ON EXTENSION OF FENCHEL DUALITY AND ITS APPLICATION
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Abstract. By considering the epigraphs of conjugate functions, we extend the Fenchel duality, applicable to a (possibly
infinite) family of proper lower semicontinuous convex functions on a Banach space. Applications are given in providing
fuzzy KKT conditions for semi-infinite programming.
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1. Introduction. The famous Fenchel duality theorem can be stated as follows (cf. [30, Corollary
2.8.5]): for any family of finitely many proper lower semicontinuous convex functions fo, f1,..., fn on
a Banach space X, if domf;, N int(ﬂi#odomfi) # () for some ig € {0,1,...,n}, then their conjugate
functions f, f1, ..., f, satisfy the relation

inf <ngi(x)> = (=32 17 (a1): 3w =0) (1.1)

and in fact the following stronger relation holds for any x* € X*:

n n n
()" Fie) — o)} = max{ =3 F () Yt = ). (12)
i=0 i=0 i=0

Background information on the Fenchel duality theory can be found in Rockafellar [28] (see also [2, 27, 30]).
This theory is a fundamental tool for establishing penalty results in nonlinear programming (cf. [8]).
Moreover, it also plays an important role in the theory of best approximation (cf. [14, 20]), error bound
analysis [12] and in the study of monotone operators [25], and also in the KKT theory in connection with
the following convex programming

min fo(z)

st filx) <0 (1=1,...,n).

The Fenchel duality enables us to transform original problem (primal problem) into an optimization
problem on the dual space (dual problem). In some cases, especially in optimal control problems, the
dual problems are easier to handle than the original ones (see [13, Example 25.2], [15]). Stimulated by the
study of semi-infinite programming problems (see [17, 21] and the references therein), it is both interesting
and useful to extend the Fenchel duality applicable to a family {f;}icr of proper lower semicontinuous
convex functions on a Banach space with the index set I which is allowed to be infinite. In this present
paper, much of our study is based on the consideration of epigraphs of the conjugate functions and is
motivated by the recent work of Jeyakumar and his collaborators (see [9, 10, 19] for example); we provide
characterizations (and sufficient conditions) for the following property: for any z* € X*

inf (/@) — (")}

= max{—Zfi*(x;‘) cx; € X and Z(scf,:v} = (z",z) for any z € X},
iel iel
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where f is the sum function of {f; : i € I}, that is f(z) = _,.; fi(z) for all z € X. As an application,
we present a fuzzy KKT conditions in section 5 for the semi-infinite programming problem.

2. Preliminaries. Throughout this paper, X denotes a Banach space and X* denotes its topological
dual. We use B(z, ¢€) (resp. B(z,¢)) to denote the open (resp. closed) ball of X with center 2 and radius
e. For a set A in X the interior (resp. relative interior, closure, convex hull, affine hull, linear span) of A
is denoted by intA (resp. rid, A, coA, aff A, spanA) (if A is a subset of X*, its weak* closure is denoted
by Zw*). Let A be a nonempty subset of X. The indicator function §4 : X — RU{+o0} and the support
function o4 : X* — RU {400} of A are respectively defined by

0, if xeA,
00, otherwise,

Sale) = { (2.1)

and o4 (z*) = sup,ec4(z*, ) for all z* € X*. Let I'(X) denote the class of proper lower semicontinuous
convex functions on X, I'o(X) := {f € I'(X) : f is continuous and real-valued on X} and I'y (z) := {f €
I'(X) : f is nonnegative on X }. For a proper function f on X, the effective domain and the epigraph are

respectively defined by domf := {x € X : f(z) < +oo} and epif := {(z,7) € X xR : f(x) < r}. The
subdifferential of f at z € X is defined by

af(x): {JJ*EX*<$*,y—$>§f(y)—f(I>VyEX}7 1fx€domf, (22)
0, , otherwise. '
More generally, for any € > 0, the e-subdifferential of f at z € X is defined by
0. f () = {zre X*: (@*,y —2) < f(y) — f(x) + eVy € X}, ifz € domf, (2.3)
‘ 0, , otherwise. '

As usual, for a proper function f on X, its conjugate function f* : X* — R U {+oo} is defined by
[ (x*) = sup{(z™,z) — f(x)} for all 2* € X*. In particular, one has
zeX

(04)"(z") = oa(x¥), for all z* € X™. (2.4)

The definition of f* entails that (z*,z) < f*(z*)+ f(x) (Young’s inequality) for any € X and z* € X*.
Moreover, for any € > 0 and x € domf

' €0:f(x) & [r(@7)+ flx) < (@%z) +e & (27 e+ (27 2) - f()) € epif”. (2.5)
In particular, we have the following Young’s equality
et €df(x) & (2% a2) = f*(a7) + f(2).
From the definitions, it is clear that for any proper functions f;, fo on X,
fisf e f{>2f; < epiff Cepif;. (2.6)

Moreover, it is known that f* € I'(X™*) for any f € I'(X) (cf. [30, Theorem 2.3.3]). As usual, X* x R
and (X x R)* are identified and, for convenience, we use the norms defined by

[(z, a)|| = max{|lz|, [a[}, V (z,0) € X xR
and

I )l = llz*[| +[al, V(2" a) € X* xR.
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If H is a subspace of X, the restrictions and the corresponding norms of the restrictions are defined as
follows: z*|g € H*, (x*|g,a) € H* x R=(H x R)*, ||z*||r := sup{(z*,z) : x € H, ||z|| < 1}, and

1@ m, @)l = [l2* | + e (2.7)

Let I be an index set and let F(I) denote the collection of all finite subsets of I (thus F(I) is a directed
set ordered under the inclusion relation). Let {a; : i € I} C RU{+400}. We define the sum of {a; : i € I}
by

2=ty 2

iel
provided that the (unconditional) limit Alin% )Z a; exists as a member of R U {+oo}. In particular, if
eF(
i€A

a; > 0foralli eI, then ), ; a; exists and

Zai = sup Zai < +o0. (2.8)
el AeF(D) jca
REMARK 2.1. Let {a;,bi,citier € R be such that a; < b; < ¢; for alli € I. Suppose that ), a; and
> icr Ci ewist inR. Then ), b; also exists in R (because 0 < bj—a; < c;—a; and ), ;(ci—a;) < +00).
Let {f; : i € I} be a family of extended-real valued functions on X. We define their sum function f
as follows: let Dy := {z € X : ), ; fi(x) exists in RU {4o00}}; we define

f(z) = Zfz(x) for all z € Dy.

icl

In particular, if f; € 't (X) for all ¢ € I then Dy = X and

(Z fi)(x) = sup Zfl(m) for all z € X. (2.9)

il AeF(I) jea

For z* € X* and a family {z}};cs of elements in X*, the notation

=Y (2.10)
iel
means that (x*, h) = Alin% ) (x}, h), for each h € X. Let {A;}ics be a family of subsets of X*. The set
eF(I
i€A
{z* € X* : 3z} € A;Vi € I such that z* = Z*xf} will be denoted by Z*Ai. It is easy to check that
iel i€l
Z A; is convex if each A; is convex, and that Z A, = ZAi if I is a finite set. Moreover, {4;}icr
iel i€l el
is said to be weak* summable if Z x; exists in X* (that is, (2.10) holds for some z* € X*) whenever
icl

x; € A; for each i € I.

REMARK 2.2. The above definition is slightly different from [32]: our notation Z A; does not

iel

require the family {A;}icr to be weak™ summable.

A useful relationship between epif* and 0. f is given in the following formula observed by Jeyakumar
et. al. in [9] (we note that, as observed in [3], this formula works even when f is merely a proper
function):

epif* = U{(x*,e—i— (x*,x) — f(x)): 2" € O f(x)} V feT(X), z €domf. (2.11)
e>0
3



Throughout this paper, unless explicitly mentioned otherwise, I is an arbitrary index set (that is, the
cardinality |I| < 400). For convenience, we list below several known results that will be useful for us.
LEMMA 2.1. (¢f. [30]) Let I be a finite set and let {f, f; : i € I} CT(X) be such that f(z) = Zfl(a:)

iel
710*
forallz € X. Thenepif* = Zepifi* and, moreover the result can be strengthened to epif* = Zepifi*
iel el

if there exists ig € I such that domf;, Nint (ﬂ#io (domf;)) # 0.
REMARK 2.3. Let I be a finite set and let C be a closed convexr subset of X. Recall that sqriC :=
{x € C:UysqAMC — ) is a closed subspace}. A weaker generalized interior point regularity condition
ensuring epif* = Zepifi* is as follows (cf. [5, 23]): there exists ig € I such that
iel

0 € sqri H (domf; — domf;,).
i#io
The following lemma can be found in [20, Lemma 2.3]. We note that it has been also derived in [4,
Section 4.3] via a different approach.
LEMMA 2.2. Let {f; :i € I} CT'(X). Suppose that there exists xo € X such that sup;c; fi(zo) < oco.
Then

*

epi(sup f;)* = co | Jepif;
el iEl
where sup f; : X — RU {+o0} is defined by (sup f;)(x) = sup fi(x) for allx € X.
iel iel iel
REMARK 2.4. Let f € I(X) and A :={x: f(z) <0} # 0. Then 64 = supysoAf and it follows from
Lemma 2.2 that,

* *

epi(da)* = co U epi()\f)*u) = U epi(/\f)*uj , (2.12)

A>0 A>0

where the last equality holds because U epi(Af)* is a conver set.

A>0
For continuous functions, the following result in [31] will play an important role.

LEMMA 2.3.  Let {f,fi : i € I} C T'o(X) be such that f(z) = Zfl(z) for all x € X. Then
iel
{0fi(x) }ier is weak* summable and the following relation holds

of(z) = z*ﬁfi(z)w forallz € X.

iel

Moreover, if I is countable then Z*afz(x) is weak” closed and hence
icl

8f(x)=2*8fi(ac) for all x € X.

icl

3. Strong Fenchel Duality and its Characterization. In this section, we provide some char-
acterization of the strong Fenchel duality (in the sense that (1.2) holds for all * € X™*). To do this, we
need the following lemma.

LEMMA 3.1. Let {f, fi:i €I} CT(X) be such that

f(x) = Zfl(x) forallz € X. (3.1)
iel
4



Then the following inclusion holds:

*

S epif;  C epif*. (32)

iel

Proof. Let (z*,a) € Z*epifi*, that is, for each ¢ € I there exists (z}, ;) € X* xR with f*(zf) < o
iel
such that

Zai:aand Z(mf,@f(x*,x) VaoelX. (3.3)

Since epif* is weak* closed, to prove (3.2), it suffices to show f*(z*) < a.. Let € domf. Note that

(w7, 2) = filz) < sup{(zi, 2) — fil2)} = fiw]) < e (3-4)

Applying Remark 2.1 and making use of (3.1), (3.3) and (3.4), we note that Z fi(x}) exists and
iel

(aj*’x>ff(x):2(<:c x) Zf <Zo¢,fo¢
i€l i€l i€l

Taking supremum over all z in domf, this implies that

[ (z*) = sup (<:L' x) Zf (3.5)

zcdom f iel

as required to show. This completes the proof. [
The following result is known [9] (see also [11, Corollary 3.4]) for the special case when I is finite.
THEOREM 3.2. Let {f, f; :i € I} be as in Lemma 3.1. Then the following statements are equivalent:

(i) CU{Z O, filx Zel—e each €, >0} Ve>0 and x € X. (3.6)
el el
(ii) U{Z O, fi(z Ze,—e each ¢; > 0} V e > 0 and x € domf.
el el
(i) epif* = epiff.
i€l

(iv) For any x* € X*,

inf {f(2) — (2", 2)} = max{~Y_fi(e}): Y @ ="},

zeX X ;
i€l el

that is, f*(x*) = mm{Zfz xy): Z x; =z}
iel i€l
Any of the statements (1)-(iv) implies

(v) inf f(x) = max{— Zf Z*xf = 0}.

rzeX
el el

Proof. First, (v) follows from (iv) by letting * = 0. Thus, we only need to show the equivalence of

(1)-(iv).



[(i) = (ii)] Let € domf, € > 0 and ¢; > 0 be such that >
show that

ser € = € To prove (i) = (ii), it suffices to

>0 fi(x) C 0cf (@), (37)

iel
To do this, let z* = Z*xz‘ € X*, where each z} € 9, fi(x). Then from Young’s inequality and (2.5) we
iel
have
(2, 2) — e < fi'(a7) + filz) — & < (a7, 2).
Therefore, by Remark 2.1, Z(fl* (xF) + fi(z) — €;) exists in R and
icl
SFED+ ) —e=> (f@)+ filr) —a) <Y (af, @) = (@",x). (3.8)
iel iel iel
On the other hand, note that f*(z*) < ., fi'(2]) because for each z € domf one has
(@*,2) = f(2) =) (&, 2) = ful2)) <D fi (@) (3.9)
il iel
Thus, by (3.8),

Foa) + fle) —e < D0 fi @) + fla) —e < (a7 ).

Therefore 2* € J.f(x) and (3.7) holds.
[(ii) = (iii)] In view of Lemma 3.1, it suffices to show that epif* C Z epif;. To do this, let (z*,a) €
iel
epif*. We have to show that (z*,a) € Z*epifi*. Take an arbitrary « € domf; from (2.11), there exists
icl
€ > 0 such that 2* € O.f(z) and o = € + (x*,z) — f(z). It follows from (ii) that there exist ¢; > 0 and

z} € 0, fi(x) (so (x},04) € epif; where o := €; + (¢, z) — fi(z)) such that e = Zei and z* = Z*xf

i€l il
Thus
(@*0) = 3 (@ha) € 3 epif;,
i€l iel
as required to show.
[(iii) = (iv)] Let * € X*. Note first that, by (3.9),
—f*(x*) = inf —{z* > — *(xk 1
Frat) = nf {£(2)— @A) = =Y () (3.10)

iel
*
whenever {z} : i € I} C X* with z* = Z x;. Thus to prove (iv), it remains to show that there exists

icl

xj € X* (i € I) such that * =3, ;7 and

Lt ()~ ) < - R, (3.11)
iel
To do this, we can suppose that inf.cqomf{f(2) — (z*,2)} > —oo, that is f*(2*) < +oco. Then
(x*, f*(z*)) € epif*. It follows from (iii) that (z*, f*(z*)) € Z epif;, that is, there exist (¢}, o;) € epif;
iel
(i € I) such that

Z*xf =z and Zai = f*(z"). (3.12)
iel iel
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We claim that {x} : i € I} satisfies (3.11). In fact, since (z},a;) € epify (¢ € I), Young’s inequality
implies that for any z € X

(@,2) = fi(z) < i (@) S0 (i €1). (3.13)
Since Zfz = ) € Rif z € domf, it follows from (3.12) and Remark 2.1 that Zf ) exists and
for an;/eé € domf !
(@*,2) = f(z) = Y _((a},2) <Y fED <Y =
i€l icl icl
Taking supremum over all z € domf, this implies that f*(z*) < Z fixl) < Zal = . In view of
icl el

(3.13), this forces that f(«}) = a; for all ¢ € I. Therefore, we obtain that
inf {f(z) (2" 2)} = —f"(@) ==Y ai=—) filx
z€dom f X :
iel iel
Thus (3.11) holds as claimed.
[(iv) = (i)] Let € > 0, x € X and z* € O.f(x). By definition of f*(z*), (iv) means that

(@) = min{Y_fr(@}): Y af =a").

el i€l

Thus, there exist ] € X* with Z x; = a* such that f*( Zf . Hence

iel i€l

Fr(@) + fla) = (@, 2) = Y (fi @) + filx) = (af,)).
iel
where 0 < f*(zF) + fi(z) — (zF,x) for all i € T (by Young’s inequality). Since z* € O.f(z) (that is
fH(x*) + f(x) — (x*,z) <€), it follows that there exist ¢; > 0 (i € I) such that Zei =€ and
iel

fi@) + fi(z) — (af,z) <e Viel

Then zf € O, fi(x) (i € I) and z* € Z*ﬁei fi(z) (as z* = Z*xf) Therefore z* belongs to the set on
iel iel

the right hand side of (i). This compleies the proof. O )

NOTE 3.1. The property (v), sometimes referred as the Fenchel duality, is strictly weaker (even when
|[I| = 2) than the properties (i)-(iv) listed in Theorem 3.2. Examples can be found in [5, page 2798-2799]
and [26, Example 11.1 and Example 11.3] .

COROLLARY 3.3. (Eztension of Fenchel duality) Let {f;,h,f:i € TUJ} CT(X) with INJ =0,
|J| < +00 and

=Y fila) and f(z) = fi(x) + Y fi(x) for allx € X.

il iel jeJ
Suppose that
epih* =3 epif; (3.14)
il

and (at least) one of the following conditions holds:

(i) domh N int( N domfj> ) (3.15)

jeJ



(ii) There exists jo € J such that

int(dom h) N domf;, N int( ﬂ domfj) # (). (3.16)
JE€I\{jo}
Then
epif* = epify +» epif;, (3.17)
el jeJ

and in particular, one has

inf f(z) =max{—Y_ ff(a5) =Y i)Y af+ > yi =0 (3.18)

zeX - : - :
el JjeJ el jedJ

Proof. First, from the implication (iii) = (v) in Theorem 3.2, we need only to show (3.17). Since
{fishof 1j€J} CI(X) and f=h+3,c; fj, Lemma 2.1 implies that

epif* = epih* + Z epif;,
jeJ

provided that (i) or (ii) holds. Consequently (3.17) holds by (3.14). O

4. Sufficient Conditions. This section is devoted to provide sufficient conditions ensuring that for
{fi,f:ielI} CT(X), epif = Z epif; (see Theorem 3.2 (iii)), where
i€l
flx)= Zf,(x) for all x € X. (4.1)
iel

4.1. Continuous type. Throughout this subsection, we assume f and each f; are continuous, that
is,

{fi,f:iel} CT.(X). (4.2)

THEOREM 4.1. Assume (4.1) and (4.2). Then

w*

epif* = Z*epifi* . (4.3)

iel

Proof. Let x € X. By continuity, each df;(z) # 0; take zf € 9f;(z). By Lemma 2.3, there exists
x* € 0f(x) such that z* = Z x;. Denote r := (z*,z) — f(x) and r; = (a},z) — fi(x). It follows from
icl

(4.1) that r = Zri. Moreover, by (2.5), each (x},r;) € epif} and so (z*,7) € Z*epifi*. Therefore,
iel icl
by Lemma 3.1, () # Z epif; C epif*. Thus, since epif* is weak* closed, if (4.3) is not true then there

i€l

exists (z*,a) € epif*\z*epifi* . Recalling that a linear functional h on X* is the form h(z*) = (a, z*)
iel

for some a € X if and only if h is continuous in the weak* topology of X* (cf. [29, Page 112, Theorem

1], it follows from the separation theorem that there exists (zg,79) € X X R such that

sup{(y",xo) + fro: (y*,0) € Z*epifi*} < (z*,z0) + arp. (4.4)
iel
8



Considering § > 0 large, it follows that 9 < 0. We claim that ro < 0. Indeed, if 7¢ = 0 then (4.4)

means sup{(y*,zo) : (y*,5) € Z*epifi*} < {x*,x0). Since z* € domf* and Imdf is norm dense in
iel
domf* (cf. [24, Theorem 3.18]), there exist a* € Imaf (so a* € 9f(a) for some a € X) such that

sup{(y*,z0) : (y*,0) € Z*epifi*} < {a*,z0). By Lemma 2.3, this implies that
icl

sup{(y*.z0) = (y",0) € > epiff} < (a5, o) (4.5)

iel

for some afy € *8 i(a). Note that afj can be expressed in the form af = a} with each af € 9f;(a).
0 0 0 i i

el iel
Since each (a}, a) = fi(a)+ f7(af) (Young’s equality) it follows from (4.1) that (a{, a) = f(a) +Zfi* (al)
iel
and hence that (a, By) € Z*epifi* where Gy := (af,a) — f(a) € R. But then sup{(y*,zo) : (v*,0) €
icl

Z*epi i} > (a§, zo), contradicting (4.5). Henceforth, without loss of generality, we may assume that
iel
ro = —1. Then (4.4) becomes

sup{{y*,xz0) — B: (y*,0) € Z epif} < (z*,x0) — . (4.6)
iel
Note that (z*,z9) — a < f(z9) by Young’s inequality and the fact that (z*,«) € epif* and it follows
from (4.6) that

sup{(y",@0) — B: (y",0) € Y epiff} < f(xo). (4.7)

el

Moreover, for each ¢ € I, pick xf € Jf;(zo). Define zfj := Z*x;k (this is well-defined by Lemma 2.3).
iel
Let ag := (2§, 20) — f(z0). Note from Young’s equality that (z},zo) = fi(zo) + f(af) for each i € I
and it follows from (4.1) that ag = Zfl* (2}) and hence that (xf,ap) = Z (xf, fi(z])) € Z epif;.
iel iel iel
Consequently, by (4.7), (x{,zo) — ap < f(zo) contradicting the definition of ap.0
If I is countable and if another assumption, namely

dom f* =TIm Of (4.8)

is added, the following result shows that the set Z*epi £ is weak™ closed.
el
THEOREM 4.2. Assume (4.8) in addition to (4.1) and (4.2), and suppose that I is countable. Then
epif* = Z epif;.
iel
Proof. Noting epif* = gphf* + {0} x [0, +00) and

> epiff +{0} x [0,00) C ) epif;. (4.9)

i€l iel
(because epif; + {0} x [0,00) = epif} for each i), and making use of Theorem 4.1 we need only to show
gphf* C ) epiff, (4.10)

il
9



where gphf* denotes the graph of f*. To see (4.10), let (z*, ) € gphf*. Then z* € domf* = Imaof
thanks to (4.8). Hence there exists € X such that z* € 9f(x). By Lemma 2.3, 2* can be expressed in
the form

* E * ok
r = :,UZ‘,
icl

$> - f’i(x)7

where each zf € Jf;(z). By Young’s equality, f*(z*) = (z*,z) — f(x) and each f}(z}) = (a},
= «. Therefore

and it follows from (4.1) that ), f(z}) = (2", 2) — f(=x), that is, > .., fi'(2]) = f* (2"
(z*,a) = Z*(xf7 fi(x})) e Z*epifi*. This completes the proof. O
i€l il
4.2. Nonnegative type. Throughout this subsection, we assume that f and each f; are nonnegative-
valued, that is,

{fi,friel} CT4(X). (4.11)

THEOREM 4.3. Assume (4.1) and (4.11). Then

5 *

epif* = Zepifi*dj :Z*epifi*u). (4.12)

JCI, ied i€l
[J|<oo

Proof. Since each epif] is a convex set containing the origin (because f; > 0), one has from (2.6)
and Lemma 3.1 that

U Y epify €3 epify Cepif”

JCI, ieJ iel
|J|<oo

and hence

¢

w™* = w
U Zepifi* - Z epifF Cepif™. (4.13)
JCI, ieJ icl
|J|<oo

For each J C I with |J| < 0o, let g; denote the sum function of {f; : i € J}, namely gs(z) = >, ; fi(v)
for all z € X. Since each f; is nonnegative-valued, we have that, by (4.1) and (2.9),

F=Y = sup g (4.14)

el |J[<o0

Hence, by Lemma 2.2 (applied to {gs : J C I,|J| < +o0}) and Lemma 2.1, we have

w*

. . U)* . *
epif* = U epigh = U E epif; (4.15)
JCI, JCI, ieJ
[J]<oo |J]|<oo

(note that U epig} is a convex set since epigj, C epigy, if J1 € Jz). Combining this with (4.13) and

JCI,
|J|<oo

(4.15) we see that (4.12) holds because the set on the right-hand side of (4.15) is equal to that on the
left-hand side of (4.13) (to see the latter fact, note that, for any J C I with |J| < +oo one has

*

w™ w
Sair < U e
icd JCI, ieJ

|J|<o0

10




and so

*
w *

U z:epifi*uU - U Zepifi*w )

JCI, icJ JCI, ieJ
| 7] <oo |J]<o0

*

This completes the proof. O

Next, we seek some sufficient conditions to ensure that the set > . ;epif in Theorem 4.3 is weak*

iel
closed. It would be convenient for us to introduce some new notation first. Let Y be a Banach space and

let J be a finite set. Let {K;}ics be closed convex cones of Y. Following [28], we define v(K;; J) by

V(K J) =inf{|| Y wil : > llyill = 1, each y; € K} (4.16)
icJ icJ
When J = {1,2} and Y is a Hilbert space, the corresponding value of cos™ v(K;; J) is termed as the
angle between the closed convex cones K; and Ko (see [7] for a detailed discussion). Given y* € Y* and
any subspace Z of Y, y*|z denotes the restriction of y* to Z and ||y*||z denotes the corresponding norm
of y*|z in Z*. Furthermore, let D C Y*, we define D|z := {y*|z : y* € D}. Let K be a subset of YV’
(resp. Y*), the (negative) polar of K is denoted by K° and defined by K° = {y* € Y* : (y*,y) <0 for
all y € K}) (resp. K° ={yeY : (y*,y) <0 for all y* € K}). From the definition, it is clear that if K;
and K are two subsets of Y (resp. Y*) and K; C K», then K§ C K7.
When H is a subspace of X, Y = X* xR, Z = H x R and each K; (i € J) is a weak™* closed convex
cone of Y, K;|z (i € J) and vy(K;|z;J) are respectively defined by

Kilz ={(@@"|m,a) : (2", a) € K;} (4.17)
and
V(K| z; J) = if{]| (@] s i) | = Y M@ [, i) = 1, each (a7, a4) € K} (4.18)
ieJ icJ

(see (4.16)). If H is finite dimensional, the infimum in (4.18) is attained and hence can be replaced by
minimum.

An important special case (that we shall consider in the next theorem) is: each f; is given in the
form

fi(z) = max{{a],x) + r;,0} + d¢c,(x) (4.19)

where C; are closed convex subsets of X with ﬂiel C; # 0 and af € X* and r; € R. Let D; denote the
convex hull of the set (af,—7r;) U (0,0), and let K; denote the set epioc,. Then D; is a weak* compact
set in X* x R containing the origin, and K; is a weak™ closed convex cone in X* x R. We observe that

co{ ({a;} x [, 00)) U ({0} x [0,00))} = cof(a], —r;) U (0,0)} + {0} x [0, 00) (4.20)
Indeed, let (z*,7) € co{({a}} x [-r;,00)) U ({0} x [0,00))}. There exist ¢ € [0,1], €,6 > 0 such that
(x*,r) =t(af, —ri+e)+(1—-1)(0,0) = t(af, —r;) +(0,te+ (1 —t)d). Note that te+ (1 —¢)d > 0. It follows
that (z*,7) € co{(a},—r;) U (0,0)} + {0} x [0,00) and hence co{({a;} x [-r;,00)) U ({0} x [0,00))} C
co{(af,—r;) U (0,0)} + {0} x [0,00). As the converse inclusion can be verified similarly, (4.20) is seen to
hold. Consequently, we have

epif) = epi(max{{a},-) +7;,0})" + epi(dc,)”
= co{epi({aj, ) +7:)" U ({0} x [0,00))} + epi(dc,)”
— co{ ({al} x [~71,00)) U ({0} X [0,00))} + epidic, )"
= co{(aj, —ri) U(0,0)} + epi(éc,)"
=D, + K;, (4.21)
11



where the first equality follows from (4.19) and Lemma 2.1, the second equality follows from Lemma 2.3
and the fourth equality holds by (4.20) and the fact epi(dc,)* = epi(dc,)* + {0} x [0,400). Therefore,
the condition (C1) in the following theorem is satisfied if the functions f; are given in the form (4.19).

THEOREM 4.4. Let I be a compact metric space. Assume (4.1), (4.11) and the following assumptions:
(C1) For each i € I, there exist a weak™ compact conver set D; in X* X R containing the origin, and a
weak® closed convex cone K; in X* x R such that

(C2) > ,c; diam(D;) < oo, where diam(D;) denotes the diameter of D; (i € I), i.e., diam(D;) :=
sup{l — yll : z, y € Di}.

(C3) There exist iy € I and a finite dimensional subspace H of X such that K C Z := H x R (denote
the corresponding dimension of Z by m).

(C4) For any J C I with |J| =m, v(K;|z;J) > 0.

(C5) The set-valued mapping i — K;|z is upper semicontinuous, i.e., for any i € I,

limsup(K;|z) C K|z,

1—1

where limsup(K;|z) == {z" € Z* : 3 x] € Ki|z such that ™ =lim ;] (in the norm of Z*)}.

Then Z*epifi* is weak®™ closed and
i€l
epif* = Z*epifi*. (4.23)
icl

Proof. By Theorem 4.3, we need only prove the weak*-closedness assertion. Denote ¥ := X x R.
* —_
and so Y™ is identified with X* x R. Denote A; := epif C Y* and A := Z A;. Let a* € A" We
i€l
have to show that a* € A. To do this, we take a sequence {aj} C A such that a} — a* on Z := H xR
(thanks to the assumption that H is finite dimensional and the weak* topology coincides with the norm

topology on a finite dimensional space). For each k € N, noting a} € A = Z A;, there exists a sequence

iel
in U Z A; weak* converging (and hence in norm || - || z) to a*. Thus, there exist a finite subset I}, of
JCI, ieJ
| J]|<oo
I'and a7, € A; (i € Ij) such that
* * 1
lak = > aixllz < 1 (4.24)
1€l
Hence
klim lup —a*|lz — 0, (4.25)

where u} := Zaik. Note that uj € 3., Di+ Y;c;, Ki (by (4.22)). Since Z is of dimension m and
i€l

each K; is a (convex) cone it follows from the Carathédory theorem [28, Corollary 17.1.2] that for each

k € N that there exist {41 k,%2.4,---,%mk} C Ik, such that

up=> Tipt Y % onZ (4.26)
i€l j=1
12



for some ¥, € D; (i € Iy) and zj, € K;;, (1 <j <m). Let I' := o I and set y;,, := 0 for any
i € I'\I;. For each fixed k € N, it follows from (4.26) that

m
uy = Z@fk + Zz;*m on Z, (4.27)
=1

iel’ j

where y7, € D; for all t € T ! (thanks to the assumption that each D; contains the origin). Next, we
show that

{z;, .|z tken are bounded sequences for all 1 < j < m. (4.28)

To prove this, we suppose on the contrary that {ijk| 7 }ken is an unbounded sequence for some j €
{1,2,...,m}. By passing to a subsequence if necessary, we may assume that

Jim Z} I1Z;, |z — oo. (4.29)
=

Dividing by Z 1Z7, . Iz on both sides of (4.27), we obtain
Jj=1

uy Yicr Uik 1]19
= + on Z. (4.30)
iz Nz XL IE 2 ZZJ 1z Nz

Note that {||uj||z}ren is a bounded numerical sequence (since ||uj — a*|z — 0) and

1D willz < D Wikl < Y diam(D;) < oo (4.31)

iel’ iel’ i€l

Moreover, since I is compact, we may assume without loss of generality that i), — i; for some i; € I
(1 <j <m)ask — oo. Considering subsequences if necessary, we may assume that there exists z; € X*
such that the bounded sequence

=%

z:
$Hz; onZ (1<j<m), (4.32)
Y llz llz

(thanks to the fact that Z is finite-dimensional). By (4.32), it is clear that Z;n:l |27 ||z = 1. Moreover,
assumption (C5) entails that each 27|z € K; |z. Finally, by passing to the limits in (4.30) and making
use of (4.31) and (4.29), we have 7", z¥ = 0 on Z. Then v(Ki|z, {i1,i2,...,i,n}) = 0, contradicting
the assumption (C4). Therefore (4.28) is proved.

By the compactness of I again and by passing to subsequences if necessary, we may assume that
ik — ij for some %j €1l ask— oo (1l <j<m). Foreach j, since Z is finite dimensional and by (4.28),
we may assume that zj, =~ — Zj on Z for some zj € X*. By (C5), zj[z € K;j\z and so there exists
w; € K; such that z7 = w} on Z. Hence, replacing z; by wj if necessary, we may assume without loss
of generahty that

ek, (1<j<m). (4.33)

Since u} — a* on Z (by (4.25)), (4.27) implies that

Zylk—uk Zzlk—wz —Zz on Z ask — oo. (4.34)

iel’
13



Since I’ is countable, we may represent I’ in the form that I’ = {iy,...,4p,...} and hence
m
nyk —a* — ZE; on Z ask— oo.
neN 7j=1

Since ¥;, € Di, and D;, |z is compact, there exists an infinite subset N1 C N such that {g;, ; }ren,
converges to 77, on Z for some ¥;, € D;,. Inductively, we can find a sequence of infinite subsets N, C N
such that N, ;1 C N,, and for each n € N

{¥; x}ren, converges to y; on Z for some 7; € D;,. (4.35)

Since 3, on 175 | < Sier 151l € X4e; diamD; < +oo (by the assumption (C2)) -, Vi exists as an
element in X* and in particular

g ey D (4.36)

neN neN

Similarly, for all k € N

S 54l < 3 diamD; < 4o,
neN el

and thus, for any € > 0 there exists ng € N such that for all n’ > ng

Skl <Y diam(D;,) < /2 for all k € N. (4.37)

n>n' n>n’

Note that, for any fixed n’ > ng, (by (4.35) and (4.34)) there exists kg € N (depending on n’) such that

—x —% €
75, ko —FiLllz < y forallm € {1,...,n'} and

m
la* = "2 = > Wi kollz < /4
j=1

neN

It follows from (4.37) that for any n’ > ng

m n’ m
la*=> "2 =Y Fillz<lla" =D %= i wollz
=1 n=1 j=1

neN

/
n
A N ke — Tz + DT kol
n=1

n>n'

Since € is arbitrary, one has

a* = Em:fj + Z@fﬂ on Z. (4.38)

Jj=1 neN
Then, one has
at =Yz - > g €zt (4.39)
j=1 neN



From (4.33) and (4.35) we know that each zj

m m
dNEm+dmed, K; + > Di,. Therefore, (4.39) entails that
j=1 neN Jj=1 neN

€ K; andy; € D;,, and it follows from (4.36) that

* - * . L

@t €Y K, +> Di +2Z"- (4.40)
j=1 neN

Note from the bipolar theorem (cf. [30, Theorem 1.1.9]) and the assumption (C3) that Z+ C K,,. It

follows that a* € 37" K; +3,en" Di, + Kjy. Since 0 € D; N K, one has

o € ZK;J 4 Z*Di" + K;, = Z*Di" + (ZK;J + Kio) - Z*(Dl +K;)=A,
j=1 J=1

neN neN el

as required to show. This completes the proof. O

COROLLARY 4.5. Let I be a compact metric space and let f; be given by (4.19). Assume (4.1), (4.11)
and the following assumptions:
(B1) D (lla || + |ril) < oe.

iel

(B2) Ie’here exists ig € I such that H := span(Cj;,) is of finite dimension. (Denote the corresponding
dimension by n).
(B3) For any J C I\{io} with |J| <n+1, it holds that

Oig N (ﬂ intHC,’) 7é @
icJ
where inty C; := {x € C; : Je¢ > 0 s.t. B(x,e) N H C C;}.
(B4) The mapping i — C; N H is lower semicontinuous, i.e., for any i € I
C;NH C liminf(C; N H).
Then the conclusion of Theorem 4.4 holds.

Proof. Define D; := co{(a},—1r;) U (0,0)}, and K; := epioc,. Then, as we have mentioned before,
assumption (C1) in Theorem 4.4 holds (see (4.21)). Therefore, to finish the proof, it suffices to show the
assumptions (C2)-(C5) in Theorem 4.4 are satisfied. First of all, from the condition (B1), we see that
> e diamD; < oo and hence the assumption (C2) holds. To see (C3), noting that Z+ = (span Cj, )+ x
{0} C epioc,, = Ki,, one has K C Z. Therefore assumption (C3) holds with m := n + 1. To see
that assumption (C4) holds with m := n + 1, we proceed by contradiction and suppose that there exists
Jo C I with |Jy| = n + 1 such that y(epioc, |gxr; Jo) = 0. Noting that H x R is finite dimensional, it
follows from (4.18) that there exist (z}, o;) € epiog, (i € Jp) such that

>l lla + lesl) =1, (4.41)

i€Jo

Z xzf =0on H and Z a; = 0. (4.42)

i€Jo i€Jo

We claim that
z; =0on H for all i € Jj. (4.43)

Granting this, we have 0 = o¢,nm(zf) < o¢,(zf) < a; for all i € Jy. This together with the second

7

equality of (4.42) implies that o; = 0 for all i € Jy. However, this and (4.43) contradict to (4.41). To
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see (4.43), we divide our proof into two cases, namely Case 1: iy ¢ Jy and Case 2: iy € Jy. For Case 1,
we note that Jy C I'\{io} and it follows from (B3) that ﬂj€J0 int7C; # 0. Thus there exist g € X and
€ > 0 such that zg € B(zg,e) N H C C; for all i € Jy. Recalling the fact (z}, ;) € epioc, (i € Jo) and
the definition of || - ||z, it follows from (4.42) that

ey lzilm =Y ((ef,z0) +elaillu) = > sup  (af,2)

i€Jo i€Jdo icJo v€B(wo,e)NH

<Zsup

i€Jo z€C;

<) ai=0. (4.44)
i€Jo
Thus (4.43) holds in this case. For Case 2, one applies (B3) again, and there exist 2o € C;, and € > 0
such that zg € B(xg,e) N H C C; for all i € Jo\{ip}. Hence sup  (a],z) < sup (x],x), that is
z€B(z0,6)NH zeC;

(xf,xo) + €l|laf g = sup  (af,z) < og,(x]) for all i € Jo\{ip}- (4.45)
z€B(z0,e)NH

Since (zf, a;) € epiog, for all i € Jy and zg € Cy, (so (z},x0) < ), it follows from (4.42) that

7,()7

e > laila =Y (i zo)+e Y laflm <Y ai=0.
iGJO\{iU} i€Jo iGJo\{’Lo} i€Jo
This together with the first equality in (4.42) gives that zf = 0 on H for all ¢ € Jy. Thus (4.43) also
holds in this case. Finally, for (C5), fix an ¢ € I. Consider i — i and (z}, ;) € H* x R (i € I) be such
that (2}, ;) € epiog, |mxr with (2}, 0;) — (2, a) for some (z*,a) € H* x R. Let x € C; N H. By (B4)
and since H is of finite dimension, there exists a sequence {x;} C C; N H such that z; — x. It follows
that
(z*,2) = lim(z], z;) <limsupoc,nm(z]) <lima; = a.

i—1 i—7 i—1

This implies that (*, a) € epioc|mxr and hence (C5) in Theorem 4.4 holds. Therefore the assumptions
(C2)-(C5) in Theorem 4.4 hold. This finishes the proof. O

5. Application to the KKT theory. We first establish an e-sum rule involving possibly infinitely
many convex functions. In the special case that I = (), the following result has been presented in [18]
(see also [30, Corollary 2.6.7]).

THEOREM 5.1. Let I,J be two index sets with INJ =0 and |J| < co. Let {fi}ier C T4(X) and
{fi}jes CT(X). Let f € T(X) be such that f(z) =37, fi(x) + > e, fj(x) for each x € X. Let e >0
and x € X. Then we have

= U O ofix)+> 0, fiz .Zei—l—ZejSe—&-n}u}. (5.1)

n>0 y'cr, iel’ jedJ iel’ JjeJ
1<

Proof. First of all, since

U O_0.fi@)+) 0,5@) : D> e+ > e <et+n} COeqyf(a),

I'cr, el jeJ el jedJ
[I'|<o0

and Oy f(z) is weak™® closed for each 1 > 0, one has

ﬂ U {Zaequ +Zaejfj ZQ—FZQ < 6"'77} - ﬂ ae+77f = 0 f(x).

n>0 r’'cr, €l’ jeJ iel’ JjEJ n>0
' <oo
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To see the reverse inclusion, let * € . f(x), n > 0 and let V' be a weak* neighbourhood of 0. It suffices
to show that there exist I’ with |I'| < +o0, €;,¢; >0 (i € I’,j € J) such that

det+> g <etn (5.2)

iel’ jed
and
2* €D O filw) + Y0, fi( (5.3)
iel’ JjeJ

Let h:= ), fi. Note that h € I'y (X) (since f; € I'y (X) and h(zo) < +oo for all 9 € domf). From
Lemma 2.1 (applied to {h, f; : j € J}) and Theorem 4.3, we have

*

epih* + Z epif;

epif* = epi(h + ij)*

jeJ jeJ
w* .
= U Dlepify +D epif;
I'cr, iel’ JjeJ
[I'|<o0
w*
U Zepifi*—f—Zepif;‘
I'ci, iel’ JjEJ
[I'|<o0

Since z* € 0. f(x), it follows from (2.5) and the above expression that

w*

(", e+ (x*, ) U Zeplf*—l—Zeplf* , (5.4)
I'cr, iel’ JjeJ
PSS

and hence there exist I’ C I with [I'] < oo, (x7,7;) € epif; (i € I') and (x},7;) € epif; (j € J) such
that

x* € fo + Zx;‘ +V (5.5)
=g jeJ
and
Zm—FZr]_ (e+n/2) + (z%,x) — f(x). (5.6)
iel’ jeJ

By shrinking V' if necessary, we may assume without loss of generality that
|<ch;k + Zw;‘ -z, z)| <n/2. (5.7)
iel jeJ

For each k € I'UJ, let €, := f(x})+ fr(z) — (x}, z); then e > 0 (Young’s inequality), and z} € O, fr(x)
(see (2.5)). Thus (5.3) holds by (5.5). It remains to show (5.2). To see this, note that (z},7) € epif;
and so € < i + fu(x) — (2}, ) for each k € I"U J. Further, 37, p fi(z) + 3 ;¢ fi(x) < f(z) (since f;
are nonnegative for all i € I). It follows from (5.6) that

Yooas< Y omAf@) () wha) <@t - Y aga)+(e+n/2)
keI'uJ keI'uJ iel'ug keI'uJ

and so (5.2) holds by (5.7). This completes the proof. O
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Let |I]| < +o00. Consider the following semi-infinite programming
min fo(z)
st. fi(x) <0 (iel) (5.8)

where {fo, fi : i € I} CT(X). We say that x is a feasible point of (5.8) if fo(z) < 400 and f;(z) <0
for all i € I. For any € > 0, a feasible point T of (5.8) is called an e-solution if fo(Z) < fo(x) + € for all
feasible points = of (5.8). As an application of the preceding theorem, we have the following fuzzy KKT
result for (5.8). In the special case when e = 0, X is reflexive and {fo, f; : i € I} C T'.(X) the fuzzy KKT
condition was first derived by Jeyakumar et. al. in [19]. In the special case when ¢ = 0, and each f;
(i € I) is epi-closed, this result was also established by Bot et. al. in [3, 6] via the perturbation approach
(indeed, [3, 6] gave the corresponding result for a more general problem: the cone constraint problem).

THEOREM 5.2. Let € > 0 and let T be an e-solution of (5.8). Let U be a weak*-neighbourhood of 0
and n > 0. Then there exist a finite subset I' of I and {e; : i € {0} UI'} U{\; :i € I'} C[0,400) such
that

0< Y @<etn —(e+m) <D Nifi@) <0 (5:9)
iel’U{0} iel’
and
0O€xy+ Y af +0, (5.10)
iel’
for some
zy € Ocy fo(T) and z} € 0., (Ni f;)(T) (i € T'). (5.11)

Proof. Define f: X — RU {400} by

f@) = folx) + ) gi(x),
icl
where g; =04, and A, := {z € X : fi(z) <0}. Then f(Z) = fo(T) < +o0 and f € I'(X). Moreover, since
T is an e-solution of (5.8), one has f(T) < f(z) + € for all z € X, so 0 € O.f(T). We assume without loss
of generality that the given weak™ neighborhood U is convex. Note that each g; is a nonnegative function
(¢ € I). From Theorem 5.1 (applied to {I,{0},{g:}icr, fo, €} in place of {I,J,{fi}tier,{f;}jes,€}), there
exist a finite subset I’ of I and {¢; : i € {0} U I'} C [0,00) such that

_ _ " A U

€0+Z€i§€+§and0€xo+zzi+§~ (5.12)
icl’ iel’

for some zfj € 0=, fo(T) and 2} € O g:(T) (i € I'). Since g; = d4,, it follows from (2.4) that g (z}) =

SUPgea, (2, a) < (2],Z) + €. By (2.12) (applied to f; in place of f), it follows that

(27, (2. 7) + &) € | ] epi(Afi)*

A>0

Hence, for each i € I, there exist A; > 0 and (z}, s;) € epi(A; f;)* such that

U
* S B 5.13
zzExl+2|1,|, (5.13)
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(2 — a7, @) <n/(AlI') (5.14)
and
(27, @) +& — si| <n/(4[T']). (5.15)
By (2.11) (applied to {\;fi, T} in place of {f, x}), for each i € I’ there exists ¢; > 0 such that
x; € O, (Nifi)(T) and s; = €; + (x],T) — M\ fi(T). (5.16)

Thus, letting €9 := €, (5.11) holds. By (5.12) and (5.13), (5.10) also holds. Since each ¢; > 0, and
fi(Z) <0 (i € I'), we note that

max{ Y &, -> MNHE@}I< Y. a— > Nfi(@);
ie{0uI’ icl’ ie{0}ur’ iel’
thus to prove (5.9), it suffices to show that
ie{0}pur’ iel’
To do this, note that, for each i € I’

n
4|1

n
4|1

&~ AJi(®) = 5 — (2], T) = (51— (=1, 8) + (f — 2], 7) < (@ + =) +

(see (5.14), (5.15) and (5.16)). Hence it follows from (5.12) that

e+ (66— Nfi)@) <G+ > @+n/2<e+n.

iel’ iel

Thus (5.17) is true and the proof is completed. O
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