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1. Introduction. Let (H, 1) be a complete, semi-metrizable topological vector space.
Let p be a pseudo-norm (not to be confused with a semi-norm, cf. (8), p. 18) inducing
the topology 7. For each positive real number r, let

V. ={xeck: p(x) < r}

Let f be a continuous linear function from # into a topological vector space F'. The
open mapping theorem of Banach may be stated as follows: If fis nearly open, that is,
if the closure f(7) of each f(V,) is a neighbourhood of O in F then J(V) 2 f(V.) whenever
B > o > O;inparticular, each f(1]) is a neighbourhood of O. We note that f, identifying
with its graph, is a closed linear subspace of the product space £/ x F'. In this paper, we
shall employ techniques developed by Kelley (6) and Baker (1) to extend the theorem
to the case where fis taken to be a closed cone in & x F'. The generalized theorem throws
some light onto the duality theory of ordered spaces. In particular, the theorem of
Ando-Ellis is generalized to (not assumed, a priori to be complete) normed vector
spaces.

9. Main results. Recall that any subset S of B x F is called a relation. If A = E,

we write
S(A) ={yeF:(a,y)eS forsome acA}.

The inverse relation of § is the set S~ = {(y,x) e F x E: (»,y) S}

TarorREM 1. Let (X, T) be a complete, semi-metrizable topological vector space and let
p, V. be as in section 1. Let F be a topological vector space. Let S be a closed conein B x F,

and suppose that S(V,) is a neighbourhood of O in F, for each r > O. Then, whenever
B > a > 0, we have that S(Vj) 2 S(V.); consequently each S(V.) is a neighbourhood of O
mF.

Proof. Following Kelley ((6), p. 203), we first show that if y eS(4) for some A = E
then there exists a set B of arbitrary small diameter such that 4 n B = ¢ and y eS(B).
To see this, let € > 0. Then S8(V)) is a neighbourhood of O in F hence contains a
symmetric neighbourhood W of O. Notice that the neighbourhood y+ W of y
must intersect S(4). Hence there exist ac A4 and y'ey+ W such that (a,y)eS.
Let B=a+V,. Then AnB + ¢, the diameter of B is lessthan (or equal to) 2¢

and yeS(B). In fact, since W is symmetric, yey'+ W, so y =y +w for some
we W < S(V,). There exists a net {w,} in S(V,) and hence a net {v,} in V, such that

(v,,w,)eS and w,—>w.
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Since (a,y') €S and § is a cone, it follows that w, +y' € S(a +v,) = S(B); passing to the

limit, we have y = w+y'€S(B).

‘We now apply the above observation to complete proof as follows. Let § > « > O
andlete = f—a. Lety,eS(V,). Write 4, for V,. By the first partof our proof, there exists
a set A, of diameter less than e such that 4,n 4; + ¢ and y,€S(4,). Inductively,
we can construct a sequence {4,} of sets such that the diameter of 4,, is less than
¢/2n, A, nA,.,+ ¢ and y,e8(4,). For each n =0, 1,2,..., take a,e4,n 4,1
Then {a,} is a Cauchy sequence in the complete space £ so converges to, say, a. It is
easy to see that ¢V, = V. Since the sets 4, are ‘small’, it is also easy to see that
each neighbourhood of a contains 4, for large enough n. Next we show that (a, y,) €S.
In factlet @ x H be a neighbourhood of (a, y,) in & x I, where G, H are neighbourhoods
of @ and y, respectively. Then, for large n, 4,, = G so y,€8(4,) < S(G); hence the
neighbourhood H intersects S(G). Then there exist he I and g e @ such that (g, h)€S.
This shows that the arbitrary neighbourhood G x H of (a,v,) intersects S. Since § is
closed, it follows that (a,y,) €S = S. Therefore y,€S8(a) < S(V;), and so S(T) = N{AR
The theorem is thus proved.

By considering the inverse relation, we have the following variant of Theorem 1:

TrrorEM 1. Let H,V, and F be as in Theorem 1. Let T be a closed cone in F x B, and

suppose that T—(V,) is a neighbourhood of O in F for eachr > O. Then, whenever

B>a>0, T =2THY);
consequently each T—1(V,) is a neighbourhood of O in F.
The above theorem is a numerical version of a theorem of Baker ((1), Theorem 12),
and the numerical character is essential for its application to ordered normed spaces
(see Theorem 3 below).

CoroLLARY 1. Let B, V,, and F be as in Theorem 1, and suppose further that F is Haus-
dorff. Let f be a continuous linear function from E into F. If F(V) is a neighbourhood of O
in F for each r > O then m > f(V) whenever § > a > O. Consequently f is an open
mapping if (and only if) f is nearly open.

Proof. Since f is linear and continuous, f (identifying with its graph) must be a
closed cone in E x F.

The corollary is slightly more general than that givenin ((8), p. 76) and in ((4), p. 36);
Schaefer considers the case when F' is metrizable and while Husain considers a non-
numerical version in the case when F is Hausdorff.

3. Applications. Let (F,7°) be a topological vector space with a cone C. Recall
that ((5), p. 94) (¥, C,7") has the open decomposition property (resp. semi-open decom-
position property) if for each neighbourhood U of O, the set

UnC—-UnC(resp. UnC—-UUO0)

is also a neighbourhood of O. The first stated decomposition property implies that
E = 0 -0, and the second only implies ¥ = (' —C. Duhoux(2) has recently shown that
if B’ is order-convex in the algebraic dual then the two decomposition properties
are in fact equivalent.
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Suppose (#,.77) is semi-metrizable and let p be a pseudo-norm inducing .7. For
r>0,let U = {xeF:p(x) < r}, and

UF=0nC-U,nO.

Then the sets U}* form a neighbourhood basis at O for a uniquely determined semi-
metrizable vector topology 7 in the linear subspace F; spanned by C. For each 2 € F}

we define p*@) = inf{r > 0:xe U},

and let V. ={xek: p*x) < 7}

Then V, = Uj = V; whenever O < « < f. It follows that p* is a pseudo-norm inducing
the topology 77, in F,.

TarorEM 2 (Jameson (5), p. 105). Let (F, ") be a metrizable topological vector space
and let C be a T -complete cone in F. Suppose for each r > 0, U,n C—U,n C is a neigh-
bourhood of O. Then Uy N € — U, n C contains U, n O — U, n C and hence is a neighbourhood
of O, whenever f > o > 0. In particular, if (E, C, T") has the semi-open decomposition
property then it has the open decomposition property.

Proof. By a theorem of Klee (cf. (8), p. 221), (F},.7,) is a complete metrizable space.
Let ¢ be the identity map from F, into F. Since 7, is obviously finer than 7, ¢ is con-
tinuous (and linear), so its graph is a closed cone in F; x F. By assumption each (V)
is a neighbourhood. Hence we can apply Theorem 1 to conclude that i(Vp) 2 4(V,)
whenever § > o > 0. Hence, if § >y > a.

WUF) 2 i) 24(7,) 2 (U%),

ie. U nC-UynC2U,nC-U,nCin the space (F,T).

The next application of Theorem 1 is concerned with ordered normed spaces.
Let (X, ]|.||) be a normed space ordered by a cone C. Let T denote the closed unit
ball in X and let « be a positive real number. Following(3), we say that O is

(i) a-normalif (X+0)n(X-0) € aZ,

(ii) o-generating if X < a.co(Z+U —Z+), where X+ =X nC.

A theorem of Krein—Grosberg states that if C'is a-generating then the dual cone ¢’
is a-normal in the Banach dual X’. Conversely, Ellis(3) has shown that if X and C
are complete and if O’ is «-normal then C is (« + €)-generating for each ¢ > O.

TeEOREM 3. Let (X, || ||) be @ normed space and let C be a norm-complete cone in X.
Suppose the dual cone C" is a-normal in the Banach dual space (X', || ||) for some o > O.
Then C is (a+ ¢)-generating for each e > O, and (X, ||.|) is complete.

Proof. Let X' denote the closed unit ball in X’. Then, since C is closed in X, it is
easy to verify that (via the Hahn-Banach theorem),

(B +C) =Z70C7" =30 (~C) =—Z+

where the polars are taken in X. By the Alaoglu theorem, X'+ C’ and X'—(C’ are
o (X', X)-closed convex sets. Also since €’ is a-normal,

(' +0) 0 (Z'—0") < o,
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it follows from the bipolar theorem that
(1) < [(B'+C)n (X =0 = co((Z'+C) U (& — C'y)y=rco(—2tuxt). (1)

Now let us consider the subspace X; = € —C endowed with the semi-norm p, the
Minkowski functional of co (Z+ U —Z+). Since C'is || . |-complete, (X;, p) is complete by
Klee’s theorem (cf. (8), p. 221). Let V, = {zeX;: p(2) < r}, and let ¢ be the identity map

from (X4, p) into (X, |.[))- By (1), (1/a)Z < i(}). Hence each i(F;) is a neighbourhood
of Oin (X, ] .|). Applying Theorem 1, we conclude that

i(Vg) 2 i(V,) whenever f>a > 0.

Write D for co (EZ+U —Z+) then D < ¥, and V, < fD whenever § > « > O. Hence it
follows that

@ (—3+Uu ) =i(D) < i) < i(Ny.) S 4((1+26) D) (e > 0),

and from (1) we conclude that

1 1
- = +y =3+
1+26°0¢2§D co(ZtU —XT).

Therefore C is a(1 + 2¢)-generating for each ¢ > O, equivalently C'is (« +¢)-generating
for each ¢ > 0. Furthermore, 4 is continuous from (X, p) onto (X, || .|), and is open by
Corollary of Theorem 1. Therefore (X, | .| ) ishomeomorphic to (X, p) and hence com-

plete.

4. Continuous maps from order-infrabarrelled spaces. We first recall that an ordered
locally convex topological space E is called an order-infrabarrelled space if each barrel
in E'which absorbsall order-intervalsis a neighbourhood of the origin. A barrelled space
with a cone must be order-infrabarrelled but the converse is not true as shown in (7).

Now let E, F be two ordered topological vector spaces and suppose the positive
cone F+in F is closed. Let ¢ be a sublinear function from £ into F and let 7' be the
‘subgraph’ of ¢:

T = {(»y)eE x F:tx) < y}.
Since ¢ is sublinear, it is easily seen that 7'is a cone in &/ x F. Further, if ¢ is continuous,
then T is closed. In fact, suppose {(%,, ¥,)} is a net in 7' convergent to (g, %,) in & x F.
Then y, —x,) < Oin F. Passing to the limit, since F'* is closed and ¢ is continuous, it
follows that y,—t(%,) > O, i.e. (¥, yo)€T. A partial converse of this observation is
given in the following theorem:

TarorEM 4. Let B be an order-infrabarrelled space with the open decomposition
property, and let F be a complete, metrizable locally convex topological vector space with o
normal cone. Let t be @ monotonic and sublinear function from E into F, and let

T={(xy)cExF:tx) <y}
If T is closed then t is continuous.

Proof. When we say the cone in F' is normal we mean the order-convex and convex
neighbourhoods of O in F form a local basis. In this case, to show that the sublinear
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map # is continuous it is sufficient to show that £ is continuous ab the origin O (1). Take
an order-convex and circled convex neighbourhood V of O in F. We have to show that
t=1(¥) is aneighbourhood of O in Z. Let B+ denote the Ppositive cone in K and consider
“the set :=X(V) n B+. If #, y are in Y V)n B+ and if O < A, 4 < 1 with A+u = 1 then
O < Az +py) < M=)+ pt(y)e V; so- WAz +py)eV and Az-+uyet=Y(V)n E+. This
shows that t~1(V) n E+is convex. Notice also that it absorbs each positive element in

E. Next, let
U=tYV)nE+—tYV)n B+

Then U is a symmetric convex set in &. Also ¢ sends U into V. In fact,if u = 2, —w,e U
and zy, %, €41 V) n B+ then since ¢ is monotonic and sublinear, we have

—4(®s) < 8(w1) — (%) < by, — 1) < b(%y).

- Since V is symmetric and order-convex and since 8(#y), H(ay) € V, it follows that

Hu) =ty —a,) e V.

This shows that wet=1(V) and so that U < t7Y(V). Further, since F has the open
decompositon property, B = E+— E+, so U absorbs every element of . Finally, we
show that U absorbs all intervals in Z. To this end, let I = [0, #] be an order-interval
in B, where z > 0. Then #(%) > O. Since Visa neighbourhood of 0, we can find ¥ > O
such that #(z) e MV. Since ¢ is monotonic and V is order-convex, we have

HI) < [0, tz)] < MV.

Hence I = M(#-Y(V)n E+) = MU. This shows that I absorbs 1. Consequently, since
E+ is generating in H, U absorbs all order-intervals (cf. (5), p. 132). We have shown
that the closure U is a barrel in the order-infrabarrelled space K, and absorbs all
intervals; hence U is a neighbourhood of O in E. Since T-YV)=2tYV) =2 U, it follows

that 7'-1(V) is a neighbourhood of O in E. Since V is arbitrary, it follows from Theorem
1 (or Theorem 1’) that 7-1(V)is a neighbourhood of O in . Let

W = T-YV)n E+—T-Y V) B+,

Since £ has the open decomposition property, W is also a neighbourhood of O in .
To complete our proof, we show that W < t71(V). To see this, let w = wy—wye W,
where w;, w, are in T-YV)n E*. Then, for i = 1,2, there exists v;€V such that
(w;,v;) €T Hence O < t(w;) < v;for each i, and

—Uy S —U(wy) < Hwy) ~H(wy) < Hw) = By —w,) < Hwy) < vy
Since V is symmetric and order-convex, it follows that t(w)e V. Therefore W < t~1(V).

Remark. The theorem was proved by Baker(1) in the special case when Z is a bar-
relled space and when the monotonic sublinear function satisfies some additional
properties. Our proof is modified from that given by Baker. As pointed out in ((1),
P. 244), theorems of this kind are essentially generalizations of the following well-
known theorem: if F is a Frechet space (i.e. a complete and metrizable locally convex
space) and a vector lattice with a closed and normal cone then the lattice operations in
F are continuous.
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Finally, following suggestions of ((9), P 203) and ((1), p. 243), we conclude with an
application of Theorem 4 to astudy of F K spaces. Let F' be an FK space (cf. (9), p. 202).
Then F is a subspace of the sequence space § and so is naturally ordered by the relative

cone F+ = F nst.

TrrorEM 5. Let B be as in Theorem 4, F an FK space, and suppose that the cone F+
+s mormal in F. Let t be a monolonic and sublinear function from B into F. Then t is
continuous if and only if it s continuous as o map vnio s.

Proof. Suppose that ¢ is continuous as a map from  into s. Then it is not difficult to
verify that the subgraph T of ¢ is closed in B x F, hence ¢ is continuous into F' by
Theorem 4. This proves one half of the theorem; the other half is obvious since the
topology in F is finer than that of s.

CoRrOLLARY. Let B, Fbe FK spaces, and suppose that the cone B+ is generating in E
and F+ is normal in F. Then any monotonic and sublinear function from B into F s

continuous.

Proof. Tt is well known that a closed and generating cone in a Fréchet space gives the
open decomposition (cf. (5), p. 105). Thus B satisfies the conditions in Theorem 4. Since
the topology in E is always fner than that of s, ¢ is continuous from A into s. Thus
Theorem 5 can be applied.

I am grateful to the referee for pointing out a big mistake in my original manuscript,
and for his helpful comments.
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