theorem 3.1, one has

n—1 L

n—1 % >
(an) —1and S (aha - a, =<Z||a nn).
=1 =1

The proof is completed. O
In view of Theorem 3.1, we have the following corollary.
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UNIFIED SEPARATION THEOREM FOR CLOSED SETS 893

CoROLLARY 3.2. Let Ay and Ay be two closed nonempty subsets of X such that
AN Ay =@. Then, for any & > 0, there exist a; € A; (i=1, 2) and a* € X* with
|la*|| = 1 such that

_G*ENC(Al,a1)+EBX*, G*ENC(AQ, 0/2)+8Bx*
and
||a1 — 02” = <CL*, ap — CL2> < d(Al,AQ) + €.

Remark. In Corollary 3.2, ¢ cannot be taken as 0 even in the convex setting. Indeed,
there exist two closed convex sets A; and A, of R? such that d(A;, Ay) >0 but
N(A;,a;) N —=N(Ay, a0) ={0} for any a; € Ay and ay € Ay. Let A, ={(s,t) €
R3I\{0}:1< ¢} and Ay =R x [~1,—00). Then A; and A, are closed convex sets. It
is clear that bd(4;) = {(s,t) e R\ {0}:t =1}, bd(4,) =R x {—1}, and R x {0} is
the asymptotic line of bd(A;). Hence, d(A4;, 45) =1,

N(Al,(s,t)):&(_s_l?,q) and  N(Ay, (s, 1)) =R, (0,1)

for all (s,t) € bd(4;) and all (s/,¢) € bd(A,). It follows that
N(Aq, (s,t)) N —=N(Ay, (¢',¢)) ={(0,0)} V (s,t) € A; and V (¢.t) € A,.

CoroLLARY 3.3. Let Ay be a closed nonempty subset of X and Ay a closed, bounded,
and convezr nonempty subset of X. Suppose that Ay N Ay = @. Then, for anye > 0, there
exist a; € Ay and o* € N (Ay, ay) with ||a*|| = 1 such that

d(Ay, Ay) — e < inf (a*, z) — (a*, a1).

z€A,

Consequently, if in addition A, is conver, then

d(Ay, Ay) — e < inf (a*, x) — max(a*, z).
€A,y zEA;

Proof. Let k be an arbitrary natural number, and take a;(k) € A; such that

1
(3.5) lar(k) = ax(R)[| < d(Ar, 4) + -5
that is,
1
a1 (k) — ax(K)|| < y1(As1. As) e
By Theorem 3.1, there exist a;(k) € 4; and a} (k) € X* such that
(3.6) 161 (k) — ar(K)|| + [l a2 (k) — a2 (R[] < -

[ai(B)l = 1. ai(k) + a3(k) =0, aj(k) € N.(A;, a;(k)) + 7 By, i=1,2,
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894 XI YIN ZHENG AND KUNG FU NG
and
[a1 (k) — ax (k)| = (ai (k). @z (k) — a1(k)).
Take a}(k) € N.(4;, a;(k)) such that ||af(k) — af (k)| < % (i=1, 2). Then

2

1 1
1—=<|lat(k)| <1 -,
L < llamwl <1+ :

o ek +a k)l <

and so

(1 —%) [y (k) — aa (k)| < (@5 (k). aa(k) — a1(R))

< (=a3(k), az(k)) — (ai(k), ar (k) + [lai (k) + a3 (k)| [l a= (R)]]

-, _, _ 2L
< —max(@;(k), z) — (@i (), a1 (k) + -
o, _, _ 3L
< ;ng(al(k),@ — (ai(k), ar (k)) Jr?,

where L = max,c 4, || Let @ (k) == g, Then @ (k) € N (A @ (k)), and it follows
that ‘

(17%>||&1(k)762(k)||f%< o
la®] < inf (@ (k). ) = (@ (k). & (k))-

By (3.5) and (3.6), one has

(1= 4) s (k) = (k)| - %

— d(A4y, 4,).

Hence

d(Ar Ay) — & < inf (@ (k). ) — (@ (k). @ (k)

€A,

for all £ sufficiently large. The proof is completed. g

Remark. In Corollary 3.3, if A, is compact, then d(A;, Ay) > 0; taking & in
(0,d(4;, 4,)), one can see that Corollary 3.3 improves and generalizes the convex
separation theorem mentioned in section 1.

The following theorem implies that, when X is an Asplund space, the Clarke normal
cone in Theorem 3.1 can be replaced by the Fréchet normal cone, provided that the
equality in Theorem 3.1(iii) is replaced with an inequality.

TaeEorREM 3.4. Let X be an Asplund space and A4, ..., A, be closed nonempty sub-
sets of X such that (7, A; = @. Let1 < p, ¢ < +o0 with%—&—%l: 1,6 >0, and a; € A;
(1 < i< n) be such that

n—1
(Zm%—%w)
=1

1
P

<Yp(Ar .. A,) +e.
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Then, for anyA > 0 and any p € (0,1), there exist a; € A; and af € X* with the following
properties: )

(i) 2k 1||a = aif|P)r < 4.

(i) (27 Hall)qflz a; =0, tmd( L d(a;, N(A;, @)

(iii) p(SI 13 — 7)< Z" 1{a}. @, — az>-
Proof. Let ¢ be as in the proof of Theorem 3.1. Then

Sl
N>
==
A
o

~—

Play, ..., a,) <inf{p(z, ..., 2,): (z1, ..., 2,) € X"} +&.

Take ¢’ € (0,¢) and A’ € (0,4) such that

/

% < % and  ¢(ay, ..., a,) <inf{p(z, ..., z,): (z1, ..., 2,) € X"} + 6.
It follows from Ekeland’s variational principle that there exists (ay, ..., a,) € X" such
that
(3.7) (Z |a; — a7||p> <X
and

_ _ g (& _ 0
(38)  Par, . a) < hloy. oo )+ <Z ||z — ai||7]> Y (zy,....z,) € X"
=1

Since (), 4; = @, (3.8) implies that

n—1

(3.9) > lla; = a,l| > 0.
=1

For each (z;, ...,z,) € X", let

f@gs oovy) = (Zn — ] ) - (Z I z”p)l

By (3.8) and the definition of ¢, one has Oea(erﬁAlX xa )@y, ..., a,). Let
0 < B < min{$ — ﬂ, A=A }. Then, by the Asplund space version of Lemma 2.1 and
(3.9), there exist z; € X and a; € A; such that

310 (Lla-al) <p (Sla-al) <s
=1 =1

and

(3.11) 0 € 0f (s ... Zn) + N(Ayx -+ XAy, (G, ..., 08,)) + pBY..

It follows from (3.7) that (i) holds. Let g be as in the proof of Theorem 3.1. Then,
f=9+%| " |lx». By the convexity of f and g, one has
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896 XI YIN ZHENG AND KUNG FU NG

A _ _ _ _ 8/
of (&, ..., x,) = 09(Zy, ..., Ty) +7 (X7

It follows from (3.11) that
_ _ N - A - g’
Oeag('rlv -'~vZ7L)+N(A1va1)X ><JV(Aman)—i_ (IB+7)B(X")*

Hence there exists —(aj, ..., as) € dg(Zy, ..., Z,) such that

/

(Z d(at, N(A;, W)“ <Pt
i=1 / A

Noting (by the third inequality of (3.10)) that (z; — Z,,, ..., Z,_1 — Z,) # (0, ..., 0), as
in the corresponding part of the proof of Theorem 3.1, one has

n—1 %1 n—1 n—1 %
(Zua:nq) ~1 and Z<a:f,5cn—@>=(Zu@—aﬂnp).
i=1 =1 =1

It follows from (3.10) that

S
|
-
3
|
-
3
|
-

—~
S)
sl
=}
3
I
ISh
NS
Il
—~
8
8
3
I
=1
N
_|_
7
)
=%
ISh
3
I
=1
3
|
—~
Q
I
81
:—/
~

ﬁ
Il
—
<.
Il
—
~

n—1 = n—1 1
z( ||a'cl—a'cn||p) —( ||an—5cn—<at—5s,>||z7)
i=1 1=1
n—1 % n—1 %
> (Znai—anw) —2(Z||an—xn—<a,—m||p)
i=1 =1
n—1 ~ _ % n—1 i
z( ||az—an|p> —2<Z(4ﬂ)p)
=1 =1
n—1 %
>( ||az—an|p) 8(n-1)p
=1

Note that g is arbitrary in (0, min{§ — %,A — A'}) and that (3.10) and (3.9) imply that

n—1 % n—1 %
limg o ((Z s — annp> 8(n— 1)/8) _ (Z la; - annp) -0,
=1 =1

By p € (0,1), one has

1 1

n—1 ? n—1 P
limﬁﬁoﬂo (Z ||dL - EI,n||p> =p (Z ||a/L - a/n|p>
=1 =1
n—1 %
< limg_q- ((Z la; — an||p) —8(n— 1)/3).
i=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



UNIFIED SEPARATION THEOREM FOR CLOSED SETS 897

It follows that there exists B € (0, min{ —% +, A — A'}) sufficiently small such that

(i‘inaannp) (Znaam) S(n— 1)8.

Consequently p (31 [|a; — a,]” )p < > = Yai, a; — a,). The proof is completed. |

Remark. The extremal principle by Mordukhovich et al. plays a key role in varia-
tional analysis in infinite dimensional spaces and deals with finitely many closed sets
with a special common point (named as an extremal point). In contrast, Theorem A
mentioned in section 1 deals with finitely many closed sets whose intersections are
empty. As observed in [29, p. 1161, Remark], Theorem A improves the extremal prin-
ciple. But, none of these fuzzy separation results can recapture the classical convex se-
paration theorem even in the special case of a singleton and a closed convex set. We
emphasize that the points a; and af (¢ = 1,2, ..., n) in Theorem 3.1 (and Theorem 3.4)
satisfy properties (i), (i), and (iii) simultaneously: if we only require these points to
satisfy (i) and (ii), then the task is relatively easier and the contents of these theorems
are basically the same as Theorem A, but to require the points to have the additional
property (iii) makes the result even more interesting, so that it not only covers the ex-
isting fuzzy separation results but also recaptures the classical convex separation the-
orem mentioned in section 1. But, the existing fuzzy separation results cannot cover the
convex separation theorem even in the special case of a singleton and a closed convex set.

In view of the above fuzzy separation theorem, we can establish approximate
projection results as follows. In the special case when n = 1, these approximate projec-
tion results have been known and played an important role in the study of error bound,
metric regularity, and metric linear regularity for generalized equations (cf. [30], [31]).

CoRrOLLARY 3.5. Let X be an Asplund space and Ay, ..., A, be closed nonempty
subsets of X. Let x€ X\(\'y A; and p € (0,1). Then there exist a; € A; and
a; € X* (1 <4< n) such that the following assertions hold:

(i) max,<;c,llaill =1 and af € N(A;, a;) (1<i<n).

(i) oS0y llz— o]l < min {0y d(z. A). S0 (af. 7 — a)}.

Proof. For each natural number k take a;(k) € A (1 < i< n) such that

(3.12) Z lla;(k) — z|| < Zd(w, A)) +

Let A, 1= {z}. Then y;(4y, ..., 4,, A1) =D ", d(z, A;) and

n
1
2 laik) = all < yi(Ar, oo A ) + 45
=1
By Theorem 3.4 (applied to a; = ay(k), ..., a, = a,(k), a1 =2, € =%, A=1, and
p =1—1), there exist @;(k) € A; and a(k) € X* such that
- 1
(3.13) Z lla,( (B <.
A 1
Gy mexa =1 @) € NALa0) + 1By (<i<n),
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and

n n

1 i . i
(3.15) (1) 200 ~ ol < 3 tai (9.2 3,0
i=1 i=1
For each i, take a!(k) € N(A;.a;(k)) such that ||a (k) — al (k)| <1, and let n; =
maxj<;<,||a; (k)| It follows from (3.15) that

(3.16) %(1%) ii;”ai(k)ﬂ giﬁ;<%,xa¢(m>.

Clearly, (3.12) and (3.13) imply that
S ) -l < 3 de A+ 1L
i=1 / =1 ) k kz

Noting that n;, = lask — o0, p € (0,1),and 0 < Y 1, d(z, 4;) < >, ||a;(k) — z|| for
all k, it follows from (3.16) that

p 21: () — 2| < min {z; d(z. 4)), Z<“—(k)m - ai(k)>}

=1 \ Tk

for all & sufficiently large. The proof is completed. 0

Similar to the proof of Corollary 3.5 (with Theorem 3.1 replacing Theorem 3.4), one
can prove the following result.

CoroLLARY 3.6. Let X be a general Banach space and Ay, ..., A, be closed
nonempty subsets of X. Let z € X\, A; and p € (0,1). Then there exist a; € A;
and af € X*(1 < i < n) such that the following assertions hold:

(1) maxj<;c,llaf]| =1 and af € N.(4;,a;) (1 <i<n)
(i) p >0, lla; — ol < min {30, d(z. A). 0, (a0 — )}

Theorems 3.1 and 3.4 unify the classical convex separation theorem and existing
fuzzy separation results mentioned in section 1.

4. Application to multiobjective optimization. Let Y be a Banach space and
K be a closed convex pointed cone in Y, which specifies a partial order <z on Y as
follows: for y, y, € Y,

Y1 <k yo if and only if y,—y; € K.

Let K denote the dual cone of K; that is,
Kt ={y* € Y*:0 < (y*,y) Yy € K}.

Let Z be a subset of Y and recall that y € Z is said to be a Pareto efficient point, written
as y € E(Z,K),if z€ Z and z <y y = z=y. It is known and easy to verify that

yeE(Z,K)=e (Z+K)n(y—K) ={y}.

In the case when int(K) # @, recall that y € Z is said to be a weak Pareto efficient point,
written as y € WE(Z, K), if
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(Z+ K)n (y—int(K)) = @.

Throughout this section, let X, Yy, Yy, ..., Y, be Banach spaces, ®,: X 3 Y,
(i=0,1, ..., m) be closed multifunctions, A be a closed subset of X, and K; be a closed
convex cone in Y; (i =0,1, ..., m). We consider the following constraint vector opti-
mization problem:

Ky — min ®y(z),
Q,(r)N-K;#@, i=1,...,m,
(4.1) z € A
In the special case when Yj=---=Y, =R, Kj=---=K,=R,, K,;,;=---=

K,, = {0}, and each ®; is single-valued, (4.1) reduces to the usual constraint numerical
optimization problem. In the remainder of this section, suppose that K is pointed, and
let Z denote the feasible set of (4.1); that is,

(4.2) Z=An (ﬂ d)il(—K,i)).
i=
For z € Z and y € ®y(z), we say that (Z,7y) is a Pareto solution (resp., weak Pareto
solution) of vector optimization problem (4.1) if
y € E(Dy(2). Ko) (resp.. j € WE(®y(Z2). Ky)):

that is,

It is well known that
(4.3) y € E(®y(2), Ky) < (Po(2) + Ko) N (¥ — Ko) = {4}

Many authors have established sufficient or necessary optimality conditions for Pareto
solutions and weak Pareto solutions of constraint vector optimization (4.1) (see [3], [5],
[6], [17], [21], [26], [27], [28], [29], [32], and references therein). In general, even in the case
when Yo=---=Y,, K, =---= K, =R, and each ®; is single-valued, (4.1) need not
have a (Pareto or weak Pareto) solution if X is infinite dimensional. So it is natural and
interesting to consider some kinds of approximate solutions. Let ®y: X — R U {+o0} be
a proper lower semicontinuous function bounded below on Z. For ¢ > 0, one naturally
defines that z € Z is an g-approximate solution of the following problem:

(NOP) min @ (z)

z€Z
if
®y(z) < inf{®y(z):z € Z} +¢,

or equivalently,
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(4.4) diam((®y(Z) + R,) N (Py(a) — R,)) < e.

Motivated by (4.3) and (4.4), we introduce the following notions of an approximate
Pareto solution for vector optimization problem (4.1).
DErFINITION 4.1. Let ¢ > 0, € Z, and Yy € ©y(z). We say that (z,7y,) is
(i) an e-Pareto solution of (4.1) if

(4.5) diam((®y(2) + Ko) N (o — Ko)) < ¢,
(ii) a weak e-Pareto solution of (4.1) if there exists e € e By, such that
(4.6) Qy(Z) N (yo+e—Ky) =0

(whether int(K,) is empty or not).

ProrositioN4.1. Lete > 0, € Z, and o € Dy(Z) be such that (T, yo) is ane-Pareto
solution of (4.1). Then, (4.6) holds for any e € — K, with ||e|| > ¢. Consequently, (Z, y,)
is a weak e-Pareto solution of (4.1).

Proof. Take an arbitrary e in — K, with ||e]| > ¢. Noting that 3, € (®y(Z) + K;) N
(Yo — Ko) and [|go — (4o + e)|| = ||el| = &, (4.5) implies that yy + e & (@y(Z) + Ko) N
(%o — Ky), and so

(@y(2) + Ko) N (Yo + e — Ky) = @.

This shows that (Z, ) is a weak e-Pareto solution of (4.1). O

By Definition 4.1, it is clear that if (z, y) is a Pareto solution of (4.1), then (Z, y,) is
an e-Pareto solution of (4.1) for any ¢ > 0. In the case when int(Kj) # @, noting that
e — Ky C —int(K,) for each e € —int(Kj), it is easy from Definition 4.1 to verify that if
(Z, 7o) is a weak Pareto solution of (4.1), then (z, y,) is a weak e-Pareto solution of (4.1)
for any & > 0. The following example shows that (Z, 3,) is not necessarily an e-Pareto
solution of (4.1) when (Z, y,) is a weak Pareto solution of (4.1).

Example. Let X =Y,=---=Y, =R’ K, =---=K, =R?, K, =R2, A=R?
O ==, = [, and

®y(s. ) = {(s.0)} V (s.%) € R2.

Then, Z=R? and ®y(Z)+ Ky =R xR,. Let (s,t) € Z. It is easy to verify that
((s,t),(s,0)) is a weak Pareto solution of (4.1) and

(@o(Z) + Koy) N ((5.0) = Ko) = (=00, 5] x {0},

and so diam((®y(2) + Ky) N ((s,0) — Ky)) = +o0o. Hence ((s,1),(s,0)) is not an e&-
Pareto solution of (4.1) for any ¢ > 0.

Given a fixed ey € K\ {0}, in 1979, Kutateladze introduced the concept of an
(e, €p)-minimizer of ®y(Z) with respect to Ky: 3y € ®y(Z) is said to be an (e, e)-mini-
mizer of ®y(Z) if (4.6) holds for e = —¢ee¢,. Kutateladze’s concept is a very popular kind
of e-solution in vector optimization (see [1], [2] for the details). Several authors consid-
ered other kinds of e-solutions for vector optimization (see [9], [19], [24], [25]). Recently,
Gutierrez, Jiménez, and Novo [8] introduced a new e-solution concept that extends
many &-solution notions introduced in the literature. Most of the existing approximate
solutions are weaker than the e-Pareto solution and stronger than the weak e-Pareto
solution. We will provide some necessary conditions for the existence of weak e-Pareto
solutions and some sufficient conditions for the existence of e-Pareto solutions.
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It is trivial that if a real-valued function ¢: X — R is bounded below over a subset Z
of X, then for any ¢ > 0 there exists x, € Z such that

¢(z,) —e < p(z) VzelZ

It is natural to ask whether the corresponding result on e-Pareto solutions for vector
optimization is true. The following example says that the answer to this problem is
negative.

Ezample. Let X =R, p € [l,400), Y =1, and F:X = Y be such that

F(x)_{<|m|%,o,o,...>} VazeX.

Then F is a continuous single-valued function. Let Z = X and K, consist of all
y=(t1.ty, ...) € I” such that Y _, t; > 0 for each n € N. It is clear that K is a closed
convex pointed cone in Y, and 0 is a lower bound of F over Z with respect to K. Now we
show that (4.1) has no e-Pareto solution for any ¢ > 0. Indeed, let z € X, v = 2|z| + 1,
Y= (mﬁo ...), and z:= (m() ...). Then F(z) ={y} and F(u)={z}. For
any neN, let y,:=(0,8,...,8,,0,...) be such that sy_; = fm and
Sop = 4(‘i}+1) x (k=1,...,n). It is easy to verify that

y+yn€(z+Ko)N(y—Ko) C(F(2)+ Ko)N(y—Kog) VneN
Noting that y € (F(Z) + Kg) N (¥ — K), it follows that

diamn((F(Z) + K0) 01 (5= Ko)) 2 |yl = 575 = oo
This shows that (Z, y) is not an e-Pareto solution of (4.1) for any & > 0.

We will show that (4.1) always has a weak e-Pareto solution if the objective
multifunction @y is bounded below on the feasible set Z with respect to K. Moreover,
under the mild assumption on the ordering cone, we can establish the same result for
g-Pareto solutions. To do this, recall that a closed convex cone K of a Banach space Y is
said to have a bounded base if there exists a bounded closed convex subset ® of K such
that

(4.7) 0¢0 and K ={t0:t>0 and 0 € B}.

It is known that every closed convex pointed cone in a finite dimensional Banach space
has a bounded base (cf. [11]).

ProprosiTiON 4.2. Let the objective multifunction ®q be bounded below on the feasible
set Z with respect to Kg; that is, there exists b € Y such that

b<k,y Vyecd(2).

Then the following statements hold:
(i) For any e > 0, (4.1) always has a weak &-Pareto solution.
(ii) If, in addition, K, has a bounded base, then, for any e >0, (4.1) has
an g-Pareto solution.
Proof. Note that K| is pointed and K, # {0}. Hence there exist y;; € K] and ¢, €
K, such that (yj. ¢g) > 0. Since @ is bounded below on Z with respect to K, for any
& > 0, there exist z € Z and yy € ®y(Z) such that
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. — . ECy
ys, Yoy < inf (¥, y) + <y*>
< 0 0> ye<I’U(Z)< 0 > 0 COH

It follows that @,(Z) N (Yy — . — Ko) = @- Hence (Z. o) is a weak e-Pareto solution

oll

of (4.1). This shows that (i) holds.

To prove (ii), suppose that K, has a bounded base. Hence there exists a bounded
closed convex subset © of K|, such that (4.7) holds. By the separation theorem, there
exists y € Y§ with ||y5|| = 1 such that

(4.8) n = inf(y;. 6) > 0.
This and (4.7) imply that yj; € K. Since @ is bounded below on Z with respect to Ky,

y; is bounded below on ®,(Z) and hence is bounded below on ®y(Z) + K. Let ¢ be an
arbitrary positive number and take z € Z and y, € ®y(Z) such that

_ ne .
4.9 *, T AT < f *’ ’
(4.9) (Y5, Yo) 3 yeolh K0<yo )

where M = supycgl|@||.- On the other hand, (4.8) implies that

* 7 * en €
(G0 = 0) < i) ~ 3y ¥ (10) € |57 +00) x©.

It follows from (4.9) that g, — t0 & ®y(Z) + K, for any (t,0) € [55;. +00) x ©; that is,
€
D)(2) + Ky) N (yg — K 0,— )O.
(®0(2) + Ko) N (%o o)C( 2M>

Hence diam((®(Z) + Ky) N (Yo — Ky)) <5 This shows that (z,y,) is an e-Pareto
solution of (4.1). The proof is completed.

For various types of approximate solutions for (4.1), the following implications
indicated in the diagram hold (“=="is under the assumption that int(K,) # @):

e-Pareto =— weak e-Pareto

Pareto

Vi

= weak-Pareto

Remark. All “reverve implications” are not valid, and “weak Pareto” does not imply
“e-Pareto.”

Let ¢p: X — R be a real-valued Lipschtiz function such that ¢ is bounded below on
Z. It is well known (cf. [4]) that for any & > 0 there exists a, € A such that

Mas) < nfp(a)+e and  d(0,0.p(a,) + N.(Z,a,)) < e.

In this section, based on fuzzy separations obtained in section 3, we consider the
corresponding issues for multiobjective optimization problem (4.1). To do this, we first
provide the Lagrange-like multiplier rule for a weak e-Pareto solution of (4.1).

THEOREM 4.3. Let ¢ > 0 and (Z, yy) be a weak e-Pareto solution of (4.1). Let y; €
O,(z)N—K; (i=1,...,m). Then, for any A > 0 there exist x; € B(Z, 1), y; € ®;(z;) N
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z € D’g@i(xi,yi)(c;‘ +2Byj> +%BX*(O <i<m), and

&
x*m+1 € NC(A’ $m+1) + z BX*

such that Y"1 2t =0 and

m
&
< D U=l +lel) <1+
=0 A

(4.10)

e
A

N |

Proof. Since (Z, ) is a weak e-Pareto solution of (4.1), there exists e € Y with
le]] < & such that (4.6) holds. Equip the product space X x [, Y; with the following
norm:

m

.l o= e {9 ) € X T Y,

and let

A= {(x,y(), ey YUm) EXXHYi:(x,yZ-) EGr(QDZ-)} (i=0,1,...,m),

=0

A=A x (o + e — Kp) x H(?_h - K;).
i=1
We claim that ﬂ;":gl A; = @. To do this, suppose to the contrary that there exist T € A
and y; € ®;(z) (¢ =0,1, ..., m) such that

@OGQO—’—G—KO and @léy_/i—KZC—Ki (221,,’177,)
It follows that z€ AN (N7, ®;1(—K;)) = Z, and so

Yo € ®o(2) N (Yo + e — Ky),

contradicting (4.6). This shows that ("' 4; = @. Let

ap == am:('%’@()’z_ll’ ""@m) and A1 :(i" Z_/O_'_e?:l_/l’ "'vZ/m)'
Then
max [[a; — a1l = [lef] <& < yoo(Ao, Ar, o oo Api) te.
0<i<m

By Theorem 3.1, there exist a@; = (2,450, .- ¥im) € A; and (27, y5g. ... ¥5,) €
(X x Ygx -++ xY,, 1) such that

m+1

- &
(4'11) Zd((l’j, yz()’ ""yzm)’Nc(Aivai)) < E’
i=0
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7= o = gue dwa{ o — 3. s s~ 3 .
(4.12) max{nxmﬂ 5 lymsro— o — ell. max ||ym+1.k—@k||}} <a
1<k<m
m+1 m
(4.13) Z(m:fn 0y ||y;-ik||) =
=0 k=0
and
m+1
(4.14) > (@Y oY) =0
=0

By the definition of each A;, one has
Nc(Aerlv aerl) - NC(A’ merl) X H K;‘—
i=0
and

N (A a;) = {(2", 45, - ym) 2 (2", y7) € No(Gr(D;), (24, y5,4)) and yj = 0 Vk # i}

for 0 < ¢ < m. This and (4.11) imply that there exist

(4.15) (7. 57) € No(Gr(®@)). (z;.:)  (0<i<m),
(4.16) Fry € No(Azpy), and (¢, ....cp) € [ K
k=0
such that
m+1 m m m e
@17y Y NE =i+ D N7 — vl D Nyl + D s — cill < -
=0 =0 i k=0 keti k=0
It follows from (4.14) that
~x * * ~ % * * - * * €
~i = W= T s — D+ Y W€ G t9By;,  0<ks<m.

i=0,i#k

By (4.14)—(4.17), one has

& &
JUZEDﬁd)k(zk,yk,k)<cz+13yz> +EBX*’ k=0,1...,m,

m+1
% & y
Tot1 € Nc(As xm+1) + EB)(*, and ; z = 0.
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It remains to show (4.10). To do this, note from (4.14) that > 7", 2} = —x

41> and so

m+1

(4.18) Z 7 < 2Z||m I

Similarly, by (4.14), one has —y; . = yr . + > i0.iztVip and so

m m m
Syl <D vl + D0 il
k=0 k=0 i,k=0,i#k
hence
m+1 m m m
SN il < ZHy;an.kH 0yl D gl
=0 k=0 k=0 1,k=0,i#k k=0
m m
(4.19) < 2(Z|y;+1,k|| s |y;k||).
k=0 1,k=0,i#k

By adding up the estimates (4.18) and (4.19) and making use of (4.13), we have

m m m
1< 2(2 b+ S il + > |y7.k||),
=0 k=0

i,k=0, ik
and so
1 m
5 = 2 (el + el +leym+1 d D0 Ny =<l
k=0 i,k=0. ik

(=il + el + /1

1 1

Il
o

(see (4.17)). Thus the first inequality in (4.10) holds. Moreover, respectively by (4.13)
and (4.17), note that

m m

&
D Ul +lypenad) 1 and > ler =l < o
=0 =0

Thus, by the triangle inequality, we also see that the second inequality in (4.10) holds.
The proof is completed. 0
THEOREM 4.4. Let @y be bounded below on the feasible set Z with respect to the or-
dering cone K, and suppose that K has a bounded base. Then one of the following two
assertions holds:
(i) For any e > 0, there exist x € Z and yy € ®y(Z) such that (Z,7%,) is an e-
Pareto solution of (4.1), and there ezist xy € B(Z.¢), yo € Pg(xg) N
B(yo.e), v; € B(z,¢) and y; € ®;(x;) N (—K;+¢eBy,) (1<i<m), ac AN
B(z,¢), and ¢; € K} satisfying the following properties:

Z||c||—1 and OEZD* (i, yi)(c; +eBy:) + N.(4, a) + e By-.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



906 XI YIN ZHENG AND KUNG FU NG

(ii) For any &€ > 0, there exist x € Z and yoy € ®y(z) such that (Z,yy) is an &-
Pareto solution of (4.1) and there exist xy € B(Z,¢€), yy € @y(z) N
B(yo.€), ©; € B(z,¢) and y; € ®;(x;) N (—K;+eBy,) (1<i<m), ac AN
B(z,¢),

z; € Di®i(z;, y;)(eBy:), and a" € N.(A, a)+eBy

satisfying the following properties:
m m
Sai+a =0 and Y[z + o] = 1.
=0 =0

Proof. By Proposition 4.2, for any n € N there exist z,, € Z and y,, € ®y(z,) such
that (Z,.y,) is a S-Pareto solution of (4.1). By Theorem 4.3 (applied to & = 1 and
A= %), there exist zy(n) € B(:’cn,%), yo(n) € @y(zy(n)) N B(y}n,%), z;(n) € B(in%)
and y;(n) € @;(z;(n)) N (—=K; + 5 By,) (1 <i<m), z,41(n) € AN B(Zy.y), ¢i(n) €
K],

1 1
(4.20) zi(n) € DiF(z(n), y;(n)) <c;‘(n) +nBY?> + EBX*’ 0<i<m,
and
. 1
(4.21) Tri1(n) € No(A, 241 (n)) + 53)(*
such that
az) Sam =0 a1+ Ls e+ ) > 12
. 2 zi(n) =0 an > mnax ||z (n ci(n 57
Foreach n € N, let r,, := Y ||¢;(n)||. We first consider the case when {r,} is not con-

vergent to 0. In this case, without loss of generality, we assume that r, > r for some

positive constant r and for all n €N (if necessary take a subsequence). Let
& (n) =" Then, &(n) € K7, 327, |#:(n)|| = 1, and it follows from (4.20)(4.22)

that

m—+ 2

nr

0€ > DiF (). 1) (210 + - By, ) + Nl () + 2 B e

This implies that (i) holds. Now assume that r, — 0. In this case, by (4.22),
L, =Y |25 (n)|| > 1 for all n sufficiently large. It follows from (4.20)-(4.22) that

zi(n) T 1 1 ,
L e prF(y(n), y; e —\By. ) +—By. 0<i<m,
e perto o) (724 ) B ) oy B, 0<ism
¥ 1(n) 1
™) ¢ N (A, 2p2(n) + - By,
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*

m+1 (TL) m—+1

Z%T:, and Z

i=0

This implies that (ii) holds. The proof is completed. a
In the Asplund space case, similar to the proofs of Theorems 4.3 and 4.4, we can
prove the following Theorems 4.5 and 4.6 (but with Theorem 3.4 replacing Theorem 3.1).

TueoreM 4.5. Let X, Yy, ..., Y, be Asplund spaces. Lete > 0 and (Z, y,) be a weak
e-Pareto solution of (4.1). Let Y; € o, ()N =K; (i=1,....,m). Then, for any A > 0,
there exist x; € B(z, 1), y; € ®;(z;) N B(y;, ), Tyt € A N B(i,/l), creK;,

T; € b*q)z(%yz)(cf +%BY>;) +%BX*» 0<i<m, and

m+1 € N(A Irn-ﬁ—l) + = 2 BX

such that
m+1 1 £ m
=0 - — = ) <14-.
D =0 and 5= <Y (el +lil) <1+

TueorREM 4.6. Let X, Yy, ..., Y, be Asplund spaces. Let @, be bounded below on the
feasible set Z with respect to the ordering cone K, and suppose that K, has a bounded
base. Then, one of the following two assertions holds:

(i) For any & > 0, there exist ¥ € Z and yy € ©y(Z) such that (Z,7,) is an &-
Pareto solution of (4.1) and there exist zy € B(Z, ), yy € Pg(xg) N
B(yo.€), ©; € B(z,e) and y, € ®(x;) N (=K, +eBy,) (1<i<m), ac
AN B(z,¢), and ¢ € K| satisfying the following properties:

ZHC}‘H:l and 0¢€ Z (i y) (e —i—sBY?)—i—N(A,a)—i—sBX*.
= =0

(ii) For any ¢ > 0, there exist T € Z and yg € ®y(Z) such that (Z,7Yy) is an -
Pareto solution of (4.1) and there exist zy € B(Z,¢), yo € ®(zy) N By, €),
z; € B(z,e) and y; € ®i(z;) N (=K;+eBy,) (1<i<m), ac AN B(z,¢),

xr e D'®,(;, yi)(eBy:), and a*€ N(A,a) + eBy-

satisfying the following properties:

m m
doaita =0 and > |z +]la"]| =1.
=0 =0

Under the Lipschitz assumption, we have the following sharper result.

TaEOREM 4.7. Let X, Yy, ..., Y, be Asplund spaces and @, be bounded below on the
feasible set Z with respect to the ordering cone K. Suppose that K has a bounded base
and that each ®; is Lipschitz. Then part (i) of Theorem 4.6 holds.

Proof. Let L > 0 be the Lipschitz constant of each ®;. Then, by [14, Theorem 3.2],

one has
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(4.23) sup{||z*||:2* € D"®;(x;, y:)(y;)} < Ll ;||

for all (z;,y;) € Gr(®;) and y; € YI. By Theorem 4.6, we need only show that
Theorem 4.6(ii) does not hold for ¢ € (O,W). Let z; € X, y; € ®;(z;), a € 4,

2 € D'®;(z;.y; )G (m+1> 7By:), and a" € N.(4,a)+ 3<m+1> 7 By satisfy Y 7"+

a*=0. It sufﬁces to show that Z "ol H +|la*|| #1. By (4.23), one has

o2l < Ly = gby. Hence Sollefl <3 and o]l = | Srpzl <5 So
™o llz; ]l + [la*|| < 2. This completes the proof. 0

Remark. Let f: X — R U {400} be a proper lower semicontinuous function, and

define
F(z) = [f(z),+o0) and G(z)={f(z)} VzelX.

Recall (cf. [14], [23]) the following known properties:
i) If (z*,—4) € N(Gr(F), (z,t)), then 4 > 0. .
(i) If 2> 0 and (2%, —2) € N(Gr(F), (z.1)), then t = f(z) and D"F(z, f(z))(4)

= A0f(z). . . A

iti) For any (z,t) € Gr(F), D"F(z,t)(0) = D" F(z, f(x))(0) = 0™ f(x).
(iv) If f is locally Lipschitz, then 0™ f(x) = {0}.
v) For any 4# 0, D" G(x, f(2))(2) = I(Af)(x).

(vi) D' Gz, f(2))(0) = 0 f(a).

=

A
[
i
=

Let ¢,:X—R be lower semicontinuous functions (i=0,1,...,m),
D,(z) = [¢s(2), +00) for 0 < ¢ < n, and ®;(z) = {¢;(z)} for n < i < m. In the case when
Yo=Y, ==Y, =R, Ky=-=K,=R,,and K., == K,, = {0}, (4.1) re-

duces to the usual numerical constraint optimization problem. Thus, in this special case,
the coderivatives appearing in Theorems 4.5, 4.6, and 4.7 can be represented in terms of
the Fréchet subdifferential of ®;; in particular, Theorem 4.7 recaptures Mordukhovich
and Wang’s result mentioned in section 1.

Remark. Let G: X — 2Y1<*Yu be such that

G(z) =@ ()X -+ xX®,(z) VzeX
and K :== K;x --- xK,,. Then vector optimization problem (4.1) can rewritten as
Ky — min ®\(z),
Glr)N-K # @,
(4.24) z€ A

It is clear that the feasible set of (4.1) and the one of (4.24) are identical. Hence (Z, ;) is
an g-Pareto solution (resp., a weak e-Pareto solution) of (4.1) if and only if it is an &-
Pareto solution (resp., a weak e-Pareto solution) of (4.24). Note that

m
(+) S DD, (5 1) (1) € DG (s oy (5 )
=1
for any z € X, y; € ®,(z), and y¥ € Y* (i=1, ..., m). But, even in the special case

when ®@;(z) = [(¢;(x), +0)) for 1 <i<n and ®,(z) = {¢;(x)} for n < i< m, one
cannot establish the converse inclusion of (*). As for the coderivatives with respect
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to the Clarke normal cones, the relationship between > 7, Di®,(z,y,;)(y:) and

DiG(x, (y1, -+ Ym)) (Yl - .., ys) is more complicated; we don’t even know whether
or not the following inclusion (*') is true:

m

(*,) Z D’Z‘Di(% yz)(yj) C Dt G(l’, (yl’ e ym))(yT’ AR y;kn)-
=1

Hence, we cannot establish Theorems 4.3-4.7in terms of the corresponding necessary or
sufficient conditions for a weak e-Pareto solution (or an e-Pareto solution) of (4.24).

Unfortunately, Theorems 4.3—4.7 cannot cover Chou, Ng, and Pang’s result men-
tioned in section 1 (because the e-minimizer of ¢ over A appearing in their result is itself
an “g-critical point” of ¢ over A). For the rest of this paper, let us consider the following
problem (which is a special case of (4.1)):

(4.25) Ky — min ®y(z) subject to x € A,

where @j: X — Y is a single-valued function and A is a nonempty closed subset of X.
The absence of functional constraint would allow us to draw some stronger conclusions
and thereby extend the corresponding numerical result of Chou, Ng, and Pang.

For & > 0, we say that Z € A4 is an e-Pareto solution of (4.25) if

Let epig, (@) denote the epi-gragh of @ with respect to K, and be defined by
epig, = {(z,y) € X x Y1y € ®y(z) + Ko}

Imitating subdifferential formula (CF) of a scalar-valued function, we adopt the follow-
ing coderivative Di®q(z): Y =3 X* defined by

Diy(a)(y") = {a* € X*: (5%, —y*) € N, (epix, (@), (5. ®y(2)))} V y° € V3.
Noting that
T (epig, (@), (2, Dy(2))) = T.(epig, (@), (z, @y(z))) + {0} x Ky,
it is easy to verify that
dom(D;®@(z)) C K.

We will need the following lemma, which is of some interest by itself.
Lemma 4.8. Letz € X and y* € K. Suppose that ®,: X — Y is locally Lipschitz.
Then

0c(y" » ®g)(z) C Dy Py (2)(y").

Proof. The version holds trivially if y* = 0. Next assume that y* € K \ {0}. Then,
there exists ¢y € K such that (y*, ¢g) > 0. Let

S = {(u, (", ) (v, 0) € Te(epig, (Po), (2, @y(2)))}-

By (CF), we only need to show that
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(4.26) § C Te(epi(y o @y)(2), (2, (3", @o(2))))-
To do this, let (u, ) € S. Then there exists v € Y, such that
(u,v) € Te(epix, (Do), (#, Py(2))) and = (y", v).

Consider any sequences {(z,,t,)} C epi(y* o ®y) converging to (z, (y*, Dy(z))) and
{s,} C R, converging to 0. It is clear that {(z,, ®y(z,) + W o)} is a sequence
in epig, (@) converging to (z, @y(x)). Hence there exists a sequence {(u,,v,)} conver-

ging to (u, v) such that

tn — <y*v (I)O(xn»

<I7L’¢O(In) + <y* C()>

CO) + sn(un’ Un) € epiKo (q)()) V n e N

This implies that
(Tns ) + 80 (Uns (Y*, vs)) € epi(y” o @) V neN.

Since (uy, (y*, v,)) — (u,7), it follows that (u,r) € T .(epi(y* o Dy), (z, (v*. Py(z)))).
This shows that (4.26) holds. O

In the special case when (Y, Ky) = (R,R,), the following theorem recaptures
Chou, Ng, and Pang’s result. For the vector case, we need the condition that
int(K{) is nonempty. This condition is equivalent to that K has a bounded base;
in this case, {c¢ € C:(y*, ¢) =1} is a bounded base of C for any y* € int(C").

TueoREM 4.9. Let y* € int(K) and suppose that ®,: X — Y is a locally Lipschtiz
function such that @ is bounded below on A with respect to K. Then, for any e > 0,
there exists t, € A such that x, is an e-Pareto solution of (4.25) and

(4.27) d(0, De®o(z.)(y") + No(A, z,)) <e.

Proof. Let © := {c € Ky:(y*, ¢) = 1}. Then O is a bounded base of K. Since @ is
bounded below on A with respect to K, y* o @, is bounded below on A. By Lemma 4.8
and Chou, Ng, and Pang’s result, there exists =, € A such that

&

(4.28) (v, @g(z,)) < ig/fl@*»q’o(ﬂ?)) +M—+1

and (4.27) holds, where M := supyce||@||. It remains to show that z, is an e-Pareto
solution of (4.25). We only need to show that

429) @A)+ Ko N (@)~ o) - [0 e+ aua)

(as diam([0,7/+]@) < ¢&). To do this, let y=dy(z,)— 10 >g @y(a) for some
t€0,400), 8 € O, and a € A. Since y* € int(K(), it follows from (4.28) that

&

E= (1 10) < (4 @ (a) — @gla)) < 57T

Therefore (4.29) is shown. o
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