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Abstract. We consider a (finite or infinite) family of closed convex sets with nonempty intersection in a normed
space. A property relating their epigraphs with their intersection’s epigraph is studied, and its relations to other
constraint qualifications (such as the linear regularity, the strong CHIP and Jameson’s (G)-property) are estab-
lished. With suitable continuity assumption we show how this property can be ensured from the corresponding
property of some of its finite subfamilies.
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1 Introduction

In dealing with a lower semicontinuous extended real valued function ¢ defined on a Banach space (or
more generally, a normed linear space) X, it is not only natural but also useful to study its relation with
the epigraph epi¢ := {(z,r) € X x R: ¢(z) < r}, which is clearly a closed convex subset of the product
X x R. Conversely, given a nonempty closed convex set C' in X, let o denote the support function of
C, which is defined by

oc(z*) =sup{(z*,z): z€C}, z*eX,

where X* denotes the dual space of X and (z*,z) = z*(x), the value of the functional z* at z. Thus o¢
is a w*—lower semicontinuous convex function and epiog is a w*—closed convex subset of X* x R. In
this paper, we shall apply this simple duality between C' and epio¢ to study several important aspects
(including the regularity, the strong CHIP, Jameson’s property (G) and other constraint qualifications)
for a CCS-system {C; : i € I} by which we mean a family of closed convex sets in X with nonempty
intersection [);c; Ci, where I is an index set.

When [ is finite, the concept of regularity and its quantitative versions were introduced in [4, 5, 6] by
Bauschke and Borwein, and were utilized to establish norm or linear convergence results. The concept of
strong conical hull intersection property (the strong CHIP for short) was introduced by Deutsch, Li and
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Ward in [12], and was utilized in [13] as well as in [9, 23, 24] to reformulate certain optimization problems
with constraints. All the works cited above were in the Hilbert space or Euclidean space setting. The
concept of property (G) was introduced by Jameson [16] for a pair of cones, and was utilized to give a
duality characterization of the linear regularity. In improving the partial results obtained by Lewis, Pang
(see [22, 29]) and by Bauschke, Borwein and Li [6], Jameson’s result was extended by Ng and Yang [28]
to the general case (without additional assumption that each C; is a cone), but still only for finite I. For
the case when X is a Hilbert space, the same result was also independently obtained by Bakan, Deutsch
and Li in [3].

In this paper, we extend the above mentioned results to cover the case when I is infinite. From
both the theoretical and application points of view, the extension from the finite case to the infinite
one is of importance. Regarding the strong CHIP, such an extension has already been done rather
successfully with many interesting applications (see, for example, [26, 27]). Our investigation is through
the consideration of epigraphs, and in particular by virtue of that of a new constraint qualification defined
below. Our works in this connection are inspired by the recent works of Jeyakumar and his collaborates
(see [7, 17, 18, 19, 21], etc), who made use of epigraphs to provide sufficient conditions to ensure the
strong CHIP (for finite collection of closed convex sets), and study systems of convex inequalities. We
say that a CCS-system {C; : i € I} satisfies the SECQ (sum of epigraphs constraint qualification) if

epion,  c; = Zepiaci. (1.1)
il

In section 4, we study the interrelationship between this property and other constraint qualifications,
especially the linear regularity. Also, since this property is a property stronger than the strong CHIP
(and the converse holds in some important cases, see Theorem 3.1), it is both natural and useful to
inquire whether or not the sufficient conditions originally provided to ensure the strong CHIP can in fact
ensure the SECQ. In this connection, let us recall the following results proved in [26] (see in particular
Theorem 4.1 and 5.1 therein). For the remainder of this section, we assume that I is a compact metric
space (needless to say that if I is finite, then it is compact under the discrete metric) and see the next
section for definitions of the undefined terms.

Theorem 1.1. Consider the CCS-system {D,C; : i € I}. Suppose that
(a) D is of finite dimension;
(b) the set-valued map i — (aff D) N C; is lower semicontinuous on I;

(c) there exist xo € ();c; Cs and r > 0 such that

iel
(aff D) N B(zo,r) C C;  for each i € I (1.2)

(d) the pair {aff D,C;} has the strong CHIP for each i € I.

Then {D,C; : i € I} has the strong CHIP.

Theorem 1.2. Consider the CCS-system {D,C; : i € I'}. Suppose that

(a) D is of finite dimension [;

(b) the set-valued map i — (aff D) N C; is lower and upper semicontinuous on I;

(c) for any finite subset J of I with number of elements |J| < I, there exist zo € D and r > 0 such that

(aff D) N B(xo,r) C C;  for each i € J; (1.3)
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(d) for any finite subset J of I, the subsystem {D,C; : j € J} has the strong CHIP.
Then {D,C; : i € I} has the strong CHIP.

In section 5, we present the corresponding results for the SECQ and as a consequence Theorems 1.1 and
1.2 are recaptured with some significant improvements. In our Corollary 5.2, condition (c) in Theorem 1.1
can be considerably weakened to require (1.2) to hold for each 7 € J with some finite subsets J of I and
to allow r to depend on J. In our Corollary 5.3, we show that the word “and upper” in Theorem 1.2 (b)
can be dropped and that (d) can be weakened to require the strong CHIP holds only for subsystems
{D,Cj: jeJ}with |J| =1+1.

2 Notations and preliminary results

The notations used in the present paper are standard (cf. [8, 14]). In particular, we assume throughout
the whole paper that X is a normed linear space (over the real field R or the complex field C). We use
B(z,€) to denote the closed ball with center  and radius e. For a set A in X (or in R"), the interior
(resp. relative interior, closure, convex hull, convex cone hull, linear hull, affine hull, boundary) of A is
denoted by int A (resp. ri A, A, co A, cone A, span A, aff A, bd A), and the negative polar cone A€ is the
set defined by

A® ={z* € X* : Re(z*,2) <0 forall z € A},

which coincides with the polar A° of A when A is a cone. The normal cone of A at zy is denoted by
Na(z0) and defined by Na(z0) = (A — 20)®. Let Z be a closed convex nonempty subset of X. The
interior and the boundary of A relative to Z are respectively denoted by rintz A and bdz A4; they are
defined to be respectively the interior and the boundary of the set aff Z N A in the metric space aff Z.
Thus, a point z € rintz A if and only if there exists € > 0 such that

z€ (aff Z)NB(z,e) C A (2.1)

while z € bdz A if and only if z € aff Z and, for any € > 0, (aff Z) N B(z,¢) intersects A and its
complement.

For a closed subset A of X, the indicator function d4 and the support function o4 of set A are
respectively defined by
0, r €A
00, otherwise

oa(z) := {

and

oa(z*) ;== supRe (z*,z) for each z* € X™.
z€A

Let f be a proper lower semicontinuous extended real-valued function on X. The domain of f is
denoted by dom f := {& € X : f(z) < +00}. Then the subdifferential of f at € dom f, denoted by
df(x), is defined by

Of(z) ={z"€ X*: f(x)+Re(z",y—2z)< f(y) foralyeX}.

Let f, g be proper functions respectively defined on X and X*. Let f*, g* denote their conjugate
functions, that is

sup{Re(z*,z) — f(z) : x € X} foreach 2" € X*,
sup{Re (z*,z) — g(z*) : z* € X*} for each z € X.

s
Ne *
PRy
= *
A
n
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The epigraph of a function f on X is denoted by epi f and defined by
epi f:={(z,r) e X xR: f(z) <r}.
Then, for proper lower semicontinuous extended real-valued convex functions f; and fo on X, we have
fi< o= fi > f3 < epi f{ Cepi f], (2.2)

where the forward direction of the first arrow and the second equivalence are easy to verify, while the
backward direction of the first arrow is standard (cf. [34, Theorem 2.3.3]).
For closed convex sets A, B, the following assertions are well-known and easy to verify:

o4 =0%, (2.3)
Na(z) = 004(x) foreach z € A, (2.4)
oa(z*) = Re(z™,z) & 2% € Na(z) < (2*,Re (z",z)) € epiocy foreachz € A (2.5)
and
epiog Cepiop if ADB. (2.6)

For simplicity of notations, we will usually assume that the scalar field of X is R ( and so Re (z*, z)
is to be replaced by (z*,x)).

Let {A4; : i € J} be a family of subsets of X. The set >_._; A; is defined by

i€J
ZAi _ { {ZiEJo a;: a; € A;, Jo CJ being ﬁnite}, ?f J £ 0, (2.7)
= {0}, it J=0.

Let I be an arbitrary index set. The following concept of the strong CHIP plays an important role in
optimization theory (see [3, 6, 9, 10, 11, 31]) and is due to [12, 13] in the case when [ is finite and [25, 26)
in the case when I is infinite.

Definition 2.1. Let {C; : i € I} be a collection of convex subsets of X. The collection is said to have

(a) the strong CHIP at © € ;¢ Ci if Nn,_, ¢;(x) = Y11 New (2), that s

o
(ﬂ Ci— 56) = Z(Ci - )% (2.8)

iel iel
(b) the strong CHIP if it has the strong CHIP at each point of )

(c) the SECQ if epi OMer i = Y iciepioc;.

Note that N, ¢;(z) 2 > ;c; Nei(#) holds automatically for z € N
the strong CHIP at x if and only if

ie1 Cis

ser Ci- Hence {C; : i € I} has

Na,., c.(®) €Y Ney(x).
el

To establish a similar property regarding the SECQ, we first need to extend [15, part X, Theorem
2.4.4] to the setting of normed linear spaces. We recall that for an arbitrary function f defined on X*,
we define co f by (cf. [34, Page 63])

* *

epi(cof ) :=co (epif)w (2.9)
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Lemma 2.1. Let {g; : i € I} be a family of proper convex lower semicontinuous functions on a normed
linear space X with sup;c; 9i(20) < —a < +00 for some xy € X. Then the following statements are true.

*

(a) co(infiej(gl’f))w is a proper function on X*.

(b) Forallxz € X, (inficr(97))" (x) = sup;e; 9i(2).

w

(c) For all y* € X*, (sup;c; g:)*(y*) = co(infies (g7))  (y*).
Proof. (a) Let h: X* — R be defined by
h(z*) = (z*,20) + « for each z* € X™*.
Let ¢ € I. By definition we have that
(x*,20) — g7 (") < gi(xp) < —a for each z* € X*.
This shows that each h is dominated by g¢; and hence that

1rel§g;‘(a:*) > h(z*) for each z* € X™.
13
Since h is a w*—continuous and affine function, it follows from the definition of closed convex hull of a
function that co(infiel(g;))w (z*) > h(z*) for all z* € X*. Thus co(infiel(g;))w is proper.
(b) For each z € X, we have

(inf(g;))"(z) = sup sup{(z*,z) — gi(z")}

el zrEX* i€l
=sup sup {(z*,z) — g/ (z*)}
icl zreX*
=supg; " (z) = sup gi(z),
i€l icl

where the last equality follows from [34, Corollary 2.3.2 and Theorem 2.3.3] as each g; is proper convex
lower semicontinuous function.
(c) Applying the conjugations to both sides of (b), we get

inf *))EE i *-
(inf(9))™ = (sup i)

*

By (a), we see that co(infie[(g;‘))w is proper. Combining this with [34, Theorem 2.3.4], we see that

*

(infier g)** = co(infiej(g;.*))w , which completes the proof. O

The following lemma was stated without proof in [20, P.902]. We give a proof here for the sake of
completeness (Note that the condition that “sup;cg; is proper” is needed).

Lemma 2.2. Let {g; : i € I} be a system of proper convex lower semicontinuous functions on a normed
linear space X with sup;c; gi(zo) < +o00 for some o € X. Then

w*

epi (sup gi)" = co U epig;y . (2.10)
il iel
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Proof. By part (c) of Lemma 2.1, we have

w*

epi (sup g;)" = co (epi (inf(g;*))) : (2.11)

iel i€l

We claim that »
epi (1nf U epigl . (2.12)
el
Granting this, we see that epi (infic7(g])) and (J;c; epig; have the same w*—closed convex hull, that is,
w* w*

co (epi (ﬁ?(g?))) =co gepi g9 . (2.13)

(3

Combining this with (2.11), we arrive at (2.10). Thus it remains to prove (2. 12) To do this we note first

that epig; C epi(inficr g7) since g; > inficr gi for all 4, and thus |J;.; epi gi C epi (inf;er gl)
To prove the converse inclusion, let (y*, ) € epi (inf;c gf) and let € > 0. Then a + € > inf;er gf (y*).
Hence there exists ig € I such that a + e > gf (y*), which implies (y*,a +€) € epig] C U;crepig;.

Letting € | 0, we get (y*, ) € [J;c; epi g;.*w . This proves (2.12) and thus completes the proof. O

Proposition 2.1. Let {C; : i € I} be a collection of closed convex sets in X with C := (;c; C; # 0.
Then

w*

epi o = Zepi oc; - (2.14)
iel
Proof. Note that sup;c; dc;, = d¢ and that oc = 65 by (2.3). It follows that epioc = epi(sup;cr dc;)*.
Consequently, by (2.10) and (2.3), one has that
w* w* w*
epioc = co U epid;, =co U epioc, = Z epi o¢;
iel iel iel

where the last equality holds because epioc, is clearly a cone for each ¢ € I. O

Corollary 2.1. Let {C;: i € I} be a collection of closed convex sets in X with C :=(;c; C; #0. Then
the following equivalences are true:

{Ci: i € I} satisfies the SECQ <= ), epi o¢, is w*—closed <= epi oo C Zepi oc;- (2.15)
iel
The following simple proposition states that the SECQ is invariant under translation.

Proposition 2.2. Let {C; : i € I} be a family of closed convex sets in X. Suppose that C := [\;c; Ci # 0.
Then {C; : i € I} satisfies the SECQ if and only if the system {C; —x : i € I} does for each x € X.

Proof. Let x € X. Note that
(y*,a) € epioc_, <= (y*,a+ (y*,z)) € epioc

and

EZepiaci,m (y*,a+ (y*, ) Zeplac

i€l i€l

Hence the conclusion follows from Corollary 2.1. O
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We will need the following notion of semicontinuity of set-valued maps in sections 4 and 5. Readers
may refer to standard texts such as [1].

Definition 2.2. Let Q be a compact metric space. Let X be a normed linear space and let to € Q). A
set-valued function F : Q — 2Y \ {0} is said to be

(i) lower semicontinuous at to, if, for any yo € F(to) and any ¢ > 0, there exists a neighborhood U (to)
of to such that B(yo,e) N F(t) # 0 for each t € U(to);

(ii) lower semicontinuous on Q if it is lower semicontinuous at each t € Q.

The following characterization regarding the lower semicontinuity is a reformulation of the equivalence
of (i) and (ii) in [26, Proposition 3.1]. Let lim inf;_,;, F'(¢) denote the lower limit of the set-valued function
F at tg € @ which is defined by

ligitnf F(t):={z¢€ X : H{z}ieq with 2z, € F(t) such that z, - z ast — ¢o}.
0

Proposition 2.3. Let Q be a compact metric space. Let F : Q — 2% \ {0} be a set-valued function and
let tg € Q. Then F is lower semicontinuous at to if and only if

F(ty) C htrgg)lf F(t).

We collect some properties of the lower limit of the set-valued function F' at tg € @ in the following
proposition. The first property is direct from definition and the second property is a direct consequence
of [30, Proposition 4.15].

Proposition 2.4. Let Q be a compact metric space and X a normed linear space. Let F : Q — 2%\ {0}
be a set-valued function such that F(t) is convex for each t € Q). Let tg € Q. Then liminf; ., F(t) is
convex.

Moreover, if X is finite dimensional and B is a compact subset contained in int(liminf,_,; F(t))
(e.g. F is lower semicontinuous and B is a compact set contained in int(F(t9))), then there exists a
neighborhood U (to) of to such that B C intF(t) for each t € Ul(ty).

3 The strong CHIP and the SECQ

Recall that I is an arbitrary index set and {C; : i € I} is a collection of nonempty closed convex subsets
of X. We denote ();c; C; by C and assume that 0 € C' throughout the whole paper. The following
theorem describes a relationship between the strong CHIP and the SECQ for the system {C; : i € I'}.

Theorem 3.1. If {C; : i € I} satisfies the SECQ, then it has the strong CHIP; the converse conclusion
holds if domoc C Im 0 d¢, that is if
domoe C U Ne(z). (3.1)
zeC
Proof. Suppose that {C; : i € I} satisfies the SECQ. Let € C and y* € N¢(z). Then (y*, (y*,z)) €
epioc by (2.5). Hence, if {C; : i € I} satisfies the SECQ, one can apply (2.15) to express (y*, (y*,z)) as

(" (") = >y}, u))

=
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for some finite set J C I and (y},u;) € epioc,(v) for each j € J. Then (yj,z) < o¢,(yj) < u; for all
j€Jand Y i (yj,z) = 3o, u;. It follows that (y;,2) = u; for each j € J and hence that y; € N¢, (z)
by (2.5). Therefore y* € 3., Nc,(z). Thus the strong CHIP for {C; : i € I} is proved.

Conversely, assume that domoec C Im 0 d¢ and that the strong CHIP for {C; : i € I} is satisfied.
We have to show that

epioc C Zepi oc;. (3.2)
icl

To do this, let (y*,a) € epioc, that is, @ > oc(y*). Hence y* € domoe. Then, by the assumption and
(2.5), there exists € C such that y* € No(z). By the strong CHIP assumption, it follows that there
exist a finite index set J C I and y; € N¢; (z) for each j € J such that

v =Yy (3.3)
jeJ

Note that, for each j € J, oc;(yj) < (y},z) because y; € N¢;(z). Since a > (y*,z) = ZjeJ(y;,x),

there exists a set {o; : j € J} of real numbers such that
o= Zaj and oc¢;(yj) < (yj,r) <a; foreachje J (3.4)

JjeEJ

This implies that (y;, ;) € epioc; for each j and (y*,a) € ) ;. epioc, thanks to (3.3). Hence (3.2) is
proved. O

Let f be a proper extended real valued function on X and T ¢ dom f. Recall that the continuity of
f at T means that there exists a neighborhood V of Z such that f(-) = +oco0 on V.

Proposition 3.1. Let C be a nonempty closed convex set in X. Then the condition (3.1) holds in each
of the following cases.

(1) There exists a weakly compact convex set D and a closed convex cone K such that C = D + K.

(ii) dimC < oo, Imdd¢ is convexr and the restriction oc|(span )= 0f 0c to the dual of the linear hull
of C is continuous.

Proof. (i). Suppose that (i) holds and let y* € domoc. Then since K is a cone,

sup(y*,d) = sup(y*,d) + sup{y*, k) = sup (y*,d+k)=o0c(y") < +o0. (3.5)
deD deD keK deD,keK
Since D is weakly compact, there exists Z € D(C C) such that (y*,Z) = supyep(y*,d). Thus by (3.5),
(y*,T) = op(y*) = oc(y*). Hence y* € Ne(T) and (3.1) is proved.

(ii). Suppose that (ii) holds. If C' is bounded, then C'is compact because span C'is finite dimensional.
Hence (3.1) in this case follows from part (i). If C is the whole space, then (3.1) holds trivially as
domoc = Im0dc = {0}. Thus we may assume that C is a proper and unbounded subset of the finite
dimensional space Z := span C. Let ¢ and 6¢ denote respectively the indicator function and the support
function of the set C' as a set in the space Z. Then 5(; and 6¢ are respectively the restrictions onto Z
and Z* of 0¢ and o¢. It is easy to see from definitions that

domoc = {y* € X*: y*|z € domée} and Imdde = {y* € X*: y*|z € Imddc}.  (3.6)
Now, by assumption, it follows that Imagc is convex in Z*. We claim that

domé¢ C Im d¢. (3.7)
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Since C'is proper, unbounded and the restriction o¢|(span )+ of ¢ to the dual of the linear hull of C' is
continuous, we know from from [2, Proposition 2.4.3] that
dom o \{0} = int (dom 6¢) # 0. (3.8)

On the other hand, since Im(?gc is a convex set in the finite dimensional Banach space Z*, one has (cf.
[34, Proposition 1.2.1 and Corollary 1.3.4])

int (Im 9 6¢:) = int (Im 8 6¢;). (3.9)
Moreover, by [34, Theorem 3.1.2], one has dom ¢ C Im ddc. Consequently, by (3.7)—(3.9), we get that
dom 6¢\{0} = int (dom é¢) C int (Imdd¢) = int(Im & dc) C Im & dc.

Therefore the claim (3.7) stands because 0 € Imddc. Consequently, (3.1) follows from (3.6), (3.7) and
the Hahn-Banach Theorem. The proof is complete. O

Remark 3.1. (i) By [2, Theorem 2.4.1], for a closed convex set C with dim C' < oo, the last condition
in (ii) of Proposition 3.1 is satisfied if and only if there does not ezist a half-line p such that p C bdC
nor ezist a half-line p in (span C)\C such that inf{||x —y|| : z € p,y € C} =0.

(ii) Since Im0dc C domoc holds automatically, (3.1) is equivalent to Im0dc = domoc. Thus, by
the convezity of domoe, the convexity assumption of Im  6¢ in (i) of Proposition 2.1 is necessary
for (3.1).

Combining Theorem 3.1 and Proposition 3.1, we immediately have the following corollary.

Corollary 3.1. Let {C;: i € I} be a family of closed convex sets in X. Then the strong CHIP and the
SECQ are equivalent for {C; : i € I'} in each of the following cases.

(i) There exists a weakly compact convex set D and a closed conver cone K such that C = D + K.

(ii) dimC < oo, Im 9 d¢ is convex and the restriction oc|(spanc)- 0f 0o to the dual of the linear hull
of span C' is continuous..

Remark 3.2. Part (i) was known in some special cases; see [7, Proposition 4.2] for the case when I is
a two point set and D = {0}, and [19] for the case when I is a finite set and D = {0}.

4 Linear regularity and the SECQ

Let I be an arbitrary index set and let {C; : i € I} be a CCS-system with 0 € C, where C' = ,,; C;
as before. Throughout this section, we shall use £* to denote the set B* x Rt , where B* is the closed
unit ball of X* while Rt consists of all nonnegative real numbers. This section is devoted to a study
of the relationship between the linear regularity and the SECQ. We begin with the notion of the linear
regularity for the system {C; : i € I} and two simple lemmas (the first one is easy to verify). For a
closed convex set S in a normed linear space X, let ds(-) denote the distance function of S defined by
ds(z) = inf{||lz —y||: y € S} for each z € X.

Definition 4.1. The system {C;: i € I} is said to be
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(i) linearly regular if there exists a constant vy > 0 such that

de(z) < ysupdg,(z) for all z € X. (4.1)
iel

(ii) boundedly linearly regular if, for each r > 0, there exists a constant v, > 0 such that

do(z) < ve.supde,(z) for all z € rB. (4.2)
iel
Lemma 4.1. Let v > 0. Then
co U(epi oo, NYE*) 4+ {0} x R" =co U(epi oc;, NYE*) . (4.3)
iel i€l

Lemma 4.2. Let v > 0 and let f, := %ds. If0 €S, then

1
epi f} = epios N (;B* X ]R+> ) (4.4)

Proof. By conjugation computation rules (cf. [34, Theorem 2.3.1 (v) and Proposition 3.8.3 (i)]), we have
for any z* € X*,

[ % 1 * * 1 * 1 * * * *
") = ;ds(w ) = ;(Us +0B+)(y2") = ;[05(735 ) +01p-(27)] = 05(2") +01p.- (7). (45)
It follows that 1
(z*,a) €epi f} <= 05(z") < aand 2" € ;B*. (4.6)
Since 0 € S, os(z*) < a implies a > 0. Hence (4.4) follows from (4.6). O

In the next two theorems, we shall use the graph gph f of a function f which is defined by
gph f:={(z, f(z)) e X xR: z € dom f}.
Clearly, gph f C epi f for a function f on X.
Theorem 4.1. Let v > 0. Then the following conditions are equivalent.
(i) For all x € X, do(z) < ysupieyde; (z).

w*

(ii) epioc NX* C colJ; (epioc, NyEx)

(iii) gphoc NZ* C colU;cs(epioc, N LI

Proof. By Lemma 2.2 and Lemma 4.2, one has that

* *
w w

epi (sup de,)* = co U epidg, =co U(epi oo, NX*) . (4.7)
el i€l i€l

Noting that epiog is a cone and making use of (2.2) and Lemma 4.2, it follows that the following
equivalences are valid:

(i) holds (%do)* > (Supiel dCi)*
epi (3dc)* C col;e;(epioc, N )"

epioc N %E* C colJ,s(epioe, N E*)Ld
(ii) holds.

i€l

rred
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By Lemma 4.1, (iii) implies that
epioc N X* C gphoo NEZ* + {0} x RT
C co U(epi oo, NYE*) 4+ {0} x R"
iel
=co U (epioc, NyXE¥)
il
Therefore (iii)=>(ii). Since (ii)=-(iii) is obvious, the proof is complete. O

We give a simple application of our new characterization of the linear regularity in Theorem 4.1. The
following theorem includes an important characterization of the linear regularity of finitely many closed
convex sets in a Banach space, given in [28, Theorem 4.2].

Theorem 4.2. Let v > 0 and suppose that X is a Banach space. Consider the following statements.

(i) For all x € X, do(z) < ysupieyde; (z).

(ii) For all z € C, No(xz) N B* C colJ;¢;(Ne; (x) rwB*)"J .

Then (ii) implies (i). If assume further that I is a compact metric space and i — C; is lower semi-
continuous, then (1) and (ii) are equivalent. In particular, when I is finite, (i), (ii), (ii) and (iii) are
equivalent, where (ii) and (iii) are defined in the following.

(ii) For all z € C, No(x) N B* C colJ,.,;(Ne, (z) N yB*).

iel
(iii) For all x € C and for all z* € No(x), there exist x; € N, (x), i € I such that ), ||z7|| < v and
T =) er T -

Remark 4.1. Let p > 0 and recall that the collection {D+,--- ,Dy} in X is said to have property (G,)

' (ﬁ;DZ)ﬂBgi;(Diﬂ%B).

Clearly, there exists v > 0 such that condition (iii) above holds if and only if the strong CHIP holds for
all x € C and that there exists p > 0 such that, for each x € C, {N¢,(x) : i € I} has the property (G,)
mn X*.

Proof. (ii)=-(i). Let € > 0. In view of Theorem 4.1, to establish (i), it is sufficient to show that

*

w
gphoc NXE* C co U(epi oo, N(1+e)yX*) . (4.8)
iel
To do this, let (y*,0c(y*)) € gphoc N X*. We have to show that
w*
(y*,0c(y*)) € co U(epi oc; N (1 +e)yXE*) . (4.9)

il
Consider first the case when y* € Im9d¢. Then y* € Neo(z) N B* by (2.4). Thus one can apply (ii) to
find a net {73} with w*—limit y* such that for each V, g}, is representable as

Jv=7 Y A (4.10)
i€Jy

11
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for some finite index set Jy C I, y; € N¢,(z) N B*, i € Jy and A; € [0,1] with 7, ; A; = 1. Using
(2.5) again, we obtain (yF, (v}, z)) € epioc, for each i € Jy. In w*—limits, it follows that

", (" 7)) = (@7, Gisa)) = lmy D2 Ao, (v 2));
i€Jy
hence,

w*

(v, (")) € co | J(epioc, N7 (4.11)
el

and, in particular, (4.9) holds provided that y* € Im9ddc. For the general case (that is, we do not
assume that y* € Im09dc), by [34, Theorem 3.1.4 (ii)], there exists a sequence (yn,y’:) € gphddc
such that y) converges to y* in norm and oc(yk) converges to oc(y*). Note that by (2.5), we have
(Wn» (Un>yn)) € gphoc. Since [ly*|| <1, [ly;]| < 1+ € for all large enough n. For all such n one can apply

(4.11) to ({45, 00(%)) in place of (y*,0c(y*)) to conclude that

w*

(yn-oc(yn)) € coJ(epioc, N (1 +epy=r) . (4.12)
iel

Taking limits, we get (4.9) as required. For the converse implication, let us begin to show that if (i)
holds, then
ddc(x) Cvy0supdg,(z) for each z € C. (4.13)
il

To see this, fix any z € C and take y* € ddc(z). Then since do(z) = 0, we obtain
(y*,y —x) < dc(y) foreachy e X.
Combining this with condition (i), we get

(y*,y —z) < ysupdc,(y) for each y € X.
iel
This implies that y* € v (sup;ec; dc; ) (x) and proves our claim.
Now we suppose further that I is compact and that i — C; is lower semicontinuous. Then by
[1, Corollary 1.4.17], i + d¢, () is upper semicontinuous. Hence one can apply [34, Theorem 2.4.18]

to get the inclusion 9 (sup;c;de,)(z) C colJ;e; Odc, (:L’)u] , and it follows from (4.13) that ddc(z) C

co U;er 0de; (m)uj ; hence (ii) holds for all z € C thanks to the standard result that d de(z) = No(z)NB*
and 0dc;(x) = N¢,(x) N B* (cf. [34, Proposition 3.8.3]).

Next, we consider the case when T is finite. We only need to show that (ii)<(ii) in this case. For
any z € C, we note that by Banach-Alaoglu Theorem, N¢, () N B* is w*—compact for each i € I, thus
o Ujer(Ne, (z) NB*) is w*—closed as I is finite. Hence (ii) and (ii) are the same when I is finite.

Finally, we turn to prove that (ii)<(iii). The forward implication is obvious. For the converse
implication, fix # € C. Let z* € N¢(x) NB*, we wish to show that z* € co J,c;(Nc¢, (z) N B*). By (iii),
there exist x; € Ng, (), i € I with ) ., [|z7]| < v and 2* = 37, ;7. If all the x} are zero, then the
inclusion holds trivially. Otherwise, set A := >, ||z7|| > 0. Then A <. Thus we see that

X
S

. 2l 23 [ "
¥ =\ Z 3 ||:n;*||+(1_ Z 3 )0 | €co U(Nci(a:)ﬁyB )

iel,zr#£0 iel,zr#£0 iel

which completes the proof. O



C. LI, K. F. NG AND T. K. PONG

Theorem 4.3. Suppose that

o
co U (epioc, NX*)  C Z epioc;, (4.14)
iel i€l

and that {C; : i € I} is linearly regular. Then it satisfies the SECQ.

Proof. By the assumption, one can combine (4.14) with Theorem 4.1 to conclude that epice N X* C

> ic1€Pioc;, and hence that epioc C ), ;epiog, for each epiog;, is a cone. O

il
Remark 4.2. The following example shows that (4.14) in Theorem 4.8 cannot be dropped.

Example 4.1. Let X = R? and I = N. Define C; := {z € X : |[|z|| < 1} for each i € I. Then
C = ;e; Ci = {0} and dc, (z) = max{0, ||z]| — 1} for each z € X. It follows that

su? de, () = ||lzl| = d(z,0) = dn,_, ¢, (@)-
1€

Hence the system {C; : i € I} is linearly regular. On the other hand, since C = {0} and N¢,(0) = {0}
for each ¢ € I, this system does not have the strong CHIP. Consequently, it does not satisfy the SECQ.

In the next theorem, we shall provide some sufficient conditions for (4.14). We first prove a simple
lemma. Recall that {C; : i € I} is a CCS-system with 0 € C'. We assume in the remainder of this section
that I is a compact metric space.

Lemma 4.3. Suppose that i — C; is lower semicontinuous. Consider elements ig € I, (z§,a0) € X* xR
and nets {ix} C I, {(z},0n)} C X* x R with each (z}, ) € epioc, . Suppose further that iy — i,
ap = ag, and that x =Y xj. If {z}} is bounded, then (zj,ap) € epi oc;, -

Proof. Let z € C;,. We have to prove that (z,z) < agp. By the assumption, there exists a net {z} C X
with each x3, € C;, such that z; — x. Since

(xg,2) = (w5 — wy, ) + (wh, @ — @p) + (wp, Tk),

where on the right-hand side the first two terms converge to zero and the last term (z}, z;) < oy, for each
k, it follows by passing to the limits that (zf, z) < ap. O

Theorem 4.4. Suppose that i — C; is lower semicontinuous on I and that either I is finite or there
exists an index ig € I such that dim C;y, < +00. Then (4.14) holds. Consequently, if {C; : i € I} is, in
addition, linearly reqular, then it satisfies the SECQ.

Proof. We first assume that I is finite, say I = {1,2,--- ,m}. Let (z*,@) € colJ.-, (epioc, N 2*)uj )
Then there exists a net {(Z}, @)} in coJ,, (epioc;, N E*) such that (T}, @) w*—converges to (T*, ).
Without loss of generality, we assume that 0 < @, < @+ 1 for all k. Each (T}, @) can be expressed as a
convex combination

m
@5 @) = Y Mi(@h i i), (4.15)
i=1
for some (a:,*c’i,ak,i) € epioc; NE* and Ag; € [0,1] with ZZL Ak,i = 1. Note that

Ak,i(Tk i ki) € epioc, NX*  for each k and i. (4.16)

13



14 SECQ, LINEAR REGULARITY AND THE STRONG CHIP

By considering subnets if necessary and by the w*—compactness of the closed unit ball in Banach dual
space X* (the Banach-Alaoglu Theorem), we may assume without loss of generality that for each i, there
exist zf € B* and ; € [0,@ + 1] such that

/\k,iﬂfz,i — 1‘;(, )\k,iak,i — ﬁi; (417)

(note that Ay ;ar; <@+ 1 for all k). By the w*—closedness of the set epioc,, we have from (4.17) and
(4.16) that

(zF,B;) € epioc,; for each i. (4.18)
Passing to limits in (4.15), we arrive at
m m
(@, @) =Y (27,6 € Y _epioc,,
i=1 i=1

where the inclusion follows from (4.18).

Next we assume that there exists an index iy € I such that dim C;, < +o00. Let Z = span C};, and let
(T*,@) € co Uiel(epi oc; N E*)u] . Then there exists a net {(Zy,ax)} in coJ;c (epioc, N X*) such that
(g, o) =" (T, @). Since Z x R is of dimension m + 1, one can apply the Caratheodory Theorem to
express each (T}, @) as a convex combination of m + 2 many elements of | J;.;(epioc, N X*) on Z x R.

Hence there exist indices zf € I, nonnegative scalars A, ; and pairs

(z,j>ak,j) € epioc, NX* foreach 1 <j<m +2 (4.19)

with the properties E;n;f Ak,; = 1 and

m—+2
(ZTxlz,ak) = Z >\k7j($2’j|z,ak7j). (4.20)
j=1
Note that
ki (Th j> ak,j) € eploc, NE. (4.21)

Since {@} is convergent, by passing to subnets if necessary, we may assume that @+ 1 > @, > 0. Then
we also have {@} and {A; jox ;} bounded for 1 < j < m + 2. Hence, considering subnets if necessary,
we may assume that each of the nets {\ jzy ;}, {@r}, {Akjou,;} for 1 < j <m + 2 converges, say with
limits,

HZSJ, a, Qp,j
and we can assume further that zf converges to some i € I (1 < j < m +2). Making use of (4.21), it
follows from Lemma 4.3 that

(zg,j,0,5) € epioc, foreach 1 <j<m+2.
J

Moreover, passing to the limits in (4.20), we have

m+2
@*z,@) = Y _ (@512, 20,5)-
j=1
Noting the trivial relations that epioc;, contains Z+ x RY, where Z+ = {2* € X* : z*|z = 0}, it

follows that
m—+2

@, @) € Y (z5;,005) + Z+ xRN € epiog,.
j=1 el
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This shows that (4.14) holds.
Finally, we, in addition, assume that {C; : i € I} is linearly regular. Then it follows from Theorem 4.3
that this system satisfies the SECQ. O

We intend to relate bounded linear regularity with the strong CHIP. We first provide a sufficient
condition for a system to be linearly regular. The result is known when the ambient space is a Hilbert
space ([4, Theorem 4.2.6, Corollary 4.4.4]), or a Banach space ([32, Corollary 5]). The corresponding
theorems in those references are derived from a lemma whose proof is based on the open mapping theorem,
and thus does not work in general normed linear spaces. As some preparation work, we first prove the
following lemma, which is a generalization of [7, Proposition 3.1 (i)] to a normed linear space setting.
The proof given in [7, Proposition 3.1 (i)] was based on a result in [33], while the proof we give here is a
direct check on the validity of the set inclusion in (2.15).

Lemma 4.4. Let E,F be two closed conver sets in X with ENint F # 0. Then {E,F} satisfies the
SECQ.

Proof. By Proposition 2.2, we may assume without loss of generality that 0 € ENint F' and that rB C F'
for some r > 0. Let (T",@) € epiognr. By (2.14), there exists a w*—convergent net (z},ay) with
limit (Z*, @), and for each k, (z},ar) € epiog + epiop. Without loss of generality, we assume that
0 <ap <a+1forall k. Each (2}, ax) can be expressed as

(Qf;;,Oék) = (m;;,laak,l) + (:I’.Z,Q:akﬂ)’ (422)

for some (z, ,,ax,1) € epiog and (zf ,,ak2) € epior. Since 0 € E, one has oy > op(z} ;) > 0 and so
a2 < oy, for each k. It follows that

rllzgell = orB(#h2) < or(Th2) < aks <o <@+,

where the first inequality holds because rB C F'; hence {7}, , } is a bounded net. Note also that a1, g2 €
[0,@+ 1] as 0 € EN F for each k. By considering subnets if necessary and by the w*—compactness of
the closed unit ball in Banach dual space X* (the Banach-Alaoglu Theorem), we may assume without
loss of generality that there exist u*,v* and (3,82 € [0,@ + 1] such that

Tho =V, Xpy =T —Tpe —u’, and ag; — B foreachi=1,2. (4.23)
By the w*—closedness of the epigraphs of support functions, we have from (4.23) that
(u*,B1) € epiog and (v*,2) € epiop. (4.24)
Passing to limits in (4.22), we arrive at
(", @) = (u*, B1) + (vV*,B2) € epiog + epiop.
This proves epiopnr C epiog + epiop, and hence the desired result follows from Corollary 2.1. O

We now give a sufficient condition for a system to be linearly regular.

Lemma 4.5. Let E be a closed convex set in X containing the origin and let r > 0. Then

dprrs () < 4max{dg(x),d.(z)} for each x € X. (4.25)

15
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Proof. We first show that
gphopnBNX* C co((epiop N4X*) U (epio,p N4X™)). (4.26)

Take (y*,05nrB(y*)) € gphogn-B N X*. By Lemma 4.4, there exist (yi,a1) € epiog and (y3,as) €
epio,g such that
(" oenrB(y")) = (i, 1) + (y3, 2)-

This implies that
oenrB(Y") = a1 + as. (4.27)

Since 0 € E, 0 < og(yf) < ai and hence as < ogn-(y*) < r thanks to (4.27). It follows that
|yl = orB(y3) < as <, and thus ||[y7]| < l|lv*|| + llys|| < 2. Therefore, that

* * 1 * * . * . *
(v*,08nrB(Y")) = 3 [(2y7,2a1) + (293, 2a)] € co(epiogp N4X* Uepio,g N4X"),

and (4.26) is established. By the implication (iii)=(i) of Theorem 4.1 (with v = 4), it follows that (4.25)
holds. O

The following proposition on a relationship between bounded linear regularity and the linear regularity
is known in [4, Theorem 4.2.6 (ii)] for the special case when X is a Hilbert space.

Proposition 4.1. Let {A4; : i € I} be a system of closed convex sets in X containing the origin and
suppose that {A4; : i € I} is boundedly linearly reqular. Then for all r > 0, the system {rB,A;: i€ I}
1s linearly regular.

Proof. Write A =[),.; 4; and let » > 0. By assumption, there exists k, > 0 such that

iel
da(x) < k.supda,(z) foreach z € rB. (4.28)
iel

Let f be defined by f(x) := k,sup;c;da,(z) — da(x) for each x € X. From the (4.28), we see that
f(x) >0 for all z € rB, and the equality holds for all z € (,.; A; NrB. Since f is clearly Lipschitz with
modulus &, + 1, it follows from [8, Proposition 2.4.3] that f(z) + (k. + 1)d,g(z) > 0 for all x € X. This
implies
da(z) < (2k, + 1) max{d,s(z),supda,(x)} for each z € X. (4.29)
iel

It follows from Lemma 4.5 that

danrB(z) < dmax{d,p(z),da(z)} < 4(2k, + 1) max{d,g(z),supda,(xz)} for each z € X.
iel

This completes the proof. O
For the following corollary, we need to state a lemma, which will also be used in the next section.

Lemma 4.6. Let {D,C;: i € I} be a family of closed convex sets with nonempty intersection. Let A be
a closed subset of X such that
DN()Cinint A # 0. (4.30)
iel
If {D,C; : i € I} has the strong CHIP, then so does {DNA,C;: i € I}. As a partial converse result, if
{DNA,C;: i €1} has the strong CHIP at some point a € DN (;c; CiNint A, so does {D,C; : i € I}.
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Proof. Suppose that {D,C; : i € I} has the strong CHIP. Also, by (4.30) and a (normed space)
generalization [26, Theorem 2.2] of Theorem Deutsch-Li-Ward in [12], {4, D N ,.; Ci} has the strong
CHIP. Consequently, for any € DN AN, ; Ci, one has

i€l
el
c:(x) € Na(z) + Npen,, c: (2)
C Na(z) + Np(z +ZNC x)
el

C Npna(z) + > Ney(x
i€l

Npnann

zeI

which shows that {DN A, C; : i € I} has the strong CHIP.

Conversely, suppose that a € DN [),.; C; Nint A and that

i€l

Nprann,e; c:(@) € Npnala +ZNC
i€l

It follows that

Norn,., o;(@) € Npna(a) + Y Nej(a) = Np(a) + Na(a) + > Ne,(a) = Np(a) + Y Ne, (a)
jeJ jeJ jeJ

as Nanp(a) = Np(a) + Na(a) = Np(a), thanks to [26, Theorem 2.2]. O

Corollary 4.1. Suppose that i — C; is lower semicontinuous on I and that either I is finite or there
exists an index iy € I such that dim C;, < +oo. If {C; : i € I} is boundedly linearly regular, then it has
the strong CHIP.

Proof. Fix any = € [);c;Ci. Let 7 = |[|z]| + 1. Since {C; : 4 € I} is boundedly linearly regular,
we obtain from Proposition 4.1 that {rB,C; : i € I} is linearly regular. Taking an index i, ¢ I, set
I, = ITU{iy} and C; = rB. Clearly the map i — C; is lower semcontinuous on I,. It now follows from
the assumptions and Theorem 4.4 that {C; : i € I} satisfies the SECQ and so does {rB,C; : i € I};
thus {rB,C; : i € I} has the strong CHIP (thanks to Theorem 3.1). Then it follows from Lemma 4.6
(with D = X and A = rB) that {C; : i € I'} has the strong CHIP at = because z € int rB. The proof is
complete. O

5 Interior-point conditions and the SECQ

Recall that I is an index-set and C' = [,c;C; € X. As in [26], the family {D,C; : i € I} is called
a closed convex set system with base-set D (CCS-system with base-set D) if D and each C; are closed
convex subsets of X. Furthermore, throughout the remainder of this section, we always assume that I is
a compact metric space and 0 € DN C. Thus,

op and o¢, are nonnegative functions on X* for all i € 1. (5.1)

Let |J| denote the cardinality of the set J.

Definition 5.1. Let {D,C; : i € I} be a CCS-system with base-set D. Let m be a positive integer.
Then the CCS-system {D,C; : i € I} is said to satisfy:
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(i) the m-D-interior-point condition if, for any subset J of I with |J| < min{m, |I|},
D (ﬂ rintDCi> # 0; (5.2)
ieJ
(ii) the m-interior-point condition if, for any subset J of I with |J| < min{m, |I|},
D (ﬂ intC’i> £ 0. (5.3)
ieJ

Before proving our main theorems, we first give the following lemma. Recall that y*|z € Z* is the
restriction to Z of y*.

Lemma 5.1. Let m be a positive integer and and let {D,C; : i € I} be a CCS-system with the base-set
D satisfying the following conditions.

(a) D is finite dimensional.
(b) The set-valued mapping i — (span D) N C; is lower semicontinuous on I.
(c) The system {D,C; : i € I} satisfies m-D-interior-point condition.
Let (y*,a) € X* x R and let {(y},ar)} C X* x R be a sequence such that
(Yklspan Dy k) converges to (y*|span D, @), (5.4)

where each (Yj|span D, k) can be expressed in the form

m
(Yklspan D, k) = (vl z, Br) + Z(m:;?|spanD:ai?) (5.5)
j=1
with
(vg,Br) € epiop, (a:;.*,_c,ai?) € epioc,, (5.6)
J J
for some i%,--- ik € I. Then
(y*a Oé) € epiop + Z epi O (span D)NC; - (57)

i€l

Proof. Since I is compact, by considering subsequences if necessary, we may assume that there exists
ij € I such that zg” — 4; for each j = 1,---,m. By assumption (c), there exist z € D and ¢’ > 0 such
that

B(z,60") NspanD C Cy, NspanD for each j =1,2,--- ,m. (5.8)

Set for convenience Z := span D and B := B(z,d) N Z, where § = %I. Then B is compact, thanks to
assumption (a). For any j = 1,2,--- ,m. We make use of the assumption (b) and apply Proposition 2.4
at the point ¢y := i; of the lower semicontinuous function i — C; N Z to conclude from (5.8) that
B C Ci? N Z for all large enough k. Do this for each j = 1,2, -+ ,m and take kg € N large enough such
that

BCCxNnZ foreachl<j<mand#k> ko. (5.9)
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Note that, for each 1 < j <m and k € N,
op(zl) = sup(cl, ) = sup (zh,z)+ (zh,z) = 0|z} |z]| + (], 2)-
; weB I z€sBNZ I i i i
It follows from (5.9) that,
0 > 00, (73) > 00,02(w) > on() = Sl 2] + (3, 2), (5.10)
provided that k > ko. Moreover, since z € D and (v, 8;) € epiop, (5.5) establishes that
m m
ar — (Y, 2) = Br — (vg,, z) + Z(ai? - (m;},z» > Z(ai? - (a::f,z)) (5.11)
j=1 j=1

Combining (5.10) and (5.11) yields that
o = (i, 2) 2 D (g — (w5,2) 2 Yozl (5.12)

This implies that {z},|7z : k € N} is bounded for each 1 < j < m thanks to (5.4). Consequently
{vi|z : k € N} is bounded as, by (5.5),

m m
loilzll = wilz = | Do ahlz ||| < lwilzll + Yl 2.
j=1 j=1

Since Z is finite-dimensional ( and by passing to subsequences if necessary) we may assume that for each
j=1,2,...,m, there exist Iy and 7* € Z* such that

m:§|Z — @7, and vi|z — 0" as k — oo. (5.13)

Now, observe that from (5.11), (5.12) and the nonnegativity of support functions (see (5.1)), we see that
{a;} and {Bi} are bounded. Thus we may also assume that, for each j, oz — @;; for some @&;; € R and

that 8 — £ for some 3 € R. Then, by (5.4) and (5.5),

m m
z=0"+> & and a=p+) d. (5.14)
j=1 j=1
Let 27 € X™ be an extension of 7 to X and v* € X~ be an extension of v* to X. We claim that
(a:;‘j,(iij) € epi 0(Ci;nZ)- In fact, for 1 < j <m, for each « € C;; N Z, by assumption (b), there exists a
sequence {z;+} with each ;. € Cj N Z such that z;, — z as k — oo. It follows from (5.7) and (5.13)
J J J J
that,

* I I * .
(o, 0) = i (w2} < lim o = a0

Therefore supzeci_mz(m;j , ) < &j; and so (m;j , ;) € epi 0(Ci;nZ)- Similarly one can show that,
J

w*,zy = lim (vj,z) < lim By = B for each z € D;

k—o0 k—o0

that is (U*,B) € epiop. Write g* = y* — v* — Z;nzl ;.. Then by (5.14), §* € Z+ and

m
(y*,a) = (3%,0) +Z 7, Qij) EZLX{0}+ep10D+Zepmc nZ-
j=1 j=1

Thus, (5.7) holds as Z+ x {0} is clearly contained in epiop. O
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Remark 5.1. If, for (a) of Lemma 5.1, dim D < m — 1, then the following implication is valid:
(a) + (b) + (c) = {D, (span D) N C; : i € I} satisfies the SECQ. (5.15)
(This can be seen from (i) of Theorem 5.1 below, but with m replaced by m — 1.)

Theorem 5.1. Let m € N and let {D,C; : i € I} be a CCS-system with the base-set D. We consider
the following conditions.

(a) D is of finite dimension m.
(b) The set-valued mapping i — (span D) N C; is lower semicontinuous on I.
(c) The system {D,C;: i € I} satisfies (m + 1)-D-interior-point condition.
(d) For each i € I, the pair {D, C;} has the property:
epi O (span D)nc; € €piop + epioc, (5.16)
(e.g. {D,C;} satisfies the SECQ),
(c*) The system {D,C; : i € I} satisfies m-D-interior-point condition.

(d*) For each finite subset J of I with |J| = min{m + 1,|I|}, the subsystem {D,C; : j € J} satisfies the
SECQ.

Then the following assertions hold.
(i) If (a), (b), (c) are satisfied, then {D, (span D) N C; : i € I} satisfies the SECQ.
(ii) If (a), (b), (c), (d) are satisfied, then {D,C; : i € I} satisfies the SECQ.
(iii) If D is bounded and (a), (b), (c*), (d*) are satisfied, then {D,C; : i € I} satisfies the SECQ.

Proof. (i) Write Z := spanD as before. For a subset H of X* x R, we use H|z C Z* x R to denote the
restriction to Z of H defined by

H|z ={(z"|z,8): (z*,8) € H}. (5.17)
Let (y*,a) € epiop + ), epiog, " Since Z is finite dimensional, there exists a sequence {(yg, o)} C
X* x R with

(yr,ar) €Eepiop + Zepi oc, foreachkeN (5.18)
iel

such that (yj|z,ar) converges to (y*|z,«). By (5.18) we express for each k € N,

(i a) = (v, Br) + (u, 72)- (5.19)

where (vg,Bk) € epiop and (uj,vk) € ) ;crepioc,. Since (3 ;. epioc,)|z is a convex cone in the

(m + 1)-dimensional space Z* x R, it follows from [30, Theorem 3.15] that, for each k, there exist indices

{i%, - ,i’an} C T and {(z%,ap), -, (% ,am )} with (z%,a;:) €Eepioc, foreach 1 <j<m+1
B 1 b1 m+1 v 3 i
h that
such tha -~
(uplz, k) = E (a::? |z, ai?) for each k € N. (5.20)

Jj=1
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Thus we have
m+1
(yilz,ar) = (vilz, Be) + Z (m:?|z,ai?) for each k € N. (5.21)
j=1
By Lemma 5.1 and thanks to assumptions (a), (b), (c),
(y*,a) €epiop + Zepi OZAC; - (5.22)
iel
We have just proved the inclusion
w*
epiop + Z epioe; Cepiop + Z epioznc;- (5.23)
icl icl
Noting D N(;c;(ZNCs) = D N[, C, it follows from (2.15) and (5.23) that
epi TDAN; e (ZNC;) = epiop + Zepi oc, Cepiop+ Zepi 0ZnC; - (5.24)

el i€l

Thus {D, (span D) N C; : i € I} satisfies the SECQ by Corollary 2.1. This proves assertion (i).
(ii) Now suppose in addition that (d) is also satisfied. Then (5.24) implies that

epiopan,., c; Cepiop + Z(epi op +epioc;) Cepiop + Zepiaci.
iel il
By Corollary 2.1 again, this implies that {D,C; : i € I'} satisfies the SECQ, that is, (ii) holds.

(iii) Now suppose that (a), (b), (c*), (d*) are satisfied. Without loss of generality, we may as-
sume that m + 1 < |I| since , otherwise, the conclusion follows from assumption (d*). Consider
(y*, ), (v}, an), (vF, Be), (uf,vx) satisfying (5.18)—(5.21). Let k € N and set I¥ = {i¥,--- ,i¥ ., }. Then
for any 2 € DN (;cpe C5(C Z),

m+1 m—+1

ﬂk+2ak>apvk +Zac a:k ka—f-ka, (Yr, 2)s (5.25)

JEI*

thanks to (5.21). Since D N (¢ C) is compact, there exists zF e Dn (Njer Cj) such that

Qg > <y27mk> = UDﬂ(ﬂjEIk Cj)(yZ)ﬂ (526)

i.e., ¥i € Nonin,. o) (@¥). Tt follows from assumption (d*) and Theorem 3.1 that yj; € Np(az*) +

> jer Ne; (z*). Applying [30, Theorem 3.15] to the m—dimensional subspace Z, y;|z can be expressed
in the form

vilz =dilz + > 271z, (5.27)
JEJ®

for some dj, € Np(«z*) and 2z} € N¢, («*) (j € J*), where J* is subset of I* with m element. Evaluating
(5.27) at ¥ € DN (Njer= Cj), and invoking (2.5) and (5.26), we have

ar > (i, a*) = op(dp) + Y o0, (5.28)
jeT*R
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Define

pe =0k — Y 0cy(2]).

jEJ®

Then py, > op(dy) by (5.28). Denoting oc;(z]) by ;, this and (5.27) imply that

Wilz,aw) = (dilz, ) + Y (2512,75)- (5.29)
jeJk

Noting that (dj,ux) € epiop and (z},7;) € epiog; for each j € J*. Since |J¥| = m and thanks to

assumptions (a), (b) and (c*), Lemma 5.1 asserts that

(y*,a) €Eepiop + Y _ epio(znc,). (5.30)
el

Let i € I and let J be any subset of I such that i € J and |J| = m + 1. Then, by assumption (d*), one
has that

c;)) Cepiop + Zepi oc;- (5.31)
JjEJ

epig(zney) € ePio(nn(n,,,

Therefore, by (5.30) and (5.31), (y*, ) € epiop +)_,.;epioc, and thus epiop + ), epiog, is weakly™
closed in the case when assumptions (a),(b), (c*) and (d*) are satisfied. By Corollary 2.1, this implies
{D,C;: i€ I} satisfies the SECQ. The proof is complete. O

Corollary 5.1. Let m € N and let {D,C; : i € I} be a CCS-system with the base-set D satisfying the
following conditions.

(a) D is of finite dimension m.

(b) The set-valued mapping i — (span D) N C; is lower semicontinuous on I.
(c™) The system {D,C;: i € I} satisfies (m + 1)-interior-point condition.

Then {D,C; : i € I} satisfies the SECQ.

Proof. By Lemma 4.4, (c*) implies the conditions (d) and (c) of Theorem 5.1. Thus, Theorem 5.1 ii)
is applicable. O

The following corollary, which is a direct consequence of Theorem 5.1 (i), is an improvement of
Theorem 1.1.

Corollary 5.2. Let {D,C; : i € I} be a CCS-system with the base-set D. Let m € N and let zo € DNC.
Suppose that the following conditions are satisfied.

(a) D is of finite dimension m.
(b) The set-valued mapping i — (span D) N C; is lower semicontinuous on I.
(c) The system {D,C;: i € I} satisfies (m + 1)-D-interior-point condition.

(d) For each i € 1, the pair {D,C;} has the property:

N(span D)NC; (:L’g) c ND(I'O) + Ng, (:L’g) (532)
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Then the system {D,C; : i € I} has the strong CHIP at x.

The following corollary is an important improvement of Theorem 1.2. Our main improvement lies in
the fact that we need not require the upper semicontinuity of the set valued map i — (span D) N C; and
that (d) can be weakened to required only the subsystems {D,C; : j € J} with |J| = [+ 1 have the
strong CHIP.

Corollary 5.3. Let m € N and let {D,C; : i € I} be a CCS-system with the base-set D satisfying the
following conditions.

(a) D is of finite dimension m.
(b) The set-valued mapping i — (span D) N C; is lower semicontinuous on I.
(c*) The system {D,C; : i € I} satisfies m-D-interior-point condition.

(d) For each finite subset J of I with |J| = min{m + 1,|I|}, the subsystem {D,C; : j € J} has the
strong CHIP.

Then the system {D,C; : i € I} has the strong CHIP.

Proof. If |I| < m + 1, then min{m + 1,|I|} = |I|, so the result is trivially true by (d). Thus we may
assume that [I| > m + 1. Recall that C' = [,.; C; and let z € D N C. We have to show that the system
has the strong CHIP at z. For this end, let D = D N B(z,r,), where r, = ||z|| + 1. Consider the system
{D,C;: i€ I}. We claim that the following conditions hold.

(a) D is of finite dimension and dimD = m.

(b) The set-valued mapping i — (span D) N C; is lower semicontinuous on I.

(€) The system {D,C; : i € I} satisfies m-D-interior-point, condition.

(d) For each finite subset .J of I with |.J| = m + 1, the subsystem {D,C; : j € J} satisfies the SECQ.

In fact, by assumption (c*), for each finite subset J of I with |J| = m, there exist Z € D and § > 0
such that B(Z,0) NspanD C D N ((;c;C;). Since 0 € int B(z,r;), there exists A € (0,1) such that
AB(z,6) C B(x,r,). Consequently,

AB(z,0)(spanD C AD(\B(z,r.) (|| () Ci | €D (ﬂ ci> : (5.33)

jer icJ
This implies that int B(Z,d) Nri D # §; hence
span D = span D. (5.34)

Consequently, condition (€) holds by (5.33). Moreover, by (a), (b) and (5.34), it is seen that (a) and
(b) hold. As to condition (d), let J be any subset of I with |J| = m + 1. By (d) the subsystem
{D,Cj : j € J} has the strong CHIP. Since z € int B(z,r,) N (DN (;c; Cj)), and applying Lemma 4.6
to the ball with center z, radius r, and J in place of A and I, it follows that {IND, C; : j € J} has the
strong CHIP and consequently satisfies the SECQ, thanks to Corollary 3.1 (i) because D N (ﬂjeJ Cj)
is compact. Thus (d) is established. Thus Part (iii) of Theorem 5.1 is applicable to concluding that
the system {IN),Q» : 4 € I} satisfies the SECQ, which in turn implies that it has the strong CHIP at
x. Consequently, the system has the strong CHIP at x by Lemma 4.6 applied to the ball with center x,
radius r, and J in place of A and I. The proof is complete.

O
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