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Abstract. By considering the epigraphs of conjugate functions, we extend the Fenchel duality, applicable to a (possibly

infinite) family of proper lower semicontinuous convex functions on a Banach space. Applications are given in providing
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1. Introduction. The famous Fenchel duality theorem can be stated as follows (cf. [30, Corollary
2.8.5]): for any family of finitely many proper lower semicontinuous convex functions f0, f1, . . . , fn on
a Banach space X, if domfi0 ∩ int

(⋂
i 6=i0

domfi

)
6= ∅ for some i0 ∈ {0, 1, . . . , n}, then their conjugate

functions f∗0 , f∗1 , . . . , f∗n satisfy the relation

inf
x∈X

( n∑
i=0

fi(x)
)

= max{−
n∑

i=0

f∗i (x∗i ) :
n∑

i=0

x∗i = 0}, (1.1)

and in fact the following stronger relation holds for any x∗ ∈ X∗:

inf
x∈X

{
n∑

i=0

fi(x)− 〈x∗, x〉} = max{−
n∑

i=0

f∗i (x∗i ) :
n∑

i=0

x∗i = x∗}. (1.2)

Background information on the Fenchel duality theory can be found in Rockafellar [28] (see also [2, 27, 30]).
This theory is a fundamental tool for establishing penalty results in nonlinear programming (cf. [8]).
Moreover, it also plays an important role in the theory of best approximation (cf. [14, 20]), error bound
analysis [12] and in the study of monotone operators [25], and also in the KKT theory in connection with
the following convex programming

min
x∈X

f0(x)

s.t. fi(x) ≤ 0 (i = 1, . . . , n).

The Fenchel duality enables us to transform original problem (primal problem) into an optimization
problem on the dual space (dual problem). In some cases, especially in optimal control problems, the
dual problems are easier to handle than the original ones (see [13, Example 25.2], [15]). Stimulated by the
study of semi-infinite programming problems (see [17, 21] and the references therein), it is both interesting
and useful to extend the Fenchel duality applicable to a family {fi}i∈I of proper lower semicontinuous
convex functions on a Banach space with the index set I which is allowed to be infinite. In this present
paper, much of our study is based on the consideration of epigraphs of the conjugate functions and is
motivated by the recent work of Jeyakumar and his collaborators (see [9, 10, 19] for example); we provide
characterizations (and sufficient conditions) for the following property: for any x∗ ∈ X∗

inf
x∈X

{f(x)− 〈x∗, x〉}

= max{−
∑
i∈I

f∗i (x∗i ) : x∗i ∈ X∗ and
∑
i∈I

〈x∗i , x〉 = 〈x∗, x〉 for any x ∈ X},
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where f is the sum function of {fi : i ∈ I}, that is f(x) =
∑

i∈I fi(x) for all x ∈ X. As an application,
we present a fuzzy KKT conditions in section 5 for the semi-infinite programming problem.

2. Preliminaries. Throughout this paper, X denotes a Banach space and X∗ denotes its topological
dual. We use B(x, ε) (resp. B(x, ε)) to denote the open (resp. closed) ball of X with center x and radius
ε. For a set A in X, the interior (resp. relative interior, closure, convex hull, affine hull, linear span) of A

is denoted by intA (resp. riA, A, coA, affA, spanA) (if A is a subset of X∗, its weak∗ closure is denoted
by A

w∗

). Let A be a nonempty subset of X. The indicator function δA : X → R∪{+∞} and the support
function σA : X∗ → R ∪ {+∞} of A are respectively defined by

δA(x) :=
{

0, if x ∈ A,

+∞, otherwise,
(2.1)

and σA(x∗) = supx∈A〈x∗, x〉 for all x∗ ∈ X∗. Let Γ(X) denote the class of proper lower semicontinuous
convex functions on X, Γc(X) := {f ∈ Γ(X) : f is continuous and real-valued on X} and Γ+(x) := {f ∈
Γ(X) : f is nonnegative on X}. For a proper function f on X, the effective domain and the epigraph are
respectively defined by domf := {x ∈ X : f(x) < +∞} and epif := {(x, r) ∈ X × R : f(x) ≤ r}. The
subdifferential of f at x ∈ X is defined by

∂f(x) =
{
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y)− f(x)∀ y ∈ X}, if x ∈ domf,

∅, , otherwise.
(2.2)

More generally, for any ε ≥ 0, the ε-subdifferential of f at x ∈ X is defined by

∂εf(x) =
{
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y)− f(x) + ε∀ y ∈ X}, if x ∈ domf,

∅, , otherwise.
(2.3)

As usual, for a proper function f on X, its conjugate function f∗ : X∗ → R ∪ {+∞} is defined by
f∗(x∗) = sup

x∈X
{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗. In particular, one has

(δA)∗(x∗) = σA(x∗), for all x∗ ∈ X∗. (2.4)

The definition of f∗ entails that 〈x∗, x〉 ≤ f∗(x∗)+f(x) (Young’s inequality) for any x ∈ X and x∗ ∈ X∗.
Moreover, for any ε ≥ 0 and x ∈ domf

x∗ ∈ ∂εf(x) ⇔ f∗(x∗) + f(x) ≤ 〈x∗, x〉+ ε ⇔ (x∗, ε + 〈x∗, x〉 − f(x)) ∈ epif∗. (2.5)

In particular, we have the following Young’s equality

x∗ ∈ ∂f(x) ⇔ 〈x∗, x〉 = f∗(x∗) + f(x).

From the definitions, it is clear that for any proper functions f1, f2 on X,

f1 ≤ f2 ⇔ f∗1 ≥ f∗2 ⇔ epif∗1 ⊆ epif∗2 . (2.6)

Moreover, it is known that f∗ ∈ Γ(X∗) for any f ∈ Γ(X) (cf. [30, Theorem 2.3.3]). As usual, X∗ × R
and (X × R)∗ are identified and, for convenience, we use the norms defined by

‖(x, α)‖ = max{‖x‖, |α|}, ∀ (x, α) ∈ X × R

and

‖(x∗, α)‖ = ‖x∗‖+ |α|, ∀ (x∗, α) ∈ X∗ × R.
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If H is a subspace of X, the restrictions and the corresponding norms of the restrictions are defined as
follows: x∗|H ∈ H∗, (x∗|H , α) ∈ H∗ × R = (H × R)∗, ‖x∗‖H := sup{〈x∗, x〉 : x ∈ H, ‖x‖ ≤ 1}, and

‖(x∗|H , α)‖ = ‖x∗‖H + |α|. (2.7)

Let I be an index set and let F(I) denote the collection of all finite subsets of I (thus F(I) is a directed
set ordered under the inclusion relation). Let {ai : i ∈ I} ⊆ R∪{+∞}. We define the sum of {ai : i ∈ I}
by ∑

i∈I

ai = lim
A∈F(I)

∑
i∈A

ai

provided that the (unconditional) limit lim
A∈F(I)

∑
i∈A

ai exists as a member of R ∪ {+∞}. In particular, if

ai ≥ 0 for all i ∈ I, then
∑

i∈I ai exists and∑
i∈I

ai = sup
A∈F(I)

∑
i∈A

ai ≤ +∞. (2.8)

Remark 2.1. Let {ai, bi, ci}i∈I ⊆ R be such that ai ≤ bi ≤ ci for all i ∈ I. Suppose that
∑

i∈I ai and∑
i∈I ci exist in R. Then

∑
i∈I bi also exists in R (because 0 ≤ bi−ai ≤ ci−ai and

∑
i∈I(ci−ai) < +∞).

Let {fi : i ∈ I} be a family of extended-real valued functions on X. We define their sum function f

as follows: let Df := {x ∈ X :
∑

i∈I fi(x) exists in R ∪ {+∞}}; we define

f(x) =
∑
i∈I

fi(x) for all x ∈ Df .

In particular, if fi ∈ Γ+(X) for all i ∈ I then Df = X and

(
∑
i∈I

fi)(x) = sup
A∈F(I)

∑
i∈A

fi(x) for all x ∈ X. (2.9)

For x∗ ∈ X∗ and a family {x∗i }i∈I of elements in X∗, the notation

x∗ =
∑
i∈I

∗
x∗i (2.10)

means that 〈x∗, h〉 = lim
A∈F(I)

∑
i∈A

〈x∗i , h〉, for each h ∈ X. Let {Ai}i∈I be a family of subsets of X∗. The set

{x∗ ∈ X∗ : ∃x∗i ∈ Ai ∀ i ∈ I such that x∗ =
∑
i∈I

∗
x∗i } will be denoted by

∑
i∈I

∗
Ai. It is easy to check that∑

i∈I

∗
Ai is convex if each Ai is convex, and that

∑
i∈I

∗
Ai =

∑
i∈I

Ai if I is a finite set. Moreover, {Ai}i∈I

is said to be weak∗ summable if
∑
i∈I

∗
x∗i exists in X∗ (that is, (2.10) holds for some x∗ ∈ X∗) whenever

x∗i ∈ Ai for each i ∈ I.
Remark 2.2. The above definition is slightly different from [32]: our notation

∑
i∈I

∗
Ai does not

require the family {Ai}i∈I to be weak∗ summable.
A useful relationship between epif∗ and ∂εf is given in the following formula observed by Jeyakumar

et. al. in [9] (we note that, as observed in [3], this formula works even when f is merely a proper
function):

epif∗ =
⋃
ε≥0

{(x∗, ε + 〈x∗, x〉 − f(x)) : x∗ ∈ ∂εf(x)} ∀ f ∈ Γ(X), x ∈ domf. (2.11)
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Throughout this paper, unless explicitly mentioned otherwise, I is an arbitrary index set (that is, the
cardinality |I| ≤ +∞). For convenience, we list below several known results that will be useful for us.

Lemma 2.1. (cf. [30]) Let I be a finite set and let {f, fi : i ∈ I} ⊆ Γ(X) be such that f(x) =
∑
i∈I

fi(x)

for all x ∈ X. Then epif∗ =
∑
i∈I

epif∗i
w∗

and, moreover the result can be strengthened to epif∗ =
∑
i∈I

epif∗i

if there exists i0 ∈ I such that domfi0 ∩ int
(⋂

i 6=i0
(domfi)

)
6= ∅.

Remark 2.3. Let I be a finite set and let C be a closed convex subset of X. Recall that sqriC :=
{x ∈ C :

⋃
λ≥0 λ(C − x) is a closed subspace}. A weaker generalized interior point regularity condition

ensuring epif∗ =
∑
i∈I

epif∗i is as follows (cf. [5, 23]): there exists i0 ∈ I such that

0 ∈ sqri
∏
i 6=i0

(domfi − domfi0).

The following lemma can be found in [20, Lemma 2.3]. We note that it has been also derived in [4,
Section 4.3] via a different approach.

Lemma 2.2. Let {fi : i ∈ I} ⊆ Γ(X). Suppose that there exists x0 ∈ X such that supi∈I fi(x0) < ∞.
Then

epi(sup
i∈I

fi)∗ = co
⋃
i∈I

epif∗i
w∗

,

where sup
i∈I

fi : X → R ∪ {+∞} is defined by (sup
i∈I

fi)(x) = sup
i∈I

fi(x) for all x ∈ X.

Remark 2.4. Let f ∈ Γ(X) and A := {x : f(x) ≤ 0} 6= ∅. Then δA = supλ>0 λf and it follows from
Lemma 2.2 that,

epi(δA)∗ = co
⋃
λ>0

epi(λf)∗
w∗

=
⋃
λ>0

epi(λf)∗
w∗

, (2.12)

where the last equality holds because
⋃
λ>0

epi(λf)∗ is a convex set.

For continuous functions, the following result in [31] will play an important role.
Lemma 2.3. Let {f, fi : i ∈ I} ⊆ Γc(X) be such that f(x) =

∑
i∈I

fi(x) for all x ∈ X. Then

{∂fi(x)}i∈I is weak∗ summable and the following relation holds

∂f(x) =
∑
i∈I

∗
∂fi(x)

w∗

for all x ∈ X.

Moreover, if I is countable then
∑
i∈I

∗
∂fi(x) is weak∗ closed and hence

∂f(x) =
∑
i∈I

∗
∂fi(x) for all x ∈ X.

3. Strong Fenchel Duality and its Characterization. In this section, we provide some char-
acterization of the strong Fenchel duality (in the sense that (1.2) holds for all x∗ ∈ X∗). To do this, we
need the following lemma.

Lemma 3.1. Let {f, fi : i ∈ I} ⊆ Γ(X) be such that

f(x) =
∑
i∈I

fi(x) for all x ∈ X. (3.1)
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Then the following inclusion holds:

∑
i∈I

∗
epif∗i

w∗

⊆ epif∗. (3.2)

Proof. Let (x∗, α) ∈
∑
i∈I

∗
epif∗i , that is, for each i ∈ I there exists (x∗i , αi) ∈ X∗×R with f∗i (x∗i ) ≤ αi

such that ∑
i∈I

αi = α and
∑
i∈I

〈x∗i , x〉 = 〈x∗, x〉 ∀ x ∈ X. (3.3)

Since epif∗ is weak∗ closed, to prove (3.2), it suffices to show f∗(x∗) ≤ α. Let x ∈ domf . Note that

〈x∗i , x〉 − fi(x) ≤ sup
z∈X

{〈x∗i , z〉 − fi(z)} = f∗i (x∗i ) ≤ αi. (3.4)

Applying Remark 2.1 and making use of (3.1), (3.3) and (3.4), we note that
∑
i∈I

f∗i (x∗i ) exists and

〈x∗, x〉 − f(x) =
∑
i∈I

(
〈x∗i , x〉 − fi(x)

)
≤

∑
i∈I

f∗i (x∗i ) ≤
∑
i∈I

αi = α.

Taking supremum over all x in domf , this implies that

f∗(x∗) = sup
x∈domf

(
〈x∗, x〉 − f(x)

)
≤

∑
i∈I

f∗i (x∗i ) ≤ α, (3.5)

as required to show. This completes the proof.
The following result is known [9] (see also [11, Corollary 3.4]) for the special case when I is finite.
Theorem 3.2. Let {f, fi : i ∈ I} be as in Lemma 3.1. Then the following statements are equivalent:

(i) ∂εf(x) ⊆
⋃
{
∑
i∈I

∗
∂εi

fi(x) :
∑
i∈I

εi = ε, each εi ≥ 0} ∀ ε ≥ 0 and x ∈ X. (3.6)

(ii) ∂εf(x) =
⋃
{
∑
i∈I

∗
∂εi

fi(x) :
∑
i∈I

εi = ε, each εi ≥ 0} ∀ ε ≥ 0 and x ∈ domf.

(iii) epif∗ =
∑
i∈I

∗
epif∗i .

(iv) For any x∗ ∈ X∗,

inf
x∈X

{f(x)− 〈x∗, x〉} = max{−
∑
i∈I

f∗i (x∗i ) :
∑
i∈I

∗
x∗i = x∗},

that is, f∗(x∗) = min{
∑
i∈I

f∗i (x∗i ) :
∑
i∈I

∗
x∗i = x∗}.

Any of the statements (i)-(iv) implies

(v) inf
x∈X

f(x) = max{−
∑
i∈I

f∗i (x∗i ) :
∑
i∈I

∗
x∗i = 0}.

Proof. First, (v) follows from (iv) by letting x∗ = 0. Thus, we only need to show the equivalence of
(i)-(iv).
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[(i) ⇒ (ii)] Let x ∈ domf , ε ≥ 0 and εi ≥ 0 be such that
∑

i∈I εi = ε. To prove (i) ⇒ (ii), it suffices to
show that ∑

i∈I

∗
∂εi

fi(x) ⊆ ∂εf(x). (3.7)

To do this, let x∗ =
∑
i∈I

∗
x∗i ∈ X∗, where each x∗i ∈ ∂εifi(x). Then from Young’s inequality and (2.5) we

have

〈x∗i , x〉 − εi ≤ f∗i (x∗i ) + fi(x)− εi ≤ 〈x∗i , x〉.

Therefore, by Remark 2.1,
∑
i∈I

(f∗i (x∗i ) + fi(x)− εi) exists in R and

∑
i∈I

f∗i (x∗i ) + f(x)− ε =
∑
i∈I

(
f∗i (x∗i ) + fi(x)− εi

)
≤

∑
i∈I

〈x∗i , x〉 = 〈x∗, x〉. (3.8)

On the other hand, note that f∗(x∗) ≤
∑

i∈I f∗i (x∗i ) because for each z ∈ domf one has

〈x∗, z〉 − f(z) =
∑
i∈I

(
〈x∗i , z〉 − fi(z)

)
≤

∑
i∈I

f∗i (x∗i ). (3.9)

Thus, by (3.8),

f∗(x∗) + f(x)− ε ≤
∑
i∈I

f∗i (x∗i ) + f(x)− ε ≤ 〈x∗, x〉.

Therefore x∗ ∈ ∂εf(x) and (3.7) holds.
[(ii) ⇒ (iii)] In view of Lemma 3.1, it suffices to show that epif∗ ⊆

∑
i∈I

∗
epif∗i . To do this, let (x∗, α) ∈

epif∗. We have to show that (x∗, α) ∈
∑
i∈I

∗
epif∗i . Take an arbitrary x ∈ domf ; from (2.11), there exists

ε ≥ 0 such that x∗ ∈ ∂εf(x) and α = ε + 〈x∗, x〉 − f(x). It follows from (ii) that there exist εi ≥ 0 and
x∗i ∈ ∂εi

fi(x)
(
so (x∗i , αi) ∈ epif∗i where αi := εi + 〈x∗i , x〉 − fi(x)

)
such that ε =

∑
i∈I

εi and x∗ =
∑
i∈I

∗
x∗i .

Thus

(x∗, α) =
∑
i∈I

∗
(x∗i , αi) ∈

∑
i∈I

∗
epif∗i ,

as required to show.
[(iii) ⇒ (iv)] Let x∗ ∈ X∗. Note first that, by (3.9),

−f∗(x∗) = inf
z∈domf

{f(z)− 〈x∗, z〉} ≥ −
∑
i∈I

f∗i (x∗i ) (3.10)

whenever {x∗i : i ∈ I} ⊆ X∗ with x∗ =
∑
i∈I

∗
x∗i . Thus to prove (iv), it remains to show that there exists

x∗i ∈ X∗ (i ∈ I) such that x∗ =
∑

i∈I x∗i and

inf
z∈domf

{f(z)− 〈x∗, z〉} ≤ −
∑
i∈I

f∗i (x∗i ). (3.11)

To do this, we can suppose that infz∈domf{f(z) − 〈x∗, z〉} > −∞, that is f∗(x∗) < +∞. Then
(x∗, f∗(x∗)) ∈ epif∗. It follows from (iii) that (x∗, f∗(x∗)) ∈

∑
i∈I

∗
epif∗i , that is, there exist (x∗i , αi) ∈ epif∗i

(i ∈ I) such that ∑
i∈I

∗
x∗i = x∗ and

∑
i∈I

αi = f∗(x∗). (3.12)
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We claim that {x∗i : i ∈ I} satisfies (3.11). In fact, since (x∗i , αi) ∈ epif∗i (i ∈ I), Young’s inequality
implies that for any z ∈ X

〈x∗i , z〉 − fi(z) ≤ f∗i (x∗i ) ≤ αi (i ∈ I). (3.13)

Since
∑
i∈I

fi(z) = f(z) ∈ R if z ∈ domf , it follows from (3.12) and Remark 2.1 that
∑
i∈I

f∗i (x∗i ) exists and

for any z ∈ domf

〈x∗, z〉 − f(z) =
∑
i∈I

(
〈x∗i , z〉 − fi(z)

)
≤

∑
i∈I

f∗i (x∗i ) ≤
∑
i∈I

αi = f∗(x∗).

Taking supremum over all z ∈ domf , this implies that f∗(x∗) ≤
∑
i∈I

f∗i (x∗i ) ≤
∑
i∈I

αi = f∗(x∗). In view of

(3.13), this forces that f∗i (x∗i ) = αi for all i ∈ I. Therefore, we obtain that

inf
z∈domf

{f(z)− 〈x∗, z〉} = −f∗(x∗) = −
∑
i∈I

αi = −
∑
i∈I

f∗i (x∗i ).

Thus (3.11) holds as claimed.
[(iv) ⇒ (i)] Let ε ≥ 0, x ∈ X and x∗ ∈ ∂εf(x). By definition of f∗(x∗), (iv) means that

f∗(x∗) = min{
∑
i∈I

f∗i (x∗i ) :
∑
i∈I

∗
x∗i = x∗}.

Thus, there exist x∗i ∈ X∗ with
∑
i∈I

∗
x∗i = x∗ such that f∗(x∗) =

∑
i∈I

f∗i (x∗i ). Hence

f∗(x∗) + f(x)− 〈x∗, x〉 =
∑
i∈I

(
f∗i (x∗i ) + fi(x)− 〈x∗i , x〉

)
.

where 0 ≤ f∗i (x∗i ) + fi(x) − 〈x∗i , x〉 for all i ∈ I (by Young’s inequality). Since x∗ ∈ ∂εf(x) (that is
f∗(x∗) + f(x)− 〈x∗, x〉 ≤ ε), it follows that there exist εi ≥ 0 (i ∈ I) such that

∑
i∈I

εi = ε and

f∗i (x∗i ) + fi(x)− 〈x∗i , x〉 ≤ εi ∀ i ∈ I.

Then x∗i ∈ ∂εi
fi(x) (i ∈ I) and x∗ ∈

∑
i∈I

∗
∂εi

fi(x) (as x∗ =
∑
i∈I

∗
x∗i ). Therefore x∗ belongs to the set on

the right hand side of (i). This completes the proof.
Note 3.1. The property (v), sometimes referred as the Fenchel duality, is strictly weaker (even when

|I| = 2) than the properties (i)-(iv) listed in Theorem 3.2. Examples can be found in [5, page 2798-2799]
and [26, Example 11.1 and Example 11.3] .

Corollary 3.3. (Extension of Fenchel duality) Let {fi, h, f : i ∈ I ∪ J} ⊆ Γ(X) with I ∩ J = ∅,
|J | < +∞ and

h(x) =
∑
i∈I

fi(x) and f(x) =
∑
i∈I

fi(x) +
∑
j∈J

fj(x) for all x ∈ X.

Suppose that

epih∗ =
∑
i∈I

∗
epif∗i (3.14)

and (at least) one of the following conditions holds:

(i) dom h ∩ int
( ⋂

j∈J

domfj

)
6= ∅. (3.15)
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(ii) There exists j0 ∈ J such that

int(dom h) ∩ domfj0 ∩ int
( ⋂

j∈J\{j0}

domfj

)
6= ∅. (3.16)

Then

epif∗ =
∑
i∈I

∗
epif∗i +

∑
j∈J

epif∗j , (3.17)

and in particular, one has

inf
x∈X

f(x) = max{−
∑
i∈I

f∗i (x∗i )−
∑
j∈J

f∗j (y∗j ) :
∑
i∈I

∗
x∗i +

∑
j∈J

y∗j = 0}. (3.18)

Proof. First, from the implication (iii) ⇒ (v) in Theorem 3.2, we need only to show (3.17). Since
{fj , h, f : j ∈ J} ⊆ Γ(X) and f = h +

∑
j∈J fj , Lemma 2.1 implies that

epif∗ = epih∗ +
∑
j∈J

epif∗j ,

provided that (i) or (ii) holds. Consequently (3.17) holds by (3.14).

4. Sufficient Conditions. This section is devoted to provide sufficient conditions ensuring that for
{fi, f : i ∈ I} ⊆ Γ(X), epif∗ =

∑
i∈I

∗
epif∗i (see Theorem 3.2 (iii)), where

f(x) =
∑
i∈I

fi(x) for all x ∈ X. (4.1)

4.1. Continuous type. Throughout this subsection, we assume f and each fi are continuous, that
is,

{fi, f : i ∈ I} ⊆ Γc(X). (4.2)

Theorem 4.1. Assume (4.1) and (4.2). Then

epif∗ =
∑
i∈I

∗
epif∗i

w∗

. (4.3)

Proof. Let x ∈ X. By continuity, each ∂fi(x) 6= ∅; take x∗i ∈ ∂fi(x). By Lemma 2.3, there exists
x∗ ∈ ∂f(x) such that x∗ =

∑
i∈I

∗
x∗i . Denote r := 〈x∗, x〉 − f(x) and ri = 〈x∗i , x〉 − fi(x). It follows from

(4.1) that r =
∑
i∈I

ri. Moreover, by (2.5), each (x∗i , ri) ∈ epif∗i and so (x∗, r) ∈
∑
i∈I

∗
epif∗i . Therefore,

by Lemma 3.1, ∅ 6=
∑
i∈I

∗
epif∗i ⊆ epif∗. Thus, since epif∗ is weak∗ closed, if (4.3) is not true then there

exists (x∗, α) ∈ epif∗\
∑
i∈I

∗
epif∗i

w∗

. Recalling that a linear functional h on X∗ is the form h(x∗) = 〈a, x∗〉

for some a ∈ X if and only if h is continuous in the weak∗ topology of X∗ (cf. [29, Page 112, Theorem
1], it follows from the separation theorem that there exists (x0, r0) ∈ X × R such that

sup{〈y∗, x0〉+ βr0 : (y∗, β) ∈
∑
i∈I

∗
epif∗i } < 〈x∗, x0〉+ αr0. (4.4)
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Considering β > 0 large, it follows that r0 ≤ 0. We claim that r0 < 0. Indeed, if r0 = 0 then (4.4)
means sup{〈y∗, x0〉 : (y∗, β) ∈

∑
i∈I

∗
epif∗i } < 〈x∗, x0〉. Since x∗ ∈ domf∗ and Im ∂f is norm dense in

domf∗ (cf. [24, Theorem 3.18]), there exist a∗ ∈ Im ∂f (so a∗ ∈ ∂f(a) for some a ∈ X) such that
sup{〈y∗, x0〉 : (y∗, β) ∈

∑
i∈I

∗
epif∗i } < 〈a∗, x0〉. By Lemma 2.3, this implies that

sup{〈y∗, x0〉 : (y∗, β) ∈
∑
i∈I

∗
epif∗i } < 〈a∗0, x0〉 (4.5)

for some a∗0 ∈
∑
i∈I

∗
∂fi(a). Note that a∗0 can be expressed in the form a∗0 =

∑
i∈I

∗
a∗i with each a∗i ∈ ∂fi(a).

Since each 〈a∗i , a〉 = fi(a)+f∗i (a∗i ) (Young’s equality) it follows from (4.1) that 〈a∗0, a〉 = f(a)+
∑
i∈I

f∗i (a∗i )

and hence that (a∗0, β0) ∈
∑
i∈I

∗
epif∗i where β0 := 〈a∗0, a〉 − f(a) ∈ R. But then sup{〈y∗, x0〉 : (y∗, β) ∈∑

i∈I

∗
epif∗i } ≥ 〈a∗0, x0〉, contradicting (4.5). Henceforth, without loss of generality, we may assume that

r0 = −1. Then (4.4) becomes

sup{〈y∗, x0〉 − β : (y∗, β) ∈
∑
i∈I

∗
epif∗i } < 〈x∗, x0〉 − α. (4.6)

Note that 〈x∗, x0〉 − α ≤ f(x0) by Young’s inequality and the fact that (x∗, α) ∈ epif∗ and it follows
from (4.6) that

sup{〈y∗, x0〉 − β : (y∗, β) ∈
∑
i∈I

∗
epif∗i } < f(x0). (4.7)

Moreover, for each i ∈ I, pick x∗i ∈ ∂fi(x0). Define x∗0 :=
∑
i∈I

∗
x∗i (this is well-defined by Lemma 2.3).

Let α0 := 〈x∗0, x0〉 − f(x0). Note from Young’s equality that 〈x∗i , x0〉 = fi(x0) + f∗i (x∗0) for each i ∈ I

and it follows from (4.1) that α0 =
∑
i∈I

f∗i (x∗i ) and hence that (x∗0, α0) =
∑
i∈I

∗
(x∗i , f

∗
i (x∗i )) ∈

∑
i∈I

∗
epif∗i .

Consequently, by (4.7), 〈x∗0, x0〉 − α0 < f(x0) contradicting the definition of α0.
If I is countable and if another assumption, namely

dom f∗ = Im ∂f (4.8)

is added, the following result shows that the set
∑
i∈I

∗
epif∗i is weak∗ closed.

Theorem 4.2. Assume (4.8) in addition to (4.1) and (4.2), and suppose that I is countable. Then
epif∗ =

∑
i∈I

∗
epif∗i .

Proof. Noting epif∗ = gphf∗ + {0} × [0,+∞) and∑
i∈I

∗
epif∗i + {0} × [0,∞) ⊆

∑
i∈I

∗
epif∗i . (4.9)

(because epif∗i + {0} × [0,∞) = epif∗i for each i), and making use of Theorem 4.1 we need only to show

gphf∗ ⊆
∑
i∈I

∗
epif∗i , (4.10)
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where gphf∗ denotes the graph of f∗. To see (4.10), let (x∗, α) ∈ gphf∗. Then x∗ ∈ domf∗ = Im ∂f

thanks to (4.8). Hence there exists x ∈ X such that x∗ ∈ ∂f(x). By Lemma 2.3, x∗ can be expressed in
the form

x∗ =
∑
i∈I

∗
x∗i ,

where each x∗i ∈ ∂fi(x). By Young’s equality, f∗(x∗) = 〈x∗, x〉 − f(x) and each f∗i (x∗i ) = 〈x∗i , x〉 − fi(x),
and it follows from (4.1) that

∑
i∈I f∗i (x∗i ) = 〈x∗, x〉−f(x), that is,

∑
i∈I f∗i (x∗i ) = f∗(x∗) = α. Therefore

(x∗, α) =
∑
i∈I

∗
(x∗i , f

∗
i (x∗i )) ∈

∑
i∈I

∗
epif∗i . This completes the proof.

4.2. Nonnegative type. Throughout this subsection, we assume that f and each fi are nonnegative-
valued, that is,

{fi, f : i ∈ I} ⊆ Γ+(X). (4.11)

Theorem 4.3. Assume (4.1) and (4.11). Then

epif∗ =
⋃

J⊆I,
|J|<∞

∑
i∈J

epif∗i
w∗

=
∑
i∈I

∗
epif∗i

w∗

. (4.12)

Proof. Since each epif∗i is a convex set containing the origin (because fi ≥ 0), one has from (2.6)
and Lemma 3.1 that ⋃

J⊆I,
|J|<∞

∑
i∈J

epif∗i ⊆
∑
i∈I

∗
epif∗i ⊆ epif∗

and hence ⋃
J⊆I,
|J|<∞

∑
i∈J

epif∗i
w∗

⊆
∑
i∈I

∗
epif∗i

w∗

⊆ epif∗. (4.13)

For each J ⊆ I with |J | < ∞, let gJ denote the sum function of {fi : i ∈ J}, namely gJ(x) =
∑

i∈J fi(x)
for all x ∈ X. Since each fi is nonnegative-valued, we have that, by (4.1) and (2.9),

f =
∑
i∈I

fi = sup
J⊆I,
|J|<∞

gJ . (4.14)

Hence, by Lemma 2.2 (applied to {gJ : J ⊆ I, |J | < +∞}) and Lemma 2.1, we have

epif∗ =
⋃

J⊆I,
|J|<∞

epig∗J
w∗

=
⋃

J⊆I,
|J|<∞

∑
i∈J

epif∗i
w∗w∗

(4.15)

(note that
⋃

J⊆I,
|J|<∞

epig∗J is a convex set since epig∗J1
⊆ epig∗J2

if J1 ⊆ J2). Combining this with (4.13) and

(4.15) we see that (4.12) holds because the set on the right-hand side of (4.15) is equal to that on the
left-hand side of (4.13)

(
to see the latter fact, note that, for any J ⊆ I with |J | < +∞ one has∑

i∈J

epif∗i
w∗

⊆
⋃

J⊆I,
|J|<∞

∑
i∈J

epif∗i
w∗

,
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and so ⋃
J⊆I,
|J|<∞

∑
i∈J

epif∗i
w∗w∗

⊆
⋃

J⊆I,
|J|<∞

∑
i∈J

epif∗i
w∗ )

.

This completes the proof.
Next, we seek some sufficient conditions to ensure that the set

∑∗
i∈I epif∗i in Theorem 4.3 is weak∗

closed. It would be convenient for us to introduce some new notation first. Let Y be a Banach space and
let J be a finite set. Let {Ki}i∈J be closed convex cones of Y . Following [28], we define γ(Ki; J) by

γ(Ki; J) = inf{‖
∑
i∈J

yi‖ :
∑
i∈J

‖yi‖ = 1, each yi ∈ Ki}. (4.16)

When J = {1, 2} and Y is a Hilbert space, the corresponding value of cos−1 γ(Ki; J) is termed as the
angle between the closed convex cones K1 and K2 (see [7] for a detailed discussion). Given y∗ ∈ Y ∗ and
any subspace Z of Y , y∗|Z denotes the restriction of y∗ to Z and ‖y∗‖Z denotes the corresponding norm
of y∗|Z in Z∗. Furthermore, let D ⊆ Y ∗, we define D|Z := {y∗|Z : y∗ ∈ D}. Let K be a subset of Y

(resp. Y ∗), the (negative) polar of K is denoted by K◦ and defined by K◦ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0 for
all y ∈ K}) (resp. K◦ = {y ∈ Y : 〈y∗, y〉 ≤ 0 for all y∗ ∈ K}). From the definition, it is clear that if K1

and K2 are two subsets of Y (resp. Y ∗) and K1 ⊆ K2, then K◦
2 ⊆ K◦

1 .
When H is a subspace of X, Y = X∗ ×R, Z = H ×R and each Ki (i ∈ J) is a weak∗ closed convex

cone of Y, Ki|Z (i ∈ J) and γ(Ki|Z ; J) are respectively defined by

Ki|Z = {(x∗|H , α) : (x∗, α) ∈ Ki} (4.17)

and

γ(Ki|Z ; J) = inf{‖
∑
i∈J

(x∗i |H , αi)‖ :
∑
i∈J

‖(x∗i |H , αi)‖ = 1, each (x∗i , αi) ∈ Ki} (4.18)

(
see (4.16)

)
. If H is finite dimensional, the infimum in (4.18) is attained and hence can be replaced by

minimum.
An important special case (that we shall consider in the next theorem) is: each fi is given in the

form

fi(x) = max{〈a∗i , x〉+ ri, 0}+ δCi(x) (4.19)

where Ci are closed convex subsets of X with
⋂

i∈I Ci 6= ∅ and a∗i ∈ X∗ and ri ∈ R. Let Di denote the
convex hull of the set (a∗i ,−ri) ∪ (0, 0), and let Ki denote the set epiσCi

. Then Di is a weak∗ compact
set in X∗ × R containing the origin, and Ki is a weak∗ closed convex cone in X∗ × R. We observe that

co{
(
{a∗i } × [−ri,∞)

)
∪

(
{0} × [0,∞)

)
} = co{(a∗i ,−ri) ∪ (0, 0)}+ {0} × [0,∞) (4.20)

Indeed, let (x∗, r) ∈ co{
(
{a∗i } × [−ri,∞)

)
∪

(
{0} × [0,∞)

)
}. There exist t ∈ [0, 1], ε, δ ≥ 0 such that

(x∗, r) = t(a∗i ,−ri + ε)+(1− t)(0, δ) = t(a∗i ,−ri)+(0, tε+(1− t)δ). Note that tε+(1− t)δ ≥ 0. It follows
that (x∗, r) ∈ co{(a∗i ,−ri) ∪ (0, 0)} + {0} × [0,∞) and hence co{

(
{a∗i } × [−ri,∞)

)
∪

(
{0} × [0,∞)

)
} ⊆

co{(a∗i ,−ri) ∪ (0, 0)}+ {0} × [0,∞). As the converse inclusion can be verified similarly, (4.20) is seen to
hold. Consequently, we have

epif∗i = epi(max{〈a∗i , ·〉+ ri, 0})∗ + epi(δCi)
∗

= co{epi(〈a∗i , ·〉+ ri)∗ ∪
(
{0} × [0,∞)

)
}+ epi(δCi

)∗

= co{
(
{a∗i } × [−ri,∞)

)
∪

(
{0} × [0,∞)

)
}+ epi(δCi

)∗

= co{(a∗i ,−ri) ∪ (0, 0)}+ epi(δCi)
∗

= Di + Ki, (4.21)
11



where the first equality follows from (4.19) and Lemma 2.1, the second equality follows from Lemma 2.3
and the fourth equality holds by (4.20) and the fact epi(δCi

)∗ = epi(δCi
)∗ + {0} × [0,+∞). Therefore,

the condition (C1) in the following theorem is satisfied if the functions fi are given in the form (4.19).
Theorem 4.4. Let I be a compact metric space. Assume (4.1), (4.11) and the following assumptions:

(C1) For each i ∈ I, there exist a weak∗ compact convex set Di in X∗ × R containing the origin, and a
weak∗ closed convex cone Ki in X∗ × R such that

epif∗i = Di + Ki. (4.22)

(C2)
∑

i∈I diam(Di) < ∞, where diam(Di) denotes the diameter of Di (i ∈ I), i.e., diam(Di) :=
sup{‖x− y‖ : x, y ∈ Di}.
(C3) There exist i0 ∈ I and a finite dimensional subspace H of X such that K◦

i0
⊆ Z := H × R (denote

the corresponding dimension of Z by m).
(C4) For any J ⊆ I with |J | = m, γ(Ki|Z ; J) > 0.
(C5) The set-valued mapping i 7→ Ki|Z is upper semicontinuous, i.e., for any i ∈ I,

lim sup
i→i

(Ki|Z) ⊆ Ki|Z ,

where lim sup
i→i

(Ki|Z) := {x∗ ∈ Z∗ : ∃ x∗i ∈ Ki|Z such that x∗ = lim
i→i

x∗i (in the norm of Z∗)}.

Then
∑
i∈I

∗
epif∗i is weak∗ closed and

epif∗ =
∑
i∈I

∗
epif∗i . (4.23)

Proof. By Theorem 4.3, we need only prove the weak∗-closedness assertion. Denote Y := X × R.
and so Y ∗ is identified with X∗ × R. Denote Ai := epif∗i ⊆ Y ∗ and A :=

∑
i∈I

∗
Ai. Let a∗ ∈ A

w∗
. We

have to show that a∗ ∈ A. To do this, we take a sequence {a∗k} ⊆ A such that a∗k → a∗ on Z := H × R
(thanks to the assumption that H is finite dimensional and the weak∗ topology coincides with the norm
topology on a finite dimensional space). For each k ∈ N, noting a∗k ∈ A =

∑
i∈I

∗
Ai, there exists a sequence

in
⋃

J⊆I,
|J|<∞

∑
i∈J

Ai weak∗ converging (and hence in norm ‖ · ‖Z) to a∗. Thus, there exist a finite subset Ik of

I and a∗i,k ∈ Ai (i ∈ Ik) such that

‖a∗k −
∑
i∈Ik

a∗i,k‖Z ≤ 1
k

. (4.24)

Hence

lim
k→∞

‖u∗k − a∗‖Z → 0, (4.25)

where u∗k :=
∑
i∈Ik

a∗i,k. Note that u∗k ∈
∑

i∈Ik
Di +

∑
i∈Ik

Ki

(
by (4.22)

)
. Since Z is of dimension m and

each Ki is a (convex) cone it follows from the Carathédory theorem [28, Corollary 17.1.2] that for each
k ∈ N that there exist {i1,k, i2,k, . . . , im,k} ⊆ Ik, such that

u∗k =
∑
i∈Ik

y∗i,k +
m∑

j=1

z∗ij,k
on Z (4.26)
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for some y∗i,k ∈ Di (i ∈ Ik) and z∗ij,k
∈ Kij,k

(1 ≤ j ≤ m). Let I ′ :=
⋃

k∈N Ik and set y∗i,k := 0 for any
i ∈ I ′\Ik. For each fixed k ∈ N, it follows from (4.26) that

u∗k =
∑
i∈I′

y∗i,k +
m∑

j=1

z∗ij,k
on Z, (4.27)

where y∗i,k ∈ Di for all i ∈ I ′
(
thanks to the assumption that each Di contains the origin

)
. Next, we

show that

{z∗ij,k
|Z}k∈N are bounded sequences for all 1 ≤ j ≤ m. (4.28)

To prove this, we suppose on the contrary that {z∗ij,k
|Z}k∈N is an unbounded sequence for some j ∈

{1, 2, . . . ,m}. By passing to a subsequence if necessary, we may assume that

lim
k→∞

m∑
j=1

‖z∗ij,k
‖Z →∞. (4.29)

Dividing by
m∑

j=1

‖z∗ij,k
‖Z on both sides of (4.27), we obtain

u∗k∑m
j=1 ‖z

∗
ij,k
‖Z

=

∑
i∈I′ y

∗
i,k∑m

j=1 ‖z
∗
ij,k
‖Z

+
m∑

j=1

z∗ij,k∑m
j=1 ‖z

∗
ij,k
‖Z

on Z. (4.30)

Note that {‖u∗k‖Z}k∈N is a bounded numerical sequence (since ‖u∗k − a∗‖Z → 0) and

‖
∑
i∈I′

y∗i,k‖Z ≤
∑
i∈I′

‖y∗i,k‖ ≤
∑
i∈I

diam(Di) < ∞. (4.31)

Moreover, since I is compact, we may assume without loss of generality that ij,k → ij for some ij ∈ I

(1 ≤ j ≤ m) as k →∞. Considering subsequences if necessary, we may assume that there exists z∗j ∈ X∗

such that the bounded sequence

z∗ij,k∑m
j=1 ‖z

∗
ij,k
‖Z

→ z∗j on Z (1 ≤ j ≤ m), (4.32)

(thanks to the fact that Z is finite-dimensional). By (4.32), it is clear that
∑m

j=1 ‖z∗j ‖Z = 1. Moreover,
assumption (C5) entails that each z∗j |Z ∈ Kij

|Z . Finally, by passing to the limits in (4.30) and making
use of (4.31) and (4.29), we have

∑m
j=1 z∗j = 0 on Z. Then γ(Ki|Z , {i1, i2, . . . , im}) = 0, contradicting

the assumption (C4). Therefore (4.28) is proved.
By the compactness of I again and by passing to subsequences if necessary, we may assume that

ij,k → îj for some îj ∈ I as k →∞ (1 ≤ j ≤ m). For each j, since Z is finite dimensional and by (4.28),
we may assume that z∗ij,k

→ z∗j on Z for some z∗j ∈ X∗. By (C5), z∗j |Z ∈ Kîj
|Z and so there exists

ω∗j ∈ Kîj
such that z∗j = ω∗j on Z. Hence, replacing z∗j by ω∗j if necessary, we may assume without loss

of generality that

z∗j ∈ Kîj
(1 ≤ j ≤ m). (4.33)

Since u∗k → a∗ on Z
(
by (4.25)

)
, (4.27) implies that

∑
i∈I′

y∗i,k = u∗k −
m∑

j=1

z∗ij,k
→ a∗ −

m∑
j=1

z∗j on Z as k →∞. (4.34)
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Since I ′ is countable, we may represent I ′ in the form that I ′ = {i1, . . . , in, . . .} and hence

∑
n∈N

y∗in,k → a∗ −
m∑

j=1

z∗j on Z as k →∞.

Since y∗i1,k ∈ Di1 and Di1 |Z is compact, there exists an infinite subset N1 ⊆ N such that {y∗i1,k}k∈N1

converges to y∗i1 on Z for some y∗i1 ∈ Di1 . Inductively, we can find a sequence of infinite subsets Nn ⊆ N
such that Nn+1 ⊆ Nn and for each n ∈ N

{y∗in,k}k∈Nn
converges to y∗in

on Z for some y∗in
∈ Din

. (4.35)

Since
∑

n∈N ‖y
∗
in
‖ ≤

∑
i∈I ‖y

∗
i ‖ ≤

∑
i∈I diamDi < +∞

(
by the assumption (C2)

) ∑
n∈N y∗in

exists as an
element in X∗ and in particular ∑

n∈N
y∗in

∈
∑
n∈N

∗
Din . (4.36)

Similarly, for all k ∈ N ∑
n∈N

‖y∗in,k‖ ≤
∑
i∈I

diamDi < +∞,

and thus, for any ε > 0 there exists n0 ∈ N such that for all n′ ≥ n0∑
n>n′

‖y∗in,k‖ ≤
∑
n>n′

diam(Din) ≤ ε/2 for all k ∈ N. (4.37)

Note that, for any fixed n′ ≥ n0, (by (4.35) and (4.34)) there exists k0 ∈ N (depending on n′) such that

‖y∗in,k0
− y∗in

‖Z ≤ ε

4n′
for all n ∈ {1, . . . , n′} and

‖a∗ −
m∑

j=1

z∗j −
∑
n∈N

y∗in,k0
‖Z ≤ ε/4.

It follows from (4.37) that for any n′ ≥ n0

‖a∗ −
m∑

j=1

z∗j −
n′∑

n=1

y∗in
‖Z ≤ ‖a∗ −

m∑
j=1

z∗j −
∑
n∈N

y∗in,k0
‖Z

+
n′∑

n=1

‖y∗in,k0
− y∗in

‖Z +
∑
n>n′

‖y∗in,k0
‖Z

≤ ε.

Since ε is arbitrary, one has

a∗ =
m∑

j=1

z∗j +
∑
n∈N

y∗in
on Z. (4.38)

Then, one has

a∗ −
m∑

j=1

z∗j −
∑
n∈N

y∗in
∈ Z⊥. (4.39)
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From (4.33) and (4.35) we know that each z∗j ∈ Kîj
and yin

∈ Din
, and it follows from (4.36) that

m∑
j=1

z∗j +
∑
n∈N

y∗in
∈

m∑
j=1

Kîj
+

∑
n∈N

∗
Din

. Therefore, (4.39) entails that

a∗ ∈
m∑

j=1

Kîj
+

∑
n∈N

∗
Din

+ Z⊥. (4.40)

Note from the bipolar theorem (cf. [30, Theorem 1.1.9]) and the assumption (C3) that Z⊥ ⊆ Ki0 . It
follows that a∗ ∈

∑m
j=1 Kîj

+
∑

n∈N
∗
Din

+ Ki0 . Since 0 ∈ Di ∩Ki, one has

a∗ ∈
m∑

j=1

Kîj
+

∑
n∈N

∗
Din + Ki0 =

∑
n∈N

∗
Din +

( m∑
j=1

Kîj
+ Ki0

)
⊆

∑
i∈I

∗
(Di + Ki) = A,

as required to show. This completes the proof.
Corollary 4.5. Let I be a compact metric space and let fi be given by (4.19). Assume (4.1), (4.11)

and the following assumptions:
(B1)

∑
i∈I

(‖a∗i ‖+ |ri|) < ∞.

(B2) There exists i0 ∈ I such that H := span(Ci0) is of finite dimension. (Denote the corresponding
dimension by n).
(B3) For any J ⊆ I\{i0} with |J | ≤ n + 1, it holds that

Ci0 ∩ (
⋂
i∈J

intHCi) 6= ∅.

where intHCi := {x ∈ Ci : ∃ε > 0 s.t. B(x, ε) ∩H ⊆ Ci}.
(B4) The mapping i 7→ Ci ∩H is lower semicontinuous, i.e., for any i ∈ I

Ci ∩H ⊆ lim inf
i→i

(Ci ∩H).

Then the conclusion of Theorem 4.4 holds.
Proof. Define Di := co{(a∗i ,−ri) ∪ (0, 0)}, and Ki := epiσCi . Then, as we have mentioned before,

assumption (C1) in Theorem 4.4 holds
(
see (4.21)

)
. Therefore, to finish the proof, it suffices to show the

assumptions (C2)-(C5) in Theorem 4.4 are satisfied. First of all, from the condition (B1), we see that∑
i∈I diamDi < ∞ and hence the assumption (C2) holds. To see (C3), noting that Z⊥ = (spanCi0)

⊥ ×
{0} ⊆ epiσCi0

= Ki0 , one has K◦
i0
⊆ Z. Therefore assumption (C3) holds with m := n + 1. To see

that assumption (C4) holds with m := n + 1, we proceed by contradiction and suppose that there exists
J0 ⊆ I with |J0| = n + 1 such that γ(epiσCi

|H×R; J0) = 0. Noting that H × R is finite dimensional, it
follows from (4.18) that there exist (x∗i , αi) ∈ epiσCi

(i ∈ J0) such that∑
i∈J0

(
‖x∗i ‖H + |αi|

)
= 1, (4.41)

∑
i∈J0

x∗i = 0 on H and
∑
i∈J0

αi = 0. (4.42)

We claim that

x∗i = 0 on H for all i ∈ J0. (4.43)

Granting this, we have 0 = σCi∩H(x∗i ) ≤ σCi
(x∗i ) ≤ αi for all i ∈ J0. This together with the second

equality of (4.42) implies that αi = 0 for all i ∈ J0. However, this and (4.43) contradict to (4.41). To
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see (4.43), we divide our proof into two cases, namely Case 1: i0 /∈ J0 and Case 2: i0 ∈ J0. For Case 1,
we note that J0 ⊆ I\{i0} and it follows from (B3) that

⋂
j∈J0

intHCi 6= ∅. Thus there exist x0 ∈ X and
ε > 0 such that x0 ∈ B(x0, ε) ∩H ⊆ Ci for all i ∈ J0. Recalling the fact (x∗i , αi) ∈ epiσCi (i ∈ J0) and
the definition of ‖ · ‖H , it follows from (4.42) that

ε
∑
i∈J0

‖x∗i ‖H =
∑
i∈J0

(
〈x∗i , x0〉+ ε‖x∗i ‖H

)
=

∑
i∈J0

sup
x∈B(x0,ε)∩H

〈x∗i , x〉

≤
∑
i∈J0

sup
x∈Ci

〈x∗i , x〉

≤
∑
i∈J0

αi = 0. (4.44)

Thus (4.43) holds in this case. For Case 2, one applies (B3) again, and there exist x0 ∈ Ci0 and ε > 0
such that x0 ∈ B(x0, ε) ∩H ⊆ Ci for all i ∈ J0\{i0}. Hence sup

x∈B(x0,ε)∩H

〈x∗i , x〉 ≤ sup
x∈Ci

〈x∗i , x〉, that is

〈x∗i , x0〉+ ε‖x∗i ‖H = sup
x∈B(x0,ε)∩H

〈x∗i , x〉 ≤ σCi
(x∗i ) for all i ∈ J0\{i0}. (4.45)

Since (x∗i , αi) ∈ epiσCi
for all i ∈ J0 and x0 ∈ Ci0 (so 〈x∗i0 , x0〉 ≤ αi0), it follows from (4.42) that

ε
∑

i∈J0\{i0}

‖x∗i ‖H =
∑
i∈J0

〈x∗i , x0〉+ ε
∑

i∈J0\{i0}

‖x∗i ‖H ≤
∑
i∈J0

αi = 0.

This together with the first equality in (4.42) gives that x∗i = 0 on H for all i ∈ J0. Thus (4.43) also
holds in this case. Finally, for (C5), fix an i ∈ I. Consider i → i and (x∗i , αi) ∈ H∗ × R (i ∈ I) be such
that (x∗i , αi) ∈ epiσCi

|H×R with (x∗i , αi) → (x∗, α) for some (x∗, α) ∈ H∗ × R. Let x ∈ Ci ∩H. By (B4)
and since H is of finite dimension, there exists a sequence {xi} ⊆ Ci ∩ H such that xi → x. It follows
that

〈x∗, x〉 = lim
i→i

〈x∗i , xi〉 ≤ lim sup
i→i

σCi∩H(x∗i ) ≤ lim
i→i

αi = α.

This implies that (x∗, α) ∈ epiσCi
|H×R and hence (C5) in Theorem 4.4 holds. Therefore the assumptions

(C2)-(C5) in Theorem 4.4 hold. This finishes the proof.

5. Application to the KKT theory. We first establish an ε-sum rule involving possibly infinitely
many convex functions. In the special case that I = ∅, the following result has been presented in [18]
(see also [30, Corollary 2.6.7]).

Theorem 5.1. Let I, J be two index sets with I ∩ J = ∅ and |J | < ∞. Let {fi}i∈I ⊆ Γ+(X) and
{fj}j∈J ⊆ Γ(X). Let f ∈ Γ(X) be such that f(x) =

∑
i∈Ifi(x) +

∑
j∈Jfj(x) for each x ∈ X. Let ε ≥ 0

and x ∈ X. Then we have

∂εf(x) =
⋂
η>0

⋃
I′⊆I,
|I′|<∞

{
∑
i∈I′

∂εifi(x) +
∑
j∈J

∂εj fj(x) :
∑
i∈I′

εi +
∑
j∈J

εj ≤ ε + η}
w∗

. (5.1)

Proof. First of all, since⋃
I′⊆I,
|I′|<∞

{
∑
i∈I′

∂εi
fi(x) +

∑
j∈J

∂εj
fj(x) :

∑
i∈I′

εi +
∑
j∈J

εj ≤ ε + η} ⊆ ∂ε+ηf(x),

and ∂ε+ηf(x) is weak∗ closed for each η > 0, one has⋂
η>0

⋃
I′⊆I,
|I′|<∞

{
∑
i∈I′

∂εi
fi(x) +

∑
j∈J

∂εj
fj(x) :

∑
i∈I′

εi +
∑
j∈J

εj ≤ ε + η}
w∗

⊆
⋂
η>0

∂ε+ηf(x) = ∂εf(x).
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To see the reverse inclusion, let x∗ ∈ ∂εf(x), η > 0 and let V be a weak∗ neighbourhood of 0. It suffices
to show that there exist I ′ with |I ′| < +∞, εi, εj ≥ 0 (i ∈ I ′, j ∈ J) such that∑

i∈I′

εi +
∑
j∈J

εj ≤ ε + η (5.2)

and

x∗ ∈
∑
i∈I′

∂εi
fi(x) +

∑
j∈J

∂εj
fj(x) + V. (5.3)

Let h :=
∑

i∈Ifi. Note that h ∈ Γ+(X) (since fi ∈ Γ+(X) and h(x0) < +∞ for all x0 ∈ domf). From
Lemma 2.1 (applied to {h, fj : j ∈ J}) and Theorem 4.3, we have

epif∗ = epi
(
h +

∑
j∈J

fj

)∗ = epih∗ +
∑
j∈J

epif∗j
w∗

=
⋃

I′⊆I,
|I′|<∞

∑
i∈I′

epif∗i
w∗

+
∑
j∈J

epif∗j

w∗

=
⋃

I′⊆I,
|I′|<∞

∑
i∈I′

epif∗i +
∑
j∈J

epif∗j
w∗

.

Since x∗ ∈ ∂εf(x), it follows from (2.5) and the above expression that

(x∗, ε + 〈x∗, x〉 − f(x)) ∈
⋃

I′⊆I,
|I′|<∞

∑
i∈I′

epif∗i +
∑
j∈J

epif∗j
w∗

, (5.4)

and hence there exist I ′ ⊆ I with |I ′| < ∞, (x∗i , ri) ∈ epif∗i (i ∈ I ′) and (x∗j , rj) ∈ epif∗j (j ∈ J) such
that

x∗ ∈
∑
i∈I′

x∗i +
∑
j∈J

x∗j + V (5.5)

and ∑
i∈I′

ri +
∑
j∈J

rj ≤ (ε + η/2) + 〈x∗, x〉 − f(x). (5.6)

By shrinking V if necessary, we may assume without loss of generality that

|〈
∑
i∈I′

x∗i +
∑
j∈J

x∗j − x∗, x〉| ≤ η/2. (5.7)

For each k ∈ I ′∪J , let εk := f∗k (x∗k)+fk(x)−〈x∗k, x〉; then εk ≥ 0 (Young’s inequality), and x∗k ∈ ∂εk
fk(x)(

see (2.5)
)
. Thus (5.3) holds by (5.5). It remains to show (5.2). To see this, note that (x∗k, rk) ∈ epif∗k

and so εk ≤ rk + fk(x)− 〈x∗k, x〉 for each k ∈ I ′ ∪ J . Further,
∑

i∈I′ fi(x) +
∑

j∈J fj(x) ≤ f(x) (since fi

are nonnegative for all i ∈ I). It follows from (5.6) that∑
k∈I′∪J

εk ≤
∑

k∈I′∪J

rk + f(x)− 〈
∑

i∈I′∪J

x∗k, x〉 ≤ 〈x∗ −
∑

k∈I′∪J

x∗k, x〉+ (ε + η/2)

and so (5.2) holds by (5.7). This completes the proof.
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Let |I| ≤ +∞. Consider the following semi-infinite programming

min
x∈X

f0(x)

s.t. fi(x) ≤ 0 (i ∈ I) (5.8)

where {f0, fi : i ∈ I} ⊆ Γ(X). We say that x is a feasible point of (5.8) if f0(x) < +∞ and fi(x) ≤ 0
for all i ∈ I. For any ε ≥ 0, a feasible point x of (5.8) is called an ε-solution if f0(x) ≤ f0(x) + ε for all
feasible points x of (5.8). As an application of the preceding theorem, we have the following fuzzy KKT
result for (5.8). In the special case when ε = 0, X is reflexive and {f0, fi : i ∈ I} ⊆ Γc(X) the fuzzy KKT
condition was first derived by Jeyakumar et. al. in [19]. In the special case when ε = 0, and each fi

(i ∈ I) is epi-closed, this result was also established by Boţ et. al. in [3, 6] via the perturbation approach
(indeed, [3, 6] gave the corresponding result for a more general problem: the cone constraint problem).

Theorem 5.2. Let ε ≥ 0 and let x be an ε-solution of (5.8). Let U be a weak∗-neighbourhood of 0
and η > 0. Then there exist a finite subset I ′ of I and {εi : i ∈ {0} ∪ I ′} ∪ {λi : i ∈ I ′} ⊆ [0,+∞) such
that

0 ≤
∑

i∈I′∪{0}

εi ≤ ε + η, −(ε + η) ≤
∑
i∈I′

λifi(x) ≤ 0 (5.9)

and

0 ∈ x∗0 +
∑
i∈I′

x∗i + U, (5.10)

for some

x∗0 ∈ ∂ε0f0(x) and x∗i ∈ ∂εi
(λifi)(x) (i ∈ I ′). (5.11)

Proof. Define f : X → R ∪ {+∞} by

f(x) = f0(x) +
∑
i∈I

gi(x),

where gi = δAi and Ai := {x ∈ X : fi(x) ≤ 0}. Then f(x) = f0(x) < +∞ and f ∈ Γ(X). Moreover, since
x is an ε-solution of (5.8), one has f(x) ≤ f(x) + ε for all x ∈ X, so 0 ∈ ∂εf(x). We assume without loss
of generality that the given weak∗ neighborhood U is convex. Note that each gi is a nonnegative function
(i ∈ I). From Theorem 5.1 (applied to {I, {0}, {gi}i∈I , f0, ε} in place of {I, J, {fi}i∈I , {fj}j∈J , ε}), there
exist a finite subset I ′ of I and {εi : i ∈ {0} ∪ I ′} ⊆ [0,∞) such that

ε0 +
∑
i∈I′

εi ≤ ε +
η

2
and 0 ∈ x∗0 +

∑
i∈I′

z∗i +
U

2
. (5.12)

for some x∗0 ∈ ∂ε0f0(x) and z∗i ∈ ∂εigi(x) (i ∈ I ′). Since gi = δAi , it follows from (2.4) that g∗i (z∗i ) =
supa∈Ai

〈z∗i , a〉 ≤ 〈z∗i , x〉+ εi. By (2.12) (applied to fi in place of f), it follows that

(z∗i , 〈z∗i , x〉+ εi) ∈
⋃
λ>0

epi(λfi)∗
w∗

.

Hence, for each i ∈ I ′, there exist λi > 0 and (x∗i , si) ∈ epi(λifi)∗ such that

z∗i ∈ x∗i +
U

2|I ′|
, (5.13)
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〈z∗i − x∗i , x〉 < η/(4|I ′|) (5.14)

and

|〈z∗i , x〉+ εi − si| < η/(4|I ′|). (5.15)

By (2.11)
(
applied to {λifi, x} in place of {f, x}

)
, for each i ∈ I ′ there exists εi ≥ 0 such that

x∗i ∈ ∂εi
(λifi)(x) and si = εi + 〈x∗i , x〉 − λifi(x). (5.16)

Thus, letting ε0 := ε0, (5.11) holds. By (5.12) and (5.13), (5.10) also holds. Since each εi ≥ 0, and
fi(x) ≤ 0 (i ∈ I ′), we note that

max{
∑

i∈{0}∪I′

εi , −
∑
i∈I′

λifi(x)} ≤
∑

i∈{0}∪I′

εi −
∑
i∈I′

λifi(x);

thus to prove (5.9), it suffices to show that∑
i∈{0}∪I′

εi −
∑
i∈I′

λifi(x) ≤ ε + η. (5.17)

To do this, note that, for each i ∈ I ′

εi − λifi(x) = si − 〈x∗i , x〉 = (si − 〈z∗i , x〉) + 〈z∗i − x∗i , x〉 < (εi +
η

4|I ′|
) +

η

4|I ′|(
see (5.14), (5.15) and (5.16)

)
. Hence it follows from (5.12) that

ε0 +
∑
i∈I′

(
εi − (λifi)(x)

)
< ε0 +

∑
i∈I

εi + η/2 ≤ ε + η.

Thus (5.17) is true and the proof is completed.
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