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Abstract. In this paper, we mainly study various notions of regularity for a finite collec-
tion {C1, · · · , Cm} of closed convex subsets of a Banach space X and their relations with
other fundamental concepts. We show that a proper lower semicontinuous function f on X
has a Lipschitz error bound (resp., Υ-error bound) if and only if the pair {epi(f), X×{0}}
of sets in the product space X × R is linearly regular (resp., regular). Similar results for
multifunctions are also established. Next, we prove that {C1, · · · , Cm} is linearly regular
if and only if it has the strong CHIP and the collection {NC1(z), · · · , NCm(z)} of normal
cones at z has property (G) for each z ∈ C := ∩m

i=1Ci. Provided that C1 is a closed convex
cone and that C2 = Y is a closed vector subspace of X, we show that {C1, Y } is linearly
regular if and only if there exists α > 0 such that each positive (relative to the order
induced by C1) linear functional on Y of norm one can be extended to a positive linear
functional on X with norm bounded by α. Similar characterization is given in terms of
normal cones.
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1 Introduction

The main objective of this paper is to study various notions of regularity (for definitions,
see Section 2) for a finite collection {C1, · · · , Cm} of closed convex subsets of a Banach
space X and their relations with other fundamental concepts such as the strong conical
hull intersection property (the strong CHIP for short), Jameson’s (G)-property and error
bounds in mathematical programming. The concept of regularity and its quantitative
versions were introduced in [3, 4, 6] by Bauschke and Borwein, and were utilized to estab-
lish norm or linear convergence results. The concepts of the strong CHIP was introduced
by Deutsch, Li and Ward in [8], and was utilized in [9] to reformulate certain optimiza-
tion problems with constraints. All the works cited above were in the Hilbert space or
Euclidean space setting. The concept of property (G) was introduced by Jameson in [13]
for the case when each Ci is a cone, and was utilized to give a duality charaterization
of the linear regularity. His result is extended here to the general case (i.e. without the
additional assumption that each Ci is a cone). More direct stimulus to our work is the
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paper [6] by Bauschke, Borwein and Li, where all these notions were studied with many
interesting results on the relationships among them. Assuming C := ∩m

i=1Ci 6= ∅, we
show in Theorem 4.2 that {C1, · · · , Cm} is linearly regular if and only if it has the strong
CHIP and the collection {NC1(z), · · · , NCm(z)} of normal cones at z has property (G) for
each z ∈ C. For the special case when X is an Euclidean space, some partial results are
known before: the sufficient part was proved in [6, Corollary 4] while the assertion that
the strong CHIP follows from the linear regularity was observed by Pang in [21, Propo-
sition 6] (see also [14, Proposition 2] and [6, Theorem 3]). Provided that C1 is a closed
convex cone and that C2 = Y is a closed vector subspace of X, we show in Theorem 4.3
that {C1, Y } is linearly regular if and only if there exists α > 0 such that each positive
(relative to the order induced by C1) linear functional on Y of norm one can be extended
to a positive linear functional on X with norm bounded by α. Similar characterization is
given in terms of normal cones.

The definition of regularities can obviously be extended to the case where each Ci

is not necessarily convex. Nevertheless, this naive extension of the definition enables us
to establish another interesting link of the concept of regularity to the study of error
bounds for functions which are not necessarily convex. We show in Section 3 that a
proper lower semicontinuous function f on X has a Lipschitz error bound (resp., Υ-error
bound) if and only if the pair {epi(f), X × {0}} of sets in the product space X × R is
linearly regular (resp., regular). Similar results for multifunctions are also established.
In an accompanying paper [20] further applications will be made in this direction; in
particular we give a complete answer to the error bound problem for the inequality system
Ax+ b ∈ Sice, where A : X → Rn is a continuous linear operator, b ∈ Rn and Sice denotes

the “ice-cream cone” consisting of all (x1, · · · , xn) ∈ Rn satisfying

√
n−1∑
i=1

x2
i ≤ xn.

The authors would like to thank Professor Jong-Shi Pang for valuable suggestions who
first suggested us to study the error bound problem involving the ice-cream cone; our study
of this problem and his paper [21] soon led us to address issues relating to regularity and
error bounds. We also thank the two referees and the associate editor: their comments
have helped to improve our presentation, and their criticisms have prompted us to try to
place our results in a more motivated perspective relating to previous published works.
In particular the whole Section 4 is added to in this spirit in the revision.

2 Definitions and Preliminary Results

Let X be a Banach space (unless specified otherwise). Let X∗ denote the (topological)
dual of X with the norm ‖ ‖∗ defined by

‖x∗‖∗ = sup{|x∗(x)| : x ∈ X, ‖x‖ ≤ 1}, x∗ ∈ X∗. (2.1)

Following the usual practice, we often write ‖ ‖ for ‖ ‖∗. For a set S in X, the closure
(resp. boundary) of S is denoted by S̄ (resp. bd S). Moreover, ιS denotes the indicator
function of S: ιS(x) = 0 if x ∈ S and ιS(x) = +∞ if x 6∈ S. The polar of a set S is

S◦ = {x∗ ∈ X∗ : x∗(x) ≤ 1,∀x ∈ S}
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and the bipolar (cf. [12, p.67]) of S is

◦(S◦) := {x ∈ X : x∗(x) ≤ 1,∀x∗ ∈ S◦}.
Note that if S is a cone then S◦ = {x∗ ∈ X∗ : x∗(x) ≤ 0,∀x ∈ S} and ◦(S◦) = {x ∈ X :
x∗(x) ≤ 0,∀x∗ ∈ S◦}. For a convex set S and x ∈ S, TS(x) denotes the tangent cone of
S at x and is defined by (cf. [2, p.166])

TS(x) :=
( ∪t>0

1

t
(S − x)

)
. (2.2)

It is easy to see that (2.2) can be refomulated as the following

TS(x) = {h ∈ X : dist(x + th, S) = o(t) for t ≥ 0}. (2.3)

Here and throughout, dist(x, S) denotes the distance of x to the set S. The normal cone
of S at x is denoted by NS(x) and is defined to be the polar of TS(x):

NS(x) = {x∗ ∈ X∗ : x∗(h) ≤ 0, ∀h ∈ TS(x)}. (2.4)

By the Bipolar Theorem (cf. [12, p.68]), TS(x) is the bipolar of itself.

Following [8, 9], a colletion {Ci}m
i=1 of closed subsets of X is said to have strong CHIP

at x ∈ ∩m
i=1Ci if NC(x) =

m∑
i=1

NCi
(x).

Lemma 2.1. Let X be a normed vector space, K ⊂ X a nonempty closed convex set,
y ∈ K and h ∈ X\TK(y). Let x(t) = y + th for t > 0. Then

lim
t→0

dist(x(t), y + TK(y))

dist(x(t), K)
= 1. (2.5)

Proof. Since K ⊆ y + TK(y), we have 0 < dist(x(t), y + TK(y)) ≤ dist(x(t), K). Thus we

only need to prove lim inf
t→0

dist(x(t),y+TK(y))
dist(x(t),K)

≥ 1, namely

lim inf
t→0

tdist(h, TK(y))

dist(x(t), K)
≥ 1. (2.6)

Let ε > 0. Take h̄ ∈ TK(y) such that

‖h− h̄‖ ≤ dist(h, TK(y)) + ε.

For t > 0, let z(t) = y + th̄. Since h̄ ∈ TK(y), we have dist(z(t), K) = o(t). Thus

dist(x(t), K) ≤ ‖x(t)− z(t)‖+ o(t) = t‖h− h̄‖+ o(t).

It follows that

tdist(h, TK(y))

dist(x(t), K)
≥ tdist(h, TK(y))

t[dist(h, TK(y)) + ε] + o(t)
.

Hence (2.6) is seen to hold as ε > 0 is arbitrary.
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Lemma 2.2. Let X be a Banach space, K ⊂ X a nonempty closed convex set. Let
0 < γ < 1. Then for each x ∈ X there exists z ∈ K such that

dist(x, z + TK(z)) ≥ γdist(x,K).

Proof. Let x 6∈ K. By [19, Proposition 1.3], there exist z ∈ K and z∗ ∈ X∗ with norm 1
supporting K at z such that

z∗(x− z) ≥ γ‖x− z‖.

Note in particular that z∗(y) ≤ 0 for each y ∈ TK(z). Denoting {x ∈ X : z∗(x) = 0} by
Ker(z∗), it follows that

dist(x, z + TK(z)) ≥ dist(x− z, Ker(z∗)) = z∗(x− z) ≥ γ‖x− z‖ ≥ γdist(x,K).

For a real number α, we write α+ for max{α, 0}. Given lower semicontinuous convex
functions f and g on X, the conjugate function of f is denoted by f ∗, and the infimal
convolution of f , g is denoted by f2g:

(f2g)(x) = inf
u+v=x

{f(u) + g(v)}, ∀x ∈ X. (2.7)

If the infimum is attained, the convolution is said to be exact. Denote {x∗ ∈ X∗ :
f ∗(x∗) < +∞} by dom(f ∗). We shall need the following results from convex analysis.

Lemma 2.3. Let f and g be proper lower semicontinuous convex functions on X.

(i) (f2g)∗ = f ∗ + g∗.

(ii) f ≤ g ⇔ g∗ ≤ f ∗.

(iii) If p, q > 1 and 1
p

+ 1
q

= 1, then (1
p
‖ · ‖p)∗ = 1

q
‖ · ‖q

∗.

(iv) If C is a closed convex cone in X, then (ιC)∗ = ιC◦.

(v) For any α > 0 and any x∗ ∈ X∗, (αf)∗(x∗) = αf ∗(x∗
α

).

(vi) If at least one of f , g is continuous, then (f + g)∗ = f ∗2g∗ and

(f ∗2g∗)(x∗) = min
u∗+v∗=x∗

{f(u∗) + g(v∗)}, ∀x∗ ∈ dom(f ∗) + dom(g∗).

Proof. For (vi), see [1, p.127] and [2, Chap. 4, Sec. 4, Corollary 12]. For other parts, see
[2, Chap. 4] and [22, Chap. 16].

Remark 2.1. By Lemma 2.3 (vi), if fi is continuous on X for each 1 ≤ i ≤ m, then

(f1 + · · ·+ fm)∗(x∗) = (f ∗1 2 · · ·2f ∗m)(x∗) = min
mP

i=1
x∗i =x∗

{
m∑

i=1

f ∗i (x∗i )}, ∀x∗ ∈
m∑

i=1

dom(f ∗i ).
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In the proof of our Theorem 4.1, we need the following elementary lemma. For x ∈ Rm,
let xi denote the i-th coordinate of x for 1 ≤ i ≤ m. For 1 ≤ p ≤ ∞, The p-norm of x,

denoted by ‖x‖p, is defined by ‖x‖p = [
m∑

i=1

|xi|p]
1
p , where we adopt the convention that,

for p = ∞,

max{|x1|, · · · , |xm|} := [
m∑

i=1

|xi|p]
1
p . (2.8)

Lemma 2.4. m− 1
p‖ · ‖p ≤ ‖ · ‖∞ ≤ ‖ · ‖p ≤ ‖ · ‖1 ≤ m1− 1

p‖ · ‖p for p ≥ 1. Moreover, for
any x ∈ Rm, {‖x‖p} is converges monotonically to ‖x‖∞.

Proof. For a proof, see [10, p.145].

3 Regularities of Sets in Metric or Normed Spaces

The results in this section do not require the completeness assumption: For subsection
3.1, X is assumed to be a metric space while for subsection 3.2, X is assumed to be a
normed vector space.

3.1 Metric Space Case

Throughout this subsection, let X and Y denote metric spaces. For simplicity of notations,
we use the same d to denote the given metrics for X and Y , as well as the metric for the
product X × Y defined by

d
(
(x, y), (x′, y′)

)
= d(x, x′) + d(y, y′).

The following definitions are taken from [3, 4] though, at that time, X was assumed to
be a Hilbert space and each Ci was assumed to be convex.

Definition 3.1. Let {Ci}m
i=1 be a collection of closed sets in X such that C := ∩m

i=1Ci 6= ∅.
We say that {Ci}m

i=1 is

(a) regular if for any sequence {xk} in X it holds that

max
1≤i≤m

{dist(xk, Ci)} → 0 ⇒ dist(xk, C) → 0; (3.1)

(b) linearly regular if there exists τ > 0 such that

dist(x,C) ≤ τ max
1≤i≤m

{dist(x, Ci)}, ∀x ∈ X. (3.2)

(in this case, we also say that {Ci} is linearly regular with modulus τ).
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Note that τ must not be less than 1 because C ⊆ Ci for each i. Note also that (b)
holds if and only if there exist κ > 0 and p ∈ [1,∞] such that

dist(x,C) ≤ κ[
m∑

i=1

distp(x,Ci)]
1
p , ∀x ∈ X. (3.3)

Let f : X → (−∞, +∞] be a function such that Sf := {x ∈ X : f(x) ≤ 0} 6= ∅. We
say that f has an error bound if there exists τ > 0 such that dist(x, Sf ) ≤ τ [f(x)]+ for
each x ∈ X (in this case we also say that τ is an error bound of f). In the situation of
Definition 3.1, if we define f by

f(x) = max
1≤i≤m

{dist(x,Ci)}, x ∈ X, (3.4)

then C = Sf , and (3.2) simply means that τ is an error bound of f . That is, {Ci}m
i=1 is

linearly regular if and only if f defined by (3.4) has an error bound.
For the rest of this section, we shall focus on the special case when m = 2. Though

the order is unimportant, {C1, C2} is referred to as a pair to emphasize that the collection
consists of two sets. The following theorem will be useful to us; part (b) reduces the linear
regularity of {C1, C2} to a simpler one: the distance from the points of one of the sets
(say C1) to the intersection C are bounded by a constant multiple of their distances to
the other set C2. Part (a) is of similar spirit as (b).

Theorem 3.1. Let X be a metric space, and let C1, C2 be closed sets in X such that
C := C1 ∩ C2 6= ∅. Then the following assertions hold.

(a) The pair {C1, C2} is regular if and only if

lim
k→+∞

dist(xk, C) = 0 whenever {xk} ⊆ C1 and lim
k→+∞

dist(xk, C2) = 0. (3.5)

(b) The pair {C1, C2} is linearly regular if and only if there exists τ > 0 such that

dist(x,C) ≤ τdist(x,C2), ∀x ∈ C1. (3.6)

In fact if (3.6) holds then

dist(x,C) ≤ (2τ + 1) max{dist(x,C1), dist(x,C2)} ∀x ∈ X. (3.7)

Proof. The necessity parts of (a) and (b) are trivial. Conversely suppose (3.5) holds but
that {C1, C2} is not regular: there exist ε > 0 and a sequence {yk} in X such that

lim
k→+∞

[max{dist(yk, C1), dist(yk, C2)}] = 0 (3.8)

but

inf
k

dist(yk, C) > ε. (3.9)

By (3.8), there exists {zk} ⊂ C1 such that lim
k→+∞

d(yk, zk) = 0 and hence that lim
k→+∞

dist(zk, C2) =

0. From (3.9), it follows also that dist(zk, C) > ε
2

for all large enough k. This contradicts
(3.5).
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To complete the proof of Theorem 3.1, it remains to show that (3.6) implies (3.7).
Suppose (3.7) is false: there exists x̄ ∈ X such that

dist(x̄, C) > (2τ + 1) max{dist(x̄, C1), dist(x̄, C2)}. (3.10)

Let ε > 0; take a1 ∈ C1 and a2 ∈ C2 such that

d(x̄, ai) ≤ dist(x̄, Ci) + ε, i = 1, 2.

Then, it follows from (3.6) that

max{dist(x̄, C1), dist(x̄, C2)}+ ε

≥ max{d(x̄, a1), d(x̄, a2)}
≥ 1

2
[d(x̄, a1) + d(x̄, a2)]

≥ 1

2
d(a1, a2) ≥ 1

2
dist(a1, C2) ≥ 1

2τ
dist(a1, C)

≥ 1

2τ
[dist(x̄, C)− d(x̄, a1)]

≥ 1

2τ
[dist(x̄, C)− dist(x̄, C1)− ε]

≥ 1

2τ
[

2τ

2τ + 1
dist(x̄, C)− ε],

where the last inequality holds thanks to (3.10). Letting ε → 0, we obtain that

dist(x̄, C) ≤ (2τ + 1) max{dist(x̄, C1), dist(x̄, C2)},

which contradicts (3.10).

Let F : X → 2Y be a multifunction and let Gr(F ) denote its gragh. Let b ∈ Y .
Consider the problem of set inclusion:

b ∈ F (x). (3.11)

Thus F−1(b) := {x ∈ X : b ∈ F (x)} consists of all x satisfying (3.11).

Definition 3.2. A function Υ : [0, +∞) → [0, +∞) is called an admissible function if
Υ is nondecreasing, Υ(0) = 0 and lim

t→0
Υ(t) = 0. The set of all admissible functions is

denoted by Γ.

Part (b) of the following definitions was introduced and studied in [15] by Li and
Singer for the special case when X, Y are normed vector spaces; Lipschitz error bounds
in this setup have been studied by them (see also [18, 24, 25]).

Definition 3.3. Let Υ ∈ Γ and let F : X → 2Y , b ∈ Y . We say that

(a) F has a Υ-error bound for set inclusion b ∈ F (x) if

dist(x, F−1(b)) ≤ Υ[dist(b, F (x))], ∀x ∈ X. (3.12)
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(b) F has a Lipschitz error bound for set inclusion b ∈ F (x) if there exists τ > 0 such
that

dist(x, F−1(b)) ≤ τ dist(b, F (x)), ∀x ∈ X. (3.13)

Remark 3.1. By considering Γ(t) = τt, (a) is seen to be a generalization of (b).

Theorem 3.2. Suppose that Gr(F ) is closed in X×Y . Let b ∈ Y be such that F−1(b) 6= ∅.
Then the following statements are equivalent:

(i) There exists Υ ∈ Γ such that F : X → 2Y has a Υ-error bound for set inclusion
b ∈ F (x).

(ii) lim
k→+∞

dist(xk, F
−1(b)) = 0 whenever {xk} ⊂ X and lim

k→+∞
dist(b, F (xk)) = 0.

(iii) The pair
{
Gr(F ), X × {b}} is regular.

Proof. Note that F−1(b)×{b} = Gr(F )∩ (X ×{b}). Since Gr(F ) is closed, so is F−1(b).

The proof of (i) ⇒ (ii) is straightforward from (3.12) as lim
t→0

Υ(t) = 0. The implication

(iii) ⇒ (ii) is also easily seen from definitions.

(ii) ⇒ (i): Define Υ(t) := sup{dist(x, F−1(b)) : dist(b, F (x)) ≤ t} for each t ≥ 0. It
is easy to verify that Υ(0) = 0 andΥ is a nondecreasing function such that (3.12) holds.
To establish (i), it remains to show that lim

t→0
Υ(t) = 0. Let {tk} ⊂ (0, +∞) be such that

lim
k→+∞

tk = 0. By definition of Υ, there exists {xk} ⊂ X satisfying dist(b, F (xk)) ≤ tk

such that Υ(tk) ≤ dist(xk, F
−1(b)) + 1

k
for each k. Then lim

k→+∞
dist(b, F (xk)) = 0 and it

follows from (ii) that lim
k→+∞

dist(xk, F
−1(b)) = 0. Thus lim

k→+∞
Υ(tk) = 0; and this implies

that lim
t→0

Υ(t) = 0.

(ii) ⇒ (iii): Suppose that (iii) is false. Then by Theorem 3.1 (applied to the pair
{Gr(F ), X×{b}} of two closed sets in X×Y ), there exist ε > 0 and {xk} ⊂ X such that

lim
k→+∞

dist
(
(xk, b), Gr(F )

)
= 0, (3.14)

but dist
(
(xk, b), Gr(F ) ∩ (X × {b})) > ε, that is

dist(xk, F
−1(b)) > ε, ∀k ∈ N. (3.15)

Let (uk, vk) ∈ Gr(F ) be such that

d
(
(uk, vk), (xk, b)

) ≤ dist
(
(xk, b), Gr(F )

)
+

1

k
, ∀k ∈ N.

¿From (3.14), it follows that

lim
k→+∞

d(xk, uk) = 0 (3.16)

and lim
k→+∞

d(vk, b) = 0, which implies that

lim
k→+∞

dist(b, F (uk)) = 0. (3.17)

¿From (3.15) and (3.16) we have dist(uk, F
−1(b)) ≥ ε

2
for k large enough. This and (3.17)

together contradict (ii).
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Corollary 3.1. Let f : X → (−∞, +∞] be a proper lower semicontinuous function and
let S := {x ∈ X : f(x) ≤ 0}. Suppose that S is nonempty. Then the following statements
are equivalent:

(i) There exists Υ ∈ Γ such that f has a Υ-error bound.

(ii) lim
k→+∞

dist(xk, S) = 0 whenever {xk} ⊂ X and lim
k→+∞

f(xk) = 0.

(iii) The pair
{
epi(f), X × {0}} is regular.

Proof. By assumption, epi(f) is closed so the meaning of (iii) is defined by Definition 3.1.
Define F : X → 2R by F (x) := f(x) + [0, +∞) for all x ∈ X. Then Gr(F ) = epi(f). It
is easy to see that S = F−1(0) and that dist(0, F (x)) = [f(x)]+ for all x ∈ X. Thus the
assertions follow immediately from Theorem 3.2.

3.2 Normed Space Case

For the remainder of this paper we need the vector structure. In particular, throughout
this subsection, we assume that X, Y are normed vector spaces (for the next section, X
and Y will be required to be complete). For our convenience, we will use the norm for
X × Y defined by ‖(x, y)‖ =

√
‖x‖2 + ‖y‖2 for all (x, y) ∈ X × Y .

Lemma 3.1. Let τ > 0 and let Vτ be defined by Vτ = {(x, y) ∈ X × Y : τ‖x‖ ≤ ‖y‖}.
Let S be a nonempty closed set in Y, b ∈ Y and let Sτ = (S × {b}) + Vτ . Then

dist((x, b), Sτ ) =
τ√

τ 2 + 1
dist(x, S), ∀x ∈ X (3.18)

Proof. Note first that tVτ ⊆ Vτ for any t ≥ 0. Let x ∈ X and ε > 0. Take s ∈ S such that
‖x−s‖ ≤ dist(x, S)+ε. Fix an element e ∈ Y with ‖e‖ = 1. Let v := 1

τ2+1
(x−s, τ‖x−s‖e),

and u := (s, b) + v. Thus v ∈ Vτ , u ∈ Sτ , and

u− (x, b) = (s− x, 0) + v =
( −τ 2

τ 2 + 1
(x− s),

τ‖x− s‖
τ 2 + 1

e
)
.

Hence

‖(x, b)− u‖ =
τ√

τ 2 + 1
‖x− s‖,

and it follows that

dist
(
(x, b), Sτ

) ≤ τ√
τ 2 + 1

‖x− s‖ ≤ τ√
τ 2 + 1

(
dist(x, S) + ε

)
.

Since ε is arbitrary, this implies that

dist
(
(x, b), Sτ

) ≤ τ√
τ 2 + 1

dist(x, S), ∀x ∈ X. (3.19)

To prove (3.18), suppose the strict inequality in (3.19) holds for some x. Then x 6∈ S and
there exist s ∈ S, (z, y) ∈ Vτ such that

∥∥(x, b)− [(s, b) + (z, y)]
∥∥ <

τ√
τ 2 + 1

dist(x, S).
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It follows from the triangle inequality that

(‖x− s‖ − ‖z‖)2 + ‖y‖2 <
τ 2

τ 2 + 1
dist(x, S)2 ≤ τ 2

τ 2 + 1
‖x− s‖2.

Letting t = ‖z‖
‖x−s‖ and noting that ‖y‖ ≥ τ‖z‖, it follows that

‖x− s‖2(1− t)2 + τ 2t2‖x− s‖2 <
τ 2

τ 2 + 1
‖x− s‖2. (3.20)

Since x 6= s, (3.20) becomes

(1 + τ 2)t2 − 2t +
1

τ 2 + 1
< 0,

which is clearly not possible.

The following result for multifunctions should be compared with Theorem 3.2: one for
regularity while the other one is for linear regularity.

Theorem 3.3. Let F : X → 2Y be a multifunction with closed graph Gr(F ). Let b ∈ Y .
Then the following two statements are equivalent:

(i) F has a Lipschitz error bound for set inclusion b ∈ F (x).

(ii)
{
Gr(F ), X × {b}} is linearly regular.

Proof. Let S := F−1(b). Then S × {b} = Gr(F ) ∩ (X × {b}). If
{
Gr(F ), X × {b}} is

linearly regular, then there exists κ > 0 such that, for any x ∈ X,

dist(x, S) = dist
(
(x, b), S × {b})

= dist
(
(x, b), Gr(F ) ∩ (X × {b}))

≤ κdist
(
(x, b), Gr(F )

)
.

Since dist
(
(x, b), Gr(F )

) ≤ dist
(
(x, b), (x, F (x))

)
= dist(b, F (x)), we have (ii) ⇒ (i).

Next we prove that (i) ⇒ (ii). By assumption there exists τ > 0 such that

dist(x, S) ≤ τdist(b, F (x)),∀x ∈ X. (3.21)

Let Vτ = {(x, y) ∈ X × Y : ‖x‖ ≤ τ‖y‖} and Sτ = (S × {b}) + Vτ as in the preceding
lemma. We will show that Gr(F ) ⊂ Sτ . Since (0, y − b) ∈ Vτ for each y ∈ Y , we have
(x, y) ∈ Sτ for each x ∈ S. For x 6∈ S with (x, y) ∈ Gr(F ), take sn ∈ S such that
dist(x, S) + 1

n
≥ ‖x − sn‖. Let σn := 1

n dist(x,S)
and let yn := y + σn(y − b). It is clear

that yn → y. Also, by (3.21), dist(x, S) ≤ τ‖y − b‖ and it follows that τ‖yn − b‖ =
τ(1 + σn)‖y − b‖ ≥ (1 + σn)dist(x, S) ≥ dist(x, S) + 1

n
≥ ‖x − sn‖, which implies that

(x, yn) ∈ Sτ , and hence that (x, y) ∈ Sτ because Sτ is closed. Therefore Gr(F ) ⊆ Sτ .
From Lemma 3.1, it follows that

dist
(
(x, b), S × {b}) = dist(x, S)

=

√
τ 2 + 1

τ
dist

(
(x, b), Sτ

)

≤
√

τ 2 + 1

τ
dist

(
(x, b), Gr(F )

)

10



By Theorem 3.1 (applied to the pair {Gr(F ), X ×{b}} of two closed sets in X × Y ), this
implies that (ii) holds.

Remark 3.2. Suppose that Gr(F ) ⊂ Rn × Rm is a polyhedron such that Gr(F ) ∩ (Rn ×
{b}) 6= ∅. By [4, Corollary 5.26], {Gr(F ),Rn × {0}} is linearly regular. Hence the
assertion [23, Example 9.47] that F has a Lipschitz error bound follows immediately from
Theorem 3.3.

Corollary 3.2. Let f : X → R be a lower semicontinuous function. Then f has a
Lipschitz error bound if and only if

{
epi(f), X × {0}} is linearly regular.

Proof. The proof is same as that for Corollary 3.1 except that one applies Theorem 3.3
in place of Theorem 3.2.

4 Linear Regularity of Convex Sets in Banach Spaces

The discussions of our works in what follows depends on some convexity assumptions.
Thus we will assume throughout this section that our sets in the collection {Ci}m

i=1 are
convex in addition to the assumption that they are closed. Assume further that, for the
following definition (and Theorem 4.1), each Ci is a cone. The following definition is a
reformulation of Jameson’s property (G) (thanks to [6, Proposition 4 and Corollary 1]).

Definition 4.1. Let X be a normed vector space and let {Ci}m
i=1 be a collection of closed

convex cones in X. The collection is said to have property (G) if there exists α > 0 such
that

inf{ max
1≤i≤m

‖xi‖ : each xi ∈ Ci,

m∑
i=1

xi = x} ≤ α‖x‖, ∀x ∈
m∑

i=1

Ci. (4.1)

The following result can be proved easily (recall our convention made in (2.8)).

Lemma 4.1. The collection {Ci}m
i=1 of closed convex cones in X has property (G) if and

only if there exist τ > 0 and p ∈ [1, +∞] such that

inf{[
m∑

i=1

‖xi‖p]
1
p : each xi ∈ Ci,

m∑
i=1

xi = x} ≤ τ‖x‖ ∀x ∈
m∑

i=1

Ci, (4.2)

(In the case of (4.2) we will also say that {Ci}m
i=1 has property (Gτ,p)).

Remark 4.1. In the case when X = Y ∗ for some Banach space Y (that is X is a
Banach dual space) such that each Ci is weak∗-closed, the infimum in (4.2) is attained.

In fact, for any x ∈
m∑

i=1

Ci, let {xn
i } ⊂ Y ∗ be such that each xn

i ∈ Ci,
m∑

i=1

xn
i = x and

[
m∑

i=1

‖xn
i ‖p]

1
p ≤ τ‖x‖ + 1

n
. Then for any fixed i ∈ [1,m], xn

i is a bounded sequence in

Y ∗. By Alaoglu Theorem (cf. [12, p.70]) and considering subnets if necessary, there exist
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x1, · · · , xm such that xn
i

w∗→ xi for each i = 1, · · · ,m. It is clear that xi ∈ Ci and
m∑

i=1

xi = x.

By [16, Theorem 2.6.14], one has that ‖xi‖ ≤ lim inf ‖xn
i ‖. This shows that the infimum

in (4.2) is attained.

The proof given here for the following theorem is adopted from that given in [6,
Proposition 6].

Theorem 4.1. Let X be a Banach space, {Ci}m
i=1 be a collection of closed convex cones

in X and let C := ∩m
i=1Ci. Let τ > 0 and 1 ≤ p, q ≤ +∞ with 1

p
+ 1

q
= 1. Then the

following statements are equivalent:

(i) dist(z, C) ≤ τ
[ m∑

i=1

distp(z, Ci)
] 1

p , ∀z ∈ X.

(ii) C◦ =
m∑

i=1

C◦
i , and {C◦

i }m
i=1 has property (Gτ,q), namely

min{[
m∑

i=1

‖x∗i ‖q]
1
q : each x∗i ∈ C◦

i ,

m∑
i=1

x∗i = x∗} ≤ τ‖x∗‖, ∀x∗ ∈
m∑

i=1

C◦
i . (4.3)

Proof. Clearly
m∑

i=1

C◦
i ⊆ C◦. We first consider the case when p, q ∈ (1, +∞). Set g :=

1
p
distp(·, C) = 1

p
‖ · ‖p2ιC . By Lemma 2.3, g∗ := 1

q
‖ · ‖q + ιC◦ . Further set f :=

m∑
i=1

fi and

fi := τp

p
distp(·, Ci) for each i. By parts (v) and (iii) of Lemma 2.3, f ∗i := 1

qτq ‖ · ‖q + ιC◦i .
Indeed, for each x∗ ∈ X∗,

f ∗i (x∗) = (
τ p

p
‖ · ‖p2ιC)∗(x∗) = τ p(

1

p
‖ · ‖p)∗(

x∗

τ p
) + ιC◦i (x∗) =

τ p(1−q)

q
‖x∗‖q + ιC◦i (x∗).

Because each fi is everywhere continuous, it follows from Remark 2.1 that f ∗ = f ∗1 2 · · ·2f ∗m

and this infimal convolution is exact on
m∑

i=1

C◦
i . Using this, we obtain: (i) ⇔ g ≤ f ⇔ f∗ ≤

g∗ ⇔ 1
qτq inf{

m∑
i=1

‖x∗i ‖q : ∀x∗i ∈ C◦
i ,

m∑
i=1

x∗i = x∗} ≤ ( 1
q
‖ · ‖q + ιC◦)(x

∗), ∀x∗ ∈ X∗ ⇔ C◦ =

m∑
i=1

C◦
i and min{

m∑
i=1

‖x∗i ‖q : ∀x∗i ∈ C◦
i ,

m∑
i=1

x∗i = x∗} ≤ τ q‖x∗‖q ∀x∗ ∈
m∑

i=1

C◦
i ⇔ (ii).

The case p = 1 (and so q = +∞): Assume that (i) holds. Let γ > 1; take p0 > 1 such

that m
1− 1

p0 < γ. By Lemma 2.4, it follows that
m∑

i=1

dist(z, Ci) ≤ γ
[ m∑

i=1

distp0(z, Ci)
] 1

p0 for

any z ∈ X. So dist(z, C) ≤ τγ
[ m∑

i=1

distp0(z, Ci)
] 1

p0 for any z ∈ X. From the proof above,

we have C◦ =
m∑

i=1

C◦
i and {C◦

i }m
i=1 has property (Gτγ,q0), where q0 satisfies 1

p0
+ 1

q0
= 1.

That is, (4.3) holds for τγ and q0 in place of τ and q; hence it follows from Lemma 2.4
that (4.3) with τγ in place of τ also holds for q = +∞. Letting γ → 1, (ii) is seen to hold
(by Remark 4.1, the infimum is attained). Next, we prove that (ii) ⇒ (i). For γ > 1,
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by Lemma 2.4, there exists q0 such that [
m∑

i=1

‖x∗i ‖q0 ]
1
q0 ≤ γ max

1≤i≤m
{‖x∗i ‖}, ∀x∗i ∈ X∗. Then

(ii) with q = +∞ implies that {C◦
i }m

i=1 has property (Gτγ,q0), and so, by what we have

proved, dist(z, C) ≤ τγ
[ m∑

i=1

distp0(z, Ci)
] 1

p0 , where p0 satisfies 1
p0

+ 1
q0

= 1. Letting γ → 1,

(i) is seen to hold.

The case p = +∞ (and so q = 1): By Lemma 2.4, (i) with p = +∞ implies that

dist(z, C) ≤ τ
[ m∑

i=1

distp0(z, Ci)
] 1

p0 for each z ∈ X, ∀p0 > 1. Thus C◦ =
m∑

i=1

C◦
i and,

by what we have proved, {C◦
i }m

i=1 has property (Gτ,q0) for any 1 < q0 < +∞. Letting
q0 → 1, (ii) is seen to hold for q = 1. Assume that (ii) holds for q = 1. By Lemma 2.4,
{C◦

i }m
i=1 has property (Gτ,q0) for any q0 > 1. Then, by what we have proved, dist(z, C) ≤

τ
[ m∑

i=1

distp0(z, Ci)
] 1

p0 , ∀z ∈ X, and for any p0 ∈ (1, +∞). Letting p0 → 1, we prove that

(ii) ⇒ (i).

Remark 4.2. Theorem 4.1 is valid (with the same proof) even if X is a (not necessarily
complete) normed vector space.

The objective of our next theorem (Theorem 4.2) is to extend the preceding theorem
to the case when some Ci is not necessarily a cone. As a preparatory step, we need the
following lemma.

Lemma 4.2. Let X be a Banach space and C := ∩m
i=1{Ci}m

i=1 6= ∅, where each Ci is a
closed convex set in X. Let τ > 0, and 1 ≤ p, q ≤ +∞ with 1

p
+ 1

q
= 1. Then for any

z ∈ C, the following statements are equivalent:

(i) dist(x, TC(z)) ≤ τ [
m∑

i=1

distp(x, TCi
(z))]

1
p , ∀x ∈ X.

(ii) The collection {Ci}m
i=1 has the strong CHIP at z, and {NCi

(z)} has property (Gτ,q),
namely

min{[
m∑

i=1

‖x∗i ‖q]
1
q : each x∗i ∈ NCi

(z),
m∑

i=1

x∗i = x∗} ≤ τ‖x∗‖, ∀x∗ ∈
m∑

i=1

NCi
(z).(4.4)

Proof. Let z ∈ C. Note first that

TC(z) = ∩m
i=1TCi

(z) (4.5)

if (i) holds or if (ii) holds. Indeed, by taking polars, the above equality clearly holds if
{Ci}m

i=1 has the strong CHIP. If v ∈ TCi
(z) for all i, then dist(x, TCi

(z)) = 0 and hence
dist(x, TC(z)) = 0 by (i). It follows that TC(z) ⊇ ∩m

i=1TCi
(z); thus (4.5) holds if (i) holds

because C ⊆ Ci for each i. Since NC(z) and NCi
(z) are respectively the polars of TC(z)

and TCi
(z), the lemma is seen to hold by Theorem 4.1 (applied to {TCi

(z)}m
i=1 in place of

{Ci}m
i=1).

Remark 4.3. Notice that (i) is a linear regularity condition of {TCi
(z)}m

i=1. In what
follows we will explore the possibility to place it by the linear regularity condition of the
original collection {Ci}m

i=1.
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The next theorem is one of our main results; it extends Theorem 4.1 to cover the case
when some Ci is not necessarily a cone.

Theorem 4.2. Let X be a Banach space. Suppose that C1, · · · , Cm are finitely many
closed convex sets in X with C := ∩m

i=1Ci 6= ∅. Let τ > 0 and 1 ≤ p, q ≤ +∞ with
1
p

+ 1
q

= 1. Then the following statements are equivalent:

(i) If z ∈ C, then NC(z) =
m∑

i=1

NCi
(z) and

min{[
m∑

i=1

‖z∗i ‖q
] 1

q , each z∗i ∈ NCi
(z),

m∑
i=1

z∗i = z∗} ≤ τ‖z∗‖, ∀z∗ ∈ NC(z).

(ii) dist(x, z + TC(z)) ≤ τ
[ m∑

i=1

distp(x, z + TCi
(z))

] 1
p , ∀x ∈ X, ∀z ∈ C.

(ii*) dist(x, TC(z)) ≤ τ
[ m∑

i=1

distp(x, TCi
(z))

] 1
p , ∀x ∈ X, ∀z ∈ C.

(iii) dist(x,C) ≤ τ
[ m∑

i=1

distp(x,Ci)
] 1

p , ∀x ∈ X.

Remark 4.4. Each of (i), (ii), (ii∗) holds trivially for z ∈ C\bd(C).

Proof. By Lemma 4.2, (i) ⇔ (ii∗). Certainly (ii) ⇔ (ii∗).

(ii) ⇒ (iii). Let x ∈ X and γ ∈ (0, 1). By Lemma 2.2, there exists z ∈ C
such that γdist(x,C) ≤ dist(x, z + TC(z)). Then γdist(x, C) ≤ dist(x, z + TC(z)) ≤
τ
[ m∑

i=1

distp(x, z + TCi
(z))

] 1
p ≤ τ

[ m∑
i=1

distp(x,Ci)
] 1

p . Hence (iii) is seen to hold.

(iii) ⇒ (ii∗). If not, then there exist h ∈ X and z0 ∈ C such that

dist(h, TC(z0)) > τ
[ m∑

i=1

distp(h, TCi
(z0))

] 1
p . (4.6)

This implies in particular that h 6∈ TC(z0). Let x(t) := z0 + th for t > 0. Let I con-
sist of all i satisfying the property that h ∈ TCi

(z0). Then I is not empty. For oth-
erwise h 6∈ TCi

(z0) and so dist(x(t), Ci) = o(t) for each i. It follows from (iii) that
dist(x(t), C) = o(t), contradicting the fact that h 6∈ TC(z0). Introducing the notation

F(x(t)) :=

[P
i∈I

distp(x(t),z0+TCi
(z0))

] 1
p

[ mP
i=1

distp(x(t),Ci)
] 1

p
, note that

dist(x(t), C)
[ m∑

i=1

distp(x(t), Ci)
] 1

p

≥ dist(x(t), C)

dist(x(t), z0 + TC(z0))

dist(x(t), z0 + TC(z0))
[ m∑

i=1

distp(x(t), z0 + TCi
(z0))

] 1
p

F(x(t)),

=
dist(x(t), C)

dist(x(t), z0 + TC(z0))

t dist(h, TC(z0))

t
[ m∑

i=1

distp(h, TCi
(z0))

] 1
p

F(x(t)). (4.7)
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Since dist(x(t), Ci) = o(t) for each i 6∈ I and lim
t→0

dist(x(t),z0+TCi
(z0))

dist(x(t),Ci)
= 1 for each i ∈ I

(see Lemma 2.1), one has lim
t→0

F(x(t)) = 1. Noting also that lim
t→0

dist(x(t),z0+TC(z0))
dist(x(t),C)

= 1 (by

Lemma 2.1), it follows from (4.6) and (4.7) that there exists t′ > 0 such that

dist(x(t′), C) > τ
[ m∑

i=1

distp(x(t′), Ci)
] 1

p .

This contradicts (iii).

Remark 4.5. In the special case when X is an Euclidean space, some partial results of
Theorem 4.2 are already known in the literature: (i) ⇒ (iii) was proved in [6, Corollary 4]
when X = Rm with p = 2. While a part of (iii) ⇒ (i) (the assertion that the strong CHIP
follows from the linear regularity) was observed in [21, Proposition 6] (based on [14]) and
in [6, Theorem 3] when X = Rm with p = 2. We note also that [6, Theorem 1] follows
easily from Theorem 4.2 and Hoffman’s result.

In the remainder of this paper we will focus on the study of linear regularity for a pair
of two closed convex sets and one of them is a closed subspace. We begin with the special
case when the other closed convex set in the pair is in fact a cone. Thus, let C1 = W be
a closed vector space of X and let C2 be a closed convex cone in X, where X is a Banach
space. Define P : X∗ → W ∗ by

P (x∗)(w) = x∗(w), ∀w ∈ W. (4.8)

That is, P (x∗) is the restriction of x∗ to W .
Given C2, one can define a preorder in X by

x ≤ y ⇔ y − x ∈ C2. (4.9)

Then −C◦
2 consists of all positive continuous linear functionals on X. Let C := C2 ∩W ,

and let C◦ ∩W ∗ denote the polar of C taken in W ∗:

C◦ ∩W ∗ = {w∗ ∈ W ∗ : w∗(c) ≤ 0,∀c ∈ C}.

Thus −(C◦ ∩ W ∗) consists of all positive continuous linear functionals on W . In view
of Theorem 3.1 (b), the following result establishes a characterization for {W,C2} to be
linearly regular. Also, for c ∈ C, in addition to the notion of the normal cone NC(c) =
(TC(c))◦, let NC(c) ∩W ∗ denote the normal cone of C at c relative to W . That is,

NC(c) ∩W ∗ = {w∗ ∈ W ∗ : w∗(h) ≤ 0,∀h ∈ TC(c)}. (4.10)

Theorem 4.3. Let C2 be a closed convex cone in a Banach space X with the preorder
defined by (4.9). Let W be a closed subspace of X and C := C2 ∩W . Let τ > 0. Then
the following statements are equivalent:

(i) For any w∗ ∈ (C◦ ∩W ∗), min{‖z∗‖ : P (z∗) = w∗, z∗ ∈ C◦
2} ≤ τ‖w∗‖.

(ii) For any x∗ ∈ C◦, min{‖z∗‖ : P (z∗) = P (x∗), z∗ ∈ C◦
2} ≤ τ‖x∗‖.
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(iii) dist(x,C2 ∩W ) ≤ τdist(x,C2), ∀x ∈ W .

Proof. First, we show that (i) ⇔ (ii). For any x∗ ∈ C◦, it is obvious that w∗ = P (x∗) ∈
(C◦ ∩W ∗), ‖w∗‖ ≤ ‖x∗‖, and so (i) ⇒ (ii). For w∗ ∈ (C◦ ∩W ∗), by the Hahn-Banach
Theorem there exists x∗ ∈ X∗ such that P (x∗) = w∗, ‖x∗‖ = ‖w∗‖. In particular, since
C ⊂ W , one has that x∗(c) = w∗(c) ≤ 0 for each c ∈ C. Thus, x∗ ∈ C◦ and so (ii) ⇒ (i).

Let f and g be defined by f(x) = 1
2τ2 dist2(x,C) and g(x) = 1

2
dist2(x,C2) + ιW for

each x ∈ X. Thus (iii) reads that f ≤ g. Moreover, by Lemma 2.3, f ∗ = τ2

2
‖ · ‖2 + ιC◦ ,

g∗ = (1
2
‖ · ‖2 + ιC◦2 )2ιW ◦ and the infimal convolution g∗ is exact (for the latter we need

(vi) of Lemma 2.3, which is applicable as dist2(·, C2) is continuous). In particular, for
any x∗ ∈ C◦

2 + W ◦,

g∗(x∗) = min{1

2
‖z∗‖2 : z∗ ∈ C◦

2 , P (z∗) = P (x∗)}. (4.11)

Thus, (iii) ⇔ f ≤ g ⇔ g∗ ≤ f∗ ⇔ C◦ = C◦
2 + W◦ and min{‖y∗‖ : y∗ ∈ C◦

2, P(y∗) =
P(x∗)} ≤ τ‖x∗‖, ∀x∗ ∈ C◦

2 + W◦ ⇔ min{‖z∗‖ : z∗ ∈ C◦
2, P(z∗) = P(x∗)} ≤ τ‖x∗‖, ∀x∗ ∈

C◦ ⇔ (ii).

Theorem 4.4. Let C2 be a closed convex set (not necessarily a cone) in X such that
C := C2 ∩ W 6= ∅, where X and W are as in the preceding theorem. For any c ∈ C,
NC(c) ∩ W ∗ is defined as in (4.10). Let τ > 0. Then the following statements are
equivalent:

(i) If z ∈ C and w∗ ∈ NC(z) ∩W ∗, then

min{‖z∗‖, P (z∗) = w∗ and z∗ ∈ NC2(z)} ≤ τ‖w∗‖.

(ii) dist(w, z + TC(z)) ≤ τdist(w, z + TC2(z)), ∀w ∈ W, z ∈ C.

(ii*) dist(w, TC(z)) ≤ τdist(w, TC2(z)), ∀w ∈ W, z ∈ C.

(iii) dist(x,C) ≤ τdist(x,C2), ∀x ∈ W .

Proof. Certainly (ii) ⇔ (ii∗). We can prove (ii) ⇔ (iii) similarly as in Theorem 4.2. It
remains to show that (i) ⇔ (ii∗). To this end, note first that provided (i) or (ii∗) holds,
TC(z) = TC2(z) ∩W for any z ∈ C. To verify this, we need only to show that

TC(z) ⊇ TC2(z) ∩W. (4.12)

This inclusion certainly follows from (ii∗). Next, we assume that (i) holds. Let v ∈
TC2(z) ∩W , and let w∗ ∈ (NC(z) ∩W ∗). By (i), take z∗ ∈ NC2(z) such that P (z∗) = w∗.
Then w∗(v) = z∗(v) ≤ 0. Since NC(z) ∩W ∗ is the polar of TC(z) in the dual pair of W
and W ∗, by the Bipolar Theorem, it follows that v ∈ TC(z). Therefore (4.12) holds, and
so does the equality provided that (i) or (ii∗) holds.

Since NC2(z) = (TC2(z))◦ for each z ∈ C, (i) ⇔ (ii∗) now follows from Theorem 4.3
(applied to the pair {TC2(z),W} in place of {C2,W}).
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