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Abstract. Using variational analysis, we study vector optimization problems with objectives being closed
multifunctions on Banach spaces or in Asplund spaces. In particular, in terms of the coderivatives, we present
Fermat’s rules as necessary conditions for an optimal solution of the above problems. As applications, we also
provide some necessary conditions (in terms of Clarke’s normal cones or the limiting normal cones) for Pareto
efficient points.
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1. Introduction

The main objective of this paper is to study the following vector optimization problem

C — min ®(x). (1.1)

xeX

Here X, Y are Banach spaces, ® : X — 2Y is a closed multifunction and C C Y is
a closed convex pointed non-trivial cone, which specifies a partial order <¢ on Y as
follows: for y1, y» € Y,

y1 <c y2 if and only if y, —y; € C.

Let A be a subset of Y. Recall that a € A is said to be a Pareto efficient point if there
does not exist a € A with a # a such that a <¢ a, that is,

AN@G—-C) = {a).

We use E(A, C) to denote the set of all Pareto efficient points of A. For x € X and
y € ®(x), we say that (x, y) is a local Pareto solution of the vector optimization prob-
lem (1.1) if there exists a neighborhood U of X such that

3 € E(®(U), O).
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Under some restricted conditions (e.g., the ordering cone has a nonempty interior, the
spaces are finite dimensional, or ® is single-valued), many authors (see [7, 9, 14, 15, 26,
29] and references therein) have obtained existence results for Pareto solutions or weak
Pareto solutions, while there are only a few who address the issue of sufficient/necessary
optimality conditions (for x € X to provide a solution). In particular, Minami [16] stud-
ied multiobjective program on a Banach space with a single-valued objective function
and with finitely many equality/inequality constraints given by numerical functions. His
result on Kuhn-Tucker forms is closely related to one of our results in Section 4 and
we will make further comments there. Under the convexity assumptions, Gotz and Jahn
[10] studied necessary optimality conditions for weak Pareto solutions using the notion
of cotangent derivative. Very recently, Ye and Zhu [27] gave some necessary optimality
conditions for single-valued vector optimization problems with respect to an abstract
order in an Euclidean space setting. Single-valued vector optimization problems with
respect to abstract order (regardless to linear structure) have also been discussed in Zhu
[29] and Mordukhovich, Traiman and Zhu [20]. Our approach here differs from the
earlier studies mainly in two aspects: firstly @ is a general closed multifunction, and
secondly our main results in Section 3 are valid for general Banach spaces.
In the special case when Y = R, C = [0, 400) and & is given by

d(x) = [f(x), +00) forall x € X (1.2)

where f : X — R U {400} is a proper lower semicontinuous function, it is easy to
verify that (x, f(x)) is alocal Pareto solution of (1.1) if and only if x is a local minimum
point of f. Note (cf. [6]) also that Clarke’s subdifferential d. f (x) and the associated
coderivative D} ® (x, f(x)) : V* — 2X" are related by

de f(X) = DD (X, f(X))(D). (1.3)
In view of the following well known result (Fermat’s rule)
f attains a local minimum at x = 0 € 9. f (x),

it is natural to ask whether or not the following Fermat’s rule is also valid: if (x, y) €
Gr(®) is a local Pareto solution of (1.1), does it follow that

0 € DI®(x, 7)(c") (1.4)

for some ¢* € CT with ||c*|| = 1, where CT := {y* € Y*: (c*,¢) >0 forall c € C}
and Y* denotes the dual space of Y (see Section 2 for undefined terms). Though the
answer is negative in general (cf. Example 3.1), we show in Section 3 that the follow-
ing fuzzy version is valid: If (x, y) is a local Pareto solution of the vector optimization
problem (1.1) then for any ¢ > 0 there exist x, € X + By, y. € ®(xz) N (¥ 4+ €By)
and ¢* € CT with | c*|| = 1 such that

0 € DI®(x,, ye)(c* + eByx) + £ Bxx, (1.5)

where By and Byx respectively denote the closed unit balls of X and X*. Moreover we
show that (1.4) holds if (x, y) is a local Pareto solution of (1.1) and if (at least) one of
the following conditions is satisfied.



The Fermat rule for multifunctions on Banach spaces 71

(i) The ordering cone C has a nonempty interior.
(ii) The ordering cone C is dually compact and N, (Gr(®P), -) is closed at (x, y).
(iii) There exists a vector hypertangent to Gr(®) at (x, y).

If X and Y are assumed to be Asplund spaces, the results are strengthened in Section
4: D} in (1.4) and (1.5) can be replaced by D7, the Mordukhovich coderivative defined
by limiting Frechet normal cones. In the case when the objective is a closed multifunction
with the Aubin property, the corresponding results for constrained vector optimization
problems (with set-inclusion together with abstract constraints) are also reported.

In vector optimization theory, another interesting issue is to study necessary and/or
sufficient conditions for Pareto efficient points of a closed subset of a Banach space. In
Section 5, as applications of our study in earlier sections we provide some necessary
conditions for Pareto efficient points of a closed set in a Banach space or an Asplund
space.

2. Preliminaries

Throughout this section, we assume that Y is a Banach space. Let f : ¥ — R U {+o00}
be a proper lower semicontinuous function, and let epi( f) denote the epigraph of f, that
is,

epi(f) :={(y.0) €Y x R: f(y) =t}

Lety € dom(f) :={x € X : f(x) < 400}, h € Y, and let f°(y, h) denote the
generalized directional derivative given by Rockafellar (cf. [6]), that is,

4+ tw) — f(z
f°(y,h) :=limlimsup inf [+ 1w) f(Z),
el0 weh+eBy t
z—=>y,t]0

where the expression z i> y means that z — y and f(z) — f(y). It is known that
f°(y, h) reduces to Clarke’s directional derivative when f is locally Lipschitz (cf. [6]).
Let

def={"eY": (" h) < f°(y.h) VheY}

Let A be a closed subset of Y and let N.(A, a) denote Clarke’s normal cone of A at a,
that is,

X A
Nq(A,a) = {géA(a) Z ;A

where §4 denotes the indicator function of A: §4(y) = 0if y € A and §4(y) = +0o0
otherwise. Fora € A, let T.(A, a) denote Clarke’s tangent cone, namely

T.(A,a) :={heY: dj(a, h)=0}
where d 4 (-) denotes the distance function to A. It is well known that fora € A,

Ne(A,a) = {y* e Y*: (y*,h) <0 forall h € To(A, a)}.
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The following result (cf. [6, P.52, Corollary]) presents an important necessary optimal-
ity condition in terms of Clarke’s subdiferentials and normal cones for a constrained
optimization problem.

Proposition 2.1. Let f : Y — R bealocally Lipschitz function and A be a closed subset
of Y. Suppose that f attains its minimum over Aata € A. Then( € o, f(a) + N (A, a).

Recall (cf. [18]) that the Frechet subdifferential of f at y € dom(f) is defined by

df(y) = {y* e v*+ liminf L2 = SO) — (y*, v —y) . 0} |
Y o =yl

Let ¢ > 0. The set of e-normals to A at a is defined by

* J—
Ne(A,a):={y*eY*: limsupM <
A ly —all
y~>a

where y A 4 means that y — a with y € A. The set No(A, a) is simply denoted by
N(A, a) and is called the Frechet normal cone to A at a. The limiting Frechet normal
cone to A at a is defined by

Nr(A,a) :={y*eY*: Jg, — 0T, y, A a, yn 2 y* with y) € Nsn(A, )l

The limiting Frechet subdifferential of a proper lower semicontinuous function f : ¥ —
R U {400} at y € dom(f) is defined by

Irf(y):={y*eY": (y",—1) € Nr(epi(f), (v, fF()HN)}.

Recall that a Banach space Y is called an Asplund space if every continuous convex
function defined on an open convex subset D of Y is Frechet differentiable at each point
of a dense G; subset of D. It is well known that Y is an Asplund space if and only if
every separable subspace of Y has a separable dual. The class of Asplund spaces is well
investigated in geometric theory of Banach spaces; see [21, 18] and references therein.
When Y is an Asplund space, it is well known that

Np(A,a) :={y* eY*: Iy, A a, yy il y* with y; € N(A, )} 2.1

and that N.(A, a) is the weak™ closed convex hull of Ng(A, a) (cf. [18]).
For ® : X — 2% a multifunction from another Banach space X to Y, let Gr(®)
denote the graph of @, that is,

Gr(®):={(x,y) e X xY: ye dx)}

We say that @ is closed if Gr(®) is a closed subsetof X x Y. Forx € X and y € ®(x),
let D*®(x,y) and D} ®(x,y) : Y* — 2X* respectively denote Frechet and limiting
coderivatives of @ at (x, y) in Mordukhovich’s sense, that is,

D*®(x, y)(y*) := {x* € X*: (x*, —y*) € N(Gr(®), (x, y))} for all y* € Y* (2.2)

and
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Dr®(x, )(*):={x" € X*: (x*, —y*) € Np(Gr(®), (x, y))} for all y* € YT (2.3)

Mimicking this definition, we employ Clarke’s normal cone to define another kind of
coderivative

DI®(x, y)(y*) :={x" € X*: (x*, —y*) € N(Gr(®), (x, y))} for all y* € Y*.

When @ is single-valued, we denote ﬁ*@(x, ®(x)), Dy ®(x, ®(x)) and D} P (x, P(x))
by D*® (x), D} ®(x) and D} ® (x), respectively. The following two lemmas dealing with
possibly non-convex sets in generalizing the Separation Theorem will be useful for us.
As remarked by one of the referees, it is strange that Lemma 2.1 below and the above
definition of the Clarke coderivative do not seem available in print before.

Lemma 2.1. Let A be a closed convex subset of Y with a nonempty interior and let B be
a closed (not necessarily convex) subset of Y. Suppose int(A) N B =W anda € AN B.
Then there exists a* € Y* with ||a*|| = 1 such that

a* € N.(B,a) and {(a*,a) =inf{{a*, x): x € A}.
Proof. Let ag € int(A) and P be the Minkowski functional of A — ag, namely
P(y):=inf{t >0:y ct(A —ap)} forall y e Y.
Then by well known results in functional analysis,
intf(A) —ap={yeY: P(y)<l}and A—ag={yeY: Py <1}
(cf. [22]). Therefore,
1 = P(a —ag) = inf{P(y —ao) +35(y) : y € Y}.
Noting that the Minkowski functional P is Lipschitz (because it is positively homoge-
neous, subadditive and continuous), it follows from Proposition 2.1 that 0 € dP(a —
ao)+ N¢(B, a). Noting that P is convex and P(0) < P(a—agp),onehas0 ¢ 0P (a—ap).
Hence there existr > Qanda™ € N.(B, a) with ||a*|| = 1 suchthat —ra* € 9 P(a—ap).
Thus,
(—ra*,y —a) < P(y —ap) — P(a—ap) <0 forally € A
and so (a*, a) = inf{{a*, y) : y € A}. This completes the proof. O
Lemma 2.2. Let A and B be closed subsets of Y with AN B = @. Leta € A, b € B
and ¢ > 0 be such that |la — b|| < d(A, B) + €%, where d(A, B) := inf{|lx — y]| :
x € A and y € B}. Then there exist a, € A, b € B, af € N.(A, ag) + ¢By+ and
b¥ € N.(B, bg) + € By= with ||la}|| = ||b}|| = 1 such that

af +bf =0 and |la; —al + |bs — b|| <.
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Proof. Define f : Y x Y — R U {400} by
Jx,y) i=8axp(x,y)+ llx —y| forall (x,y)e¥ xY.
Then inf{f(x,y): (x,y) € Y x Y} =d(A, B) and so, by assumption

f(a,b) <inf{f(x,y): (x,y) €Y x Y}+82.

Equipping Y x Y with the norm ||(x, y)|| = |lx|| + [|y]l, by the Ekeland Variational
Principle there exists (ag, be) € A x B such that
la —acll + 1b—bel < ¢ (2.4)
and
flag, be) < f(x,y) +elllx —acll + Iy —bel) Vx,y) €Y xY.
Letting

gx,y) = llx —yll +e(llx —aell + Iy — be|) for all (x,y) € ¥ x Y,

this implies that g(x, y) attains its minimum over A X B at (ag, b,). It follows from
Proposition 2.1 that

(0,0) € 9cg(ae, be) + Ne(A X B, (ae, be)). (2.5)

Let h(x,y) :=|lx —ylland T (x, y) = x — y for any (x, y) € Y x Y. It follows from
[6, Theorem 2.3.10] that 9k (ae, b)) = T*[3(]| - ||)(as — be)], where T* is the conjugate
operator of the bounded linear operator 7. Noting that T*(z*) = (z*, —z*) for any
z*eY* a; — b, #0(since AN B = and (a., b;) € A x B) and

Al ID(ae —be) = {z" € X* ¢ |Iz"[| = 1 and (2", @ — be) = llas — bell},
the subdifferential of the convex function A (x, y) at (a., b.) is equal to the set
D:={(Z" —z") e Y* x Y ||Z"| = land (z*, ac — be) = llae — e |}.
Hence
0cg(ags,by) C D+ eByx X €By=.

Since N.(A x B, (ag, b.)) = N.(A, a.) x N.(B, b,), it follows from (2.5) that there
exists z* € Y* with ||z*|| = 1 such that

(0,0) € (z%, —z") + €By* x €By+ + Nc(A, a;) x Ne(B, by).
Note then that
—z* € ¢Byx + N.(A, a;) and z* € eBy+ + N.(B, b,).

Together with (2.4), the lemma is established by letting a} = —z* and b} = z*. ]
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Remark. Suppose that AN B = (J and that (a, b) € A x B satisfiesd(A, B) = |la —b]||.
From the proof of Lemma 2.2, one can see that there exist a* € N (A, a) and b* €
N.(B, b) such that

a*+b*=0 and |la*| = |b*| = 1.

In contrast to Proposition 2.1, the following result (valid for Asplund spaces) is given
in terms of Frechet normal cones and subdifferentials; see [5] and references therein for
the detail.

Proposition 2.2. Let Y be an Asplund space and f : Y — R a locally Lipschitz func-
tion, and let A be a closed subset of Y. Suppose that f attains its minimum over A at
a € A. Then for any ¢ > 0O there exist a; € a + By andu, € AN (a + &€ By) such that

0 €df(as) + N(A, ug) + &By=.

Similar to the proof of Lemma 2.2 but applying Proposition 2.2 in place of Prop-
osition 2.1, we have the following result applicable to the case when Y is an Asplund
space.

Lemma 2.2'. Let Y, A,A B, a, band ¢ > 0 be asAin Lemma 2.2 then there exist
as € A, b, € B, af € N(A, ag) + 2eBy~ and b} € N(B, be) + 2¢ By~ with |la}| =
61| = 1 such that

al+ bl =0 and |la; —all + ||be — b|| < 2e.

Remark. Similar to Lemma 2.2, one can establish a result corresponding to Lemma 2.1
in the Asplund space setting. Since this is not needed for our further works here, we omit
the details.

Lemma 2.3. Let X, Y, Z be Asplund spaces, ® : X — 2Y be a closed multifunction
and ¢ : X — Z be a locally Lipschitz single-valued mapping. Let

(,9)(x) == {(y,p(x) €Y x Z: y € D(x)} forall x € X.
Then
Dp(®, 9)(x, (v, o) (", 2%) C DE@(x, )(y™) + Dy (x)(z") (2.6)
forany (x,y) € Gr(®) and (y*,z*) € Y* x Z*.

Proof. Let x* be any element in the set on the left-hand side of (2.6). Then there exist
sequences {(x;, y{, zg)} in X* x Y* x Z* and {(x¢, yx)} in Gr(®) such that

W5y W W5
Xk = X, k= Y, X=Xy =y > 2 2.7
and

xp € D*(®, ¢)(xk, i, @ (xi)) (¥, z¢) for any natural number .
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Hence for each k there exists §y > 0 such that for any (u, v) € Gr(®) with |lu — x¢| +
lv =yl < 3,

0 < —(xg,u —xp) + (¥, v — yi) + (2, @) — d(x))

1
e =xill + v = yill + ¢ () — ¢ [)-

Since ¢ is locally Lipschitz at x, by (2.7) we can assume without loss of generality that
there exists a constant L > 1 such that for any k and u € X with |lu — x| < &,

llu = xill + l¢ @) — @)l < Liju — xill.
Let us fix k and define f : X x Y — R by

Flu,v) = = (x5, u—xx) + (5, v —y) + (g ¢ () — b (xp))
L
+;(Ilu = xill + v =yl
for any (u,v) € X x Y. Then f(xk, yx) = 0 < f(u, v) for any (u, v) € Gr(P) with

lu — xk|l + llv — ykll < 6. It follows from [30, Theorem 2.12] that there exist uy € X
and (uy, vy) € Gr(®) such that

1
o — x|+l — xicll + v — yiell < min{,". &}

and

A A L+1
(0,0) € (=x, y)+3(zf 0 #) () x {0}+N(Gr(®P), (uy, vp)) + %(BX* X Byx).

Noting that é(ZZ o @) (ug) C b*(f)(uk)(z;), it follows that
* ok A * A ;o L+1
0,0) € (—x, y;) + D ¢ (up)(z) x {0} + N(Gr(P), (uy, vp)) + T(BX* X By+).

Letting k — oo and noting that sup{|lu*| : u* € b*q&(uk)(zZ)} < L|iz;ll, by (2.7) one
has

0,0) € (=x*, y™) + D¢ (x)(z¥) x {0} + Np(Gr(®), (x, y)),
that is,
x* € Do (x)(Z*) + DE®(x, y) (™).

This shows that (2.6) holds. |
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3. Fermat Rules for multifunctions in Banach spaces

In this section, we always assume that X and Y are Banach spaces. For convenience we
define the norm on X x Y by ||(x, y)|| = ||x]| + ||y]l. First we provide a fuzzy version
of Fermat Rule for multifunctions in a general setting.

Theorem 3.1. Let ® : X — 2Y be a closed multifunction and (%, ) be a local Pa-
reto solution of the vector optimization problem (1.1). Then for any ¢ > 0 there exist
Xe €X 4+ 6By, ye € ®(x) N (Y + eBy) and ¢* € CT with ||c*|| = 1 such that

0 € D ®(xg, ye)(c* + eByx) + e Bxx. (3.1)

Proof. We will prove the following equivalent form of the result: there exist a sequence
{(xn, yn)} in Gr(®) and a sequence {c}} in C* with |c}|| = 1 (for all n) such that
(xnv yl’l) - ()zs y) and

d((0, —=¢;), Ne(Gr(®), (xn, yu))) — 0. (3.2)
By assumption there exists § > O such that y € E(®(x + §By), C). Let
A:={(x,y) e Gr(®P): x € Xx +5Byx}

and take cp € C \ —C with ||cg|| = 1 (such an element exists because the ordering cone
C is pointed and non-trivial). For simplicity, let B, :=y — nlzco — C. We claim that for
all natural number n large enough,

AN[X x By] = 0. (3.3)

Indeed if this is not the case, then there exists y' € ®(Xx+8By) suchthat y’ <¢ y— nlzco,
contradicting y € E(®(x 4+ §By), C). Hence (3.3) holds. By Lemma 2.2 (applied to
a=(x,y)andb=(x,y — nlzco)), there exist

(Xn, yn) € A, (uy,vy) € X X By,

(57380 € NeCA, o 3)) + (B % By-) (3.4)
and
(uy,vy) € Ne(X X By, (n, vp)) + %(BX* X Byx)
with [|(ef, v = 1w}, vi)|| = 1 such that (x5, y) + (u);, vi) =0,

_ 1 I 1
1 Cens yn) — (5, W = — and [[(un, vp) — (X, y — —co)ll < —.
n n n

Then by the following well known relation on normal cones

Ne(X X By, (un, vy)) = {0} X Ne(By, vp) C {0} x C+,
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there exist r, € [1 — %, 1+ %] and ¢} € C* with |c}|| = 1 such that

* ok * 1
(U5 v,) € rn(0, ¢) + ;(BX* X By+),
namely
* * *k ]
—(x,, ¥,) €1a(0, ;) + ;(BX* X By+).
This and (3.4) imply that
0, —c,) € —(x,, y,) + —(Bx+ x Byx)
n nry
2
C NC(Av (xna )’n)) + _(BX* X BY*)
nry
2
= Nc(Gr(®), (xn, yn)) + nT(Bx* X Byx)
n

where the last equality holds because A = Gr(®)N((x+6Bx)xY)and (x+5Bx)xY isa
neighborhood of (x,, y,) (for n large enough). Thus (3.2) holds. The proof is completed.
O

The following example shows that ¢ > 0 in Theorem 3.1 cannot be replaced by
e=0.

Example 3.1. Let X be an infinite dimensional separable Banach space and {x,} be a
countable dense subset of X with each x,, # 0. Let D = {—m} and A be the closed
convex hull of DU —D. Then A is a compact subset of X and A = —A. Moreover, it is

easy to verify that
o
X = cl(span(A)) and span(A) = (_J nA, (3.5)
n=1

where span(A) denotes the linear subspace of X generated by A. By Baire Category
Theorem, it follows that X # span(A). Let ® : X — 2% be defined by ®(x) = {x} if
x € A and ®(x) = 0 otherwise. Then Gr(®) is a compact convex subset of X x X. Take
e € X \ span(A) and consider the ordering cone C defined by C := {re : t > 0}. By the
choice of e, it is easy to verify that (0, 0) is a global solution of the vector optimization
C -mi)r(l @ (x). We claim that

Xe

0 ¢ D*®(0,0)(y*) forall y* € X*\ {0}. (3.6)

Indeed let y* € X* satisty 0 € D}®(0, 0)(y*). By definition and convexity of ®, one
has that (y*, y) < 0 for all y € A. It follows from (3.5) that (y*,x) < Oforallx € X
and hence y* = 0. This shows that (3.6) holds.

Next we provide results showing that, in many interesting cases, one can indeed
take ¢ = 0 in (3.1). For each of Theorems 3.2, 3.3 and 3.4, we will make the following
blanket assumptions:
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Assumption 3.1. ® : X — 2Y is a closed multifunction.

Assumption 3.2. (x,y) € Gr(®) is a local Pareto solution of the vector optimization
problem (1.1).

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold. Suppose that the ordering cone C
in Y has a nonempty interior. Then there exists ¢* € CT with ||c*|| = 1 such that
0e Did(x, y)(c*).

Proof. Take § > Osuchthaty € E(®(x + §By), C). Letting
A:=Gr(®)N((x+8Bx) x7Y),

it follows that ANint(X x (y —C)) = . By Lemma 2.1 there exists (x*, y*) € X* x Y*
with || (x*, y*)|| = 1 such that —(x*, y*) € N.(A, (X, ¥)) and

(@ X) 4+ (v 9y = suplia®, x) + (7, y) () € X x (5 — O}
It follows that x* = 0 and y* € C*. Moreover
(0, =y") € Ne(A, (X, 7)) = Ne(Gr(®), (%, y)).
This shows that 0 € D} ®(x, y)(y*). Thus one can take c* := y*. O

Remark. In the case when int(C) # (¥, many authors consider, in addition to Pareto
solution, weak Pareto solutions of (1.1). Let A be a subset of Y. Recall that a € A
is called a weak Pareto efficient point of A if A N (a — int(C)) = @. Let WE(A, C)
denote the set of all weak Pareto efficient points of A. We say that (x, ¥) € Gr(®) is
a local weak Pareto solution of (1.1) if there exists a neighborhoond U of x such that
y € WE(®(U), C). From the proof of Theorems 3.1 and 3.2 (taking cg € int(C) in the
proof of Theorem 3.1), one sees that if int(C) # ¥ and (x, y) is a local weak Pareto
solution of (1.1) then there exists ¢* € C* with ||c*|| = 1 such that0 € D¥®(x, y)(c*).
Thus Theorem 3.2 remains true if Assumption 3.2 is replaced by:

Assumption 3.2*, int(C) # @, and (x,y) € Gr(®) is a local weak Pareto solution of
(1.1).

For a subset K of Y, let
W(K) :={y* e Y™ i [ly"]| <sup{(y",y): y € K}}.
If ¢ € int(C) then ¢ + § By C C for some § > 0; thus, for any ¢* € CT,
0 <inf{(c*,x): x € c+ 8By} = (c*, c) — 8| c*|
and so [c*| < (c*, §). Therefore,
c eint(C) = CT c W({rc}) for some r > 0

(recalling that C™ is called a Bishop-Phelps cone if there exists a singleton K such that
C*T Cc W(K), and so int(C) # ¥ = C™ is a Bishop-Phelps cone). Thus the following
concept extends the condition that int(C) # ¢.
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Definition 3.1. A closed convex cone C C Y is said to be dually compact if there exists
a compact subset K of Y such that

Ct c W(K). (3.7)
There are two important types of cones C in Y satisfying this property:

(a) Y is finite dimensional (because one can then take K = By).
(b) int(C) # 4.
Recall that a set A in Y* is a weakly (resp. weak™) locally compact if every point
of A lies in a weakly (resp. weak™® ) open set V such that vV'naA (resp. VY NnA)is

weakly (resp. weak™) compact (cf. [15]), where v” (resp. Vw*) denotes the closure of
V with respect to the weak (resp. weak™) topology of Y*. Loewen [15] proved that if Y
is reflexive and K is a compact subset of ¥ then WW(K) is weakly locally compact ([15,
Proposition 3.5]). Since a set in a reflexive Banach space is weakly compact if and only
if it is bounded and weakly closed, the implication (i)=>(iii) of the following proposition
for the reflexive case implies the result of Loewen.

Proposition 3.1. Let C be a closed convex cone in a Banach space Y . Then the following
properties are equivalent.

(i) C is dually compact.
(ii) There exists a weak* open set V containing 0 such that V N C* is bounded.
(iii) C* is weak™ locally compact.

Proof. (1)=-(iii). By (i) there exists a compact subset K of Y such that (3.7) holds. By

m

compactness of K there exist yi, - -+ , y, € K suchthat K C |J (y;i + %By). Therefore,
i=1

for any z* € C™, (3.7) implies that

m
1
¥l < max{(z*,y) : y € _U1<yl- + 5 B1)
1=
* . I
= max{{z" yi) s i =1 m)+ 7).
Hence
I*Il < 2max{{z*, y;) : i =1,---,m} forall z* € C*. (3.8)

Let V:={y*eY*: (y*,yi)<1,i=1,---,n}. Then, forany c* € CT,c* + Visa
weak™ open set containing ¢* and

AV =y eyt Ly <1, i=1,---,n}.
It follows from (3.8) that for any z* € ¢* + v nct,
2l < 2max{(c*,y;): i=1,---,n}+2.

Therefore, c* + V"Nt is weak* compact (because it is weak™® closed and bounded).
This shows that (iii) holds.
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(iii) =(ii) is trivial.
(i) =(). By (ii) there exists a weak™ open set V containing O and a constant M > 0

such that
ly*|l <M forall y* e VNCt.
Take z1, -+, zy € Y such that
VD{y*EY* (y*’zl>§171:17 7n}
Let z* € Ct and r := max{(z*,z;) : i = 1,---,n}. In the case when r < 0,

tz* € VN CT and hence t||z*|| < M for any ¢ > 0. This implies that z* = 0. In the
case when r > 0, < € V. N C" and hence

”Z*” S maX{(Z*, MZi) : l = ]1 e sn}'
This shows that (3.7) holds with K = {Mzy, --- , Mz,}. The proof is completed. m]

Remark. Tt is known (cf. [13, Theorem 3.8.6]) that the ordering cone C has a nonempty
interior if and only if C* has a weak*-compact base (i.e., there exists a weak*-compact
convex set ® suchthat0) ¢ ® and C = {tf : 6 € ® and ¢ > 0}). Therefore,

C has a weak*-compact base = C™ is weak™® locally compact.

In general, the converse implication is not true. For example, let ¥ = R? and C =
{0} x R,. Clearly, C™" is weak* locally compact, but C* = R x R, has no weak*-com-
pact base. However, under the condition that C™T is pointed, the converse implication
is true (cf [8, Theorem 3]). Song [23] gave some interesting equivalence results for a
number of classes of cones used in vector optimization.

By (3.8), one has that if C is dually compact then

v % 0 < y* — 0 for any (generalized) sequence {y} in C*. (3.9

Let A be a closed subset of Y. Recall that A is said to be epi-Lipschizian at a (cf.

[3]) if there exist a neighborhood V of a, a nonempty open set U and A > 0 such that

ANV 40, VU C A.

In this case, any non-zero vector in U is said to be hypertangent to A at a. We say that
A is epi-Lipschitz-like at a (cf. [3, 14]) if there exist A > 0, a neighborhood V of a and
a convex set S with its polar S° being weak™ locally compact such that

ANV +(0, M)SC A.

Mimicking Mordukhovich’s idea in defining partially sequentially normal compact-
ness (cf. [17-19]) by virtue of the coderivative D*®, we employ the Clarke coderivative
D} to define that the multifunction @ is partially sequentially normal compact at (X, y)
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with respect to D} ® if following implication holds for any (generalized) sequence
{Gens yns X, Yy}

x¥ € DED (X, ya) (), (ns yn) = (£, 3), xF — 0 and y' 5> 0=y — 0.

Using similar arguments as in [17-19] , one can show that the above implication holds
if Gr(®) is epi-Lipschitz-like at (x, y).
We say that N.(A, -) is closed at a € A if for (generalized) sequences

.
an — a, a; € Ne(A, ap), a; L a* = a* € N.(A, q)

(cf. [6, P.58, Corollary]). It is well known that N.(A, -) is closed at every point of A if A
is convex. It is easy to verify that N.(A, -) is also closed at a if a is a smooth boundary
point of A in the sense that there exist a neighborhood V of @ and a continuously Frechet
differentiable function f such that f'(a) #0and VNA =V N{x € X: f(x) <0}.

Theorem 3.3. Let Assumptions 3.1 and 3.2 hold. Suppose that N.(Gr(D), -) is closed
at (x, y) (this condition is automatically satisfied if ® is assumed to be a closed convex
multifunction). Further suppose that one of the following two conditions holds.

(i) The ordering cone C in'Y is dually compact.
(ii) @ is partially sequentially normal compact at (X, y) with respect to D ®. Then
there exists c* € CT with ||c*|| = 1 such that 0 € D¥*®(x, y)(c*).

Proof. By Theorem 3.1 there exists a sequence (x,, yu, X, ¥, c;;) with each (x,,, y,) €
Gr(®), ¢ € CT, ¢kl = 1 and x}f € D¥®(xp, y,)(y}) such that

(Xn, yn) = (X, %), x, > 0 and |y, —c;| = 0.

Since the unit ball of Y* is weak™ compact, without loss of generality we can assume

that ¢y ﬂi ¢y € C* (and hence y; g cy)- Since N (Gr(®), -) is closed at (¥, y),
0 € DID(x, y)(cp)- (3.10)

Thus the proof will be completed provided that ¢ # 0. This is certainly the case if (ii)

holds because ||y — 1 and y; ﬁ c;- Next suppose that (i) holds. Then, we must also
have ¢jj # 0, in view of (3.9). The proof is completed. O

Recall (cf. [6, P.58, Corollary]) that if a closed set A is epi-Lipschitzian at a then
N:(A, ) isclosed at a € A. The following corollary is a consequence of Theorem 3.3
((ii) is automatically satisfied thanks to the epi-Lipschitz assumption).

Corollary 3.1. Let Assumptions 3.1 and 3.2 hold. Suppose that Gr(®) is epi-Lipschitz-
ian at (X, y). Then there exists c* € Ct with ||c*|| = 1 such that 0 € D*®(x, y)(c*).
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4. Asplund space setting

Throughout this section, let X and Y denote Asplund spaces (thus X x Y is also an
Asplund space). In this setting Theorems 3.1, 3.2 and 3.3 can be strengthened to fol-
lowing Theorems 4.1 and 4.2 in which D} is replaced by the Mordukhovich derivative
D} (recall that N(A, a) C Nr(A,a) and N.(A, a) is the weak™*-closed convex hull of
Nr (A, a)). The proofs are the same as before but use Lemma 2.2’ in place of Lemma 2.2.

Theorem 4.1. Let X and Y be Asplund spaces and ® : X — 2¥ be a closed multifunc-
tion. Suppose that (x, y) is a local Pareto solution of (1.1). Then for any ¢ > 0 there
exist xo € X + €By, y. € ®(xg) N (¥ + eBy) and c* € CT with ||c*|| = 1 such that

0 € D*®(xe, ye)(c* + £By+) + & Bx-
(where the notion D* is defined by (2.2)).

Remark. From the proof of Theorem 3.1, one sees that if (x, y) is a local Pareto solution
of (1.1) then it is a local extremal point of the system {Gr(®), y—C} (cf. [18]). Thus one
can also prove Theorem 4.1 by using the extremal principle (cf. [14]) instead of Lemma
2.2'. Lemma 2.2 in general implies the extremal principle but clearly its converse is not
true.

Following Mordukhovich and Shao [18, 19], we say that the multifunction ® is par-
tially sequentially normally compact with respectto Y at (x, y) € Gr(®) if any sequence
(xnv yl’H -x;’zv y:) SatiSfying )C;,r € D}k:'q)(xnv }’n)()’:), (xnv yl’l) - (xa )’), ”X;,:” g O and

vy %, 0asn — oo contains a subsequence with ||y,’;k | > 0ask — oo.
Theorem 4.2. Let X and Y be Asplund spaces. Suppose that Assumptions 3.1 and 3.2

hold. Then there exists c* € Ct with ||c*|| = 1 such that 0 € D} ® (%, y)(c*) provided
that one of the following conditions is satisfied.

(a) D is partially sequentially normally compact with respect to Y at (X, y).
(b) The ordering cone C is dually compact.
(c) int(C) # D or Y is finite dimensional.

Proof. Since (c)==(b), we need only to deal with (a) and (b). By Theorem 4.1 there
exists a sequence (x,, yu, X,:, ¥) such that

-x;lk € D*Cp(xna Yn)(}’:;)a ”y:” = 1’ (xn’ y}’l) - ()Eﬂ )_})a “x;':” - 0 and d(y;rv C+) - 0

Without loss of generality we can assume that y,’ 5 ¢ € Ct. It follows from (2.1) that
0 € Dy ®(x, y)(cy). It remains to show that ¢ # 0. However this can be done exactly
as in the proof of Theorem 3.3. O

Let 2 be a closed subset of X and consider the following constrained vector optimi-
zation problem.

C —;réisrle(x). 4.1)
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We say that (x, y) is a local solution of (4.1) if there exists a neighborhood U of x such
that y € E(® (U N Q), C). With ® defined by (1.2), we note that X is a local minimum
point of f on € if and only if (x, f(x)) is a local solution of (4.1). Recall [5] that if
f X — Risassumed to be locally Lipschitz then the following Fermat’s rule is valid:

f attains a local mimimum at x over 2 = 0 € df f(x) + Np (22, X).

Thus it is reasonable for us to make a similar provision (of local Lipschitz property) in
our multifunction setting. Recall [1] that a multifunction ® : X — 2% is said to have
the Aubin property (or pseudo-Lipschitzian property) at x for y € ®(x) if there exist a
constant [ > 0, neighborhoods U of x and V of y such that

Px)NV C &) +1||x —u||By forany x,u € U.

We shall need the following known result (cf. [17, Theorem 3.2]).

Proposition 4.1. Let ® : X — 2Y be a closed multifunction with the Aubin property at
x € X fory € ®(x). Then there exist L, § > 0 such that

sup{[lx*[| : x* € D*®(x, »)(y*)} < LIIy*|
for any (x,y) € Gr(®) N (B(x,d) x B(y,8)) and any y* € Y*.

In the remainder of this section, we always assume that X, Y, Z are Asplund spaces,
Qisaclosed subset of X, ® : X — 2Y isaclosed multifunction with the Aubin property,
and that ¢ : X — Z is a locally Lipschitz single-valued mapping. Let Cz be a closed
convex cone in Z and let <c, denote the preorder induced by Cz. Next consider the
following vector optimization problem with more general constraint:

C — min ®(x) 4.2)

$(x) <c, 0
x € Q.

We say that (x, y) is a local Pareto solution of (4.2) if x € 2, ¢(x) <c, 0 and there
exists a neighborhood U of x such that y € E(®(U N Q2N ¢_1(—Cz)), O).

Theorem 4.3. Let (x, y) be a local Pareto solution of the constrained vector optimiza-
tion problem (4.2). Suppose that both C and Cz are dually compact. Then there exist
c*eCtandch e Cg with ||c*|| + |Ic% || = 1 such that

0 € Dy (X, y)(c*) + Dp¢p(X)(cy) + Nrp(2, X). 4.3)
Proof. By assumption there exists § > 0 such that
y e E(@[x+8Bx)NQNg 1 (=C2)], O). (4.4)
Let

A={x,y,0(x)) e X xY xZ: yed(x) and x € x + 6By}
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and take cg € C with ||co|| = 1. For all natural number n large enough, let

1
Bu:=Qx (y— 700 = C) x (9(x) = C2).

Then A N B, = . Indeed, if this is not the case then there exist x’ € X + § Bx and
y € ®(x')suchthatx’ € Q,y <y — nizco and ¢ (x") <¢, ¢(X) <c, 0. This contra-
dicts (4.4). By Lemma 2.2’ (applied toa = (x, y, ¢ (X)) and b = (k, y — nlzco, ¢ (x))),

. * * * * * * .
there exists a sequence (X, Yn, X, Yy Zns Un, Un, Wy, Uy, Ui, wyy) with each

(xnv Yn, d’(xn)) €A, (un’ Un, wn) [S Bn’
ok, vk, 25 € N(A, (s Yns @ (X)) 4.5)

and
uy, v, wh) € N(an (Un, vp, wy)) (4.6)

such that

1
Jim (1 Cens s @ 06n)) = & 52 @D+ 11 Gns v wn) = (5,5 = —5c0. ()N =0,

Tim G vzl = lim G v, will = 1 4.7)
and
Tim |Gy i 2 + G vy )l = 0, (4.8)

By (4.6) and (4.7), and making use of the following well-known relation

. . ~ 1 N
N (Bu, (up, v, wp)) = N(8,up) X N(y — U C,vn) X N(¢(x) = Cz, wy)
C N(Q,up) x CT x C},

we can assume without loss of generality that

(uk, v¥, wh “ (u*, ¢*, &) e Np(Q,%) x CT x C3. 4.9)

ns Uns
Noting that A = Gr(®, ¢) N[(x +3Bx) X ¥ x Z] and since (x +5Bx) x ¥ x Zisa
neighborhood of (x,, y,, ¢ (x,)) (for all large enough n), (4.5) can be rewritten as

(xF, vE, 28 € N(Gr(@, ¢), (Xn, yu, ¢ (x0)),

that is,

Xy € D*(®@, ) (X, Y, (X)) (s, =20 (4.10)

It follows from (4.8) and (4.9) that that

* *
x W * x W
xn—>—u,yn—>—c
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and
This and Lemma 2.3 imply that
—u* € Dp®(X, y)(C) + D¢ (X)(¢).

Thus (4.3) holds with ¢* = i provided that (¢*, ¢%) #

ok
and ¢& = ~*C—Z~*
zZ = TEE

R S
le*l+lc

(0, 0). Suppose for contradiction that ¢* = 0 and ¢ = 0. Then v}, % 0and w* 5 0.
It follows from the dual compactness of C and Cz that

vpll = 0 and [w,| — O. 4.11)

But on the other hand, since ® and ¢ have respectively the Aubin property and local
Lipschitz property at (x, y) and x, one can apply Proposition 4.1 and (4.10) to conclude
that there exists a constant L > 0 such that ||x || < L(||y;5|| + |lz};|]) for all large enough
n. It follows from (4.7) that there exists » > 0 such that 2r < |ly;|| + ||z} | for all large
enough n. Therefore, by (4.8), r < ||v;|| 4 [[w}| for all large enough n. This contradicts
(4.11). The proof is completed. O

Setting ¢ (x) := Oforallx € X, the following corollary is an immediate consequence
of Theorem 4.3.

Corollary 4.1. Let (x, ¥) be a local Pareto solution of the constrained vector optimiza-
tion problem (4.1). Suppose that C is dually compact. Then there exists c* € C with
lIc*|l = 1 such that

0 € DED(E, §)(c*) + Np(Q, ¥). 4.12)

Remark. Inthe case when @ is a Lipschitz single-valued mapping and Y is finite dimen-
sional, by [18, Theorem 5.7] one has that

Dy ®(x)(y*) = dp(y* o ®)(x) for any y* € Y™, (4.13)
and hence (4.12) is reduced to
0€dp(c* o ®)(X) + Np(R2, X).

Recall that a Lipschitz single-valued mapping ¢ is strictly differentiable at x with
a strict derivative ¢’(x), a bounded linear operator from X to Y, provided that for each
helX,

T ¢(z+1th) —¢(2)
m —
z—x t]0 t

= ¢'(x)(h).

Itis known that D¢ (x) (y*) = (¢(x))*(y*) forall y* € Y*if ¢ is strictly differentiable
at x, where (¢’(x))* denotes the conjugate operator of ¢’(x) (cf. [19, Theorem 3.5]).
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Thus, in the the case when the objective function @ in (4.1) is a Lipschitz single-valued
mapping ¢ which is strictly differentiable at x, (4.12) is the same as

0 € (¢'(X)*(c*) + Np(2, X).
Let Z := R"™™, Cz := R} x {0,,} and ¢ : X — Z be defined by
d(x) = (81(x), -+, gn(x), h1(x), -+, hp(x)) forall x € X,

where 0,, is the zero element of R™ and g;, h; : X — R are locally Lipschitz functions
@i=1,---,nand j =1,---,m). Thus (4.2) is reduced to the following problem:

C — min ®(x) (4.14)
gl(x)foa i=15“'an
hi(x)=0, j=1,-.m

x e
Corollary 4.2. Let (x, y) be a local Pareto solution of (4.14). Suppose that C is dually
compact. Then there existc* € Ct,A; e Ry (i=1,--- ,nJandp; € R(j=1,---,m)
such that

(i) 0€ DE®(x, y)(c*) + i AidFgi(x) + i Or(ujhj)(x) + Np (82, %),
i=1 j=1

(ii) rigi(x)=0 (G =1,---,n),
n m

(iii) Nc*ll+ > A+ > Injl =1L
j=1

i=1
Proof Letl:={l1<i<n: g =0}, Z:= R and Cz := R x {0,,}. Let
d(x) = ((gi(xX)ier, h1(x), -+, hyu(x)) for all x € X. By assumption, it is clear that
(x, y) is a local Pareto solution of the following problem:

C — min ®(x)
$(x) <c, 0
x e
By Theorem 4.3 there exist ¢* € CT, A € Ry € Dandu; € R(j =1,---,m)
such that ||c*|| + > A; + i lwjl =1 and

iel j=1
0 € D*®(x, y)(c*) + Do () ((Midier, 11, -+ » m)) + NF(Q, X).

It follows from (4.13) and [18, Corollary 4.3] that (i), (ii) and (iii) hold with A; = 0 if
idgl. O

Remark. In the special case when Y = R, C = Rﬁ and & is a Lipschitz single-valued
mapping, (4.14) is reduced to the multiobjective program problem studied by Minami
in [16]; noting that dp(u;h;)(X) C d:.(ujh;)(x) = w;d:h;(x), (i), (i) and (iii) in
Corollary 4.2 respectively imply (a), (b) and (c) in [16, Theorem 3.1] (but, on the other
hand, the said result in [16] is applicable to a general Banach space).

In the case when X is a reflexive Banach space, Y = R, C = R4 and ® is a sin-
gle-valued Lipschitz function, Corollary 4.2 implies [4, Corollary 2.5]; if, in addition,
Q = X then Corollary 4.1 implies [4, Corollary 2.3].
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5. Necessary conditions for Pareto efficient points

Throughout this section, we assume that A is a closed subset of a Banach space Y. We
shall consider necessary conditions for a € A to be a Pareto efficient point of A with
respect to the ordering cone C. Let ®4 : ¥ — 2Y be defined by ®4(x) = {x}ifx € A
and ® 4 (x) = ¥ otherwise. Thus Gr(®4) = {(x, x) : x € A}. Itis also clear that

a € E(A,C) < (a,a) is a solution of vector optimization problem C — I)’Cl’lel{/l Da(x).
5.1
Lemma 5.1. Let Y be a Banach space and a € A. Then
Di®a(a,a)(y*) = y" + Nc.(A,a) forall y* € Y*. 5.2)

Proof. Let T.(Gr(®4), (a,a)) and T, (A, a) denote respectively Clarke’s tangent cones
of Gr(® 4) at (a, a) and of A ata.Recall [6, Theorem 2.4.5] that (i, v) € To(Gr(®D4), (a, a))
if and only if for every sequence {(x,, y,)}in Gr(®4) converging to (a, a) and sequence
{t,} in (0, 400) decreasing to O there exists a sequence {(u,, v,)} in ¥ x Y converging

to (u, v) such that (x,, y,) + t, (i, v) € Gr(P 4) for every natural number n. This and
the definition of ® 4 imply that (u, v) € T.(Gr(®,), (a, a)) if and only if u = v and
for every sequence {a,} in A converging to a and sequence {t,} in (0, +o00) decreasing

to O there exists a sequence {v,} in Y converging to v such that a, + t,v, € A. Thus
T.(Gr(®y), (a,a)) ={(v,v) : ve T, (A, a)}. Noting that

x* e Didaa,a)(y") & (x* u) — (y*,v) <0 V(u,v) € T(Gr(Pa), (a, a)),
it follows that
x* e DI®s(a,a)(y") & (x*,v) — (y*,v) <0 VveT.(A, a)
& x*—y* e N.(A,a).

This shows that (5.2) holds. |
Lemma 5.2. Let Y be an Asplund space and a € A. Then

D ®4(a,a)(y*) = y* + Nr(A,a) forall y* € Y™. (5.3)
Proof. Let x be an arbitrary point in A. Note that
(x*,u—x)+ (y*,v—2x) -

(@*,y) € N(Gr(®4), (x,x)) & limsup
Gr(® 4) lw — x| + llv — x|
(u,v) — (x,x)

* _ * _
<:>limsup<x V=X + 0% v x)

A v — x|
vV—>X

& x* +y* € N(A, x),

<0

that is,
N(Gr(®a), (x, ) = {(x*,y*) : x*+y* € N(A,x)).
Since Y is an Asplund space, it follows from (2.1) that (5.3) holds. |
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We shall apply results in Section 3 to the multifunction ®4 and thereby provide
necessary conditions for a to be a Pareto efficient point of a set A.

Theorem 5.1. Let Y be a Banach space and a € E(A, C). Then for any ¢ > 0 there
exista, € AN B(a, ¢) and a¥ € C* with |la¥| = 1 such that

—a} € Nc(A, ag) + €By+.

Proof. By (5.1) and Theorem 3.1 there exist a, € B(a, ¢) and ¢* € C* with ||c*|| = 1
such that

& &
0e quDA(az% ag)(c* + EBY*) + EBY*-

It follows from (5.2) that 0 € N.(A, a.) + ¢* + ¢ By+. Thus, the theorem is established
by setting a; = c*. O

Using Theorems 3.2-3.4 instead of Theorem 3.1 in the above proof, we can show
similarly the following results.

Theorem 5.2. Let Y be a Banach space and a € E(A, C). Suppose that one of the
following conditions is satisfied.

(a) C has a nonempty interior.

(b) C is dually compact and N.(A, -) is closed at a.

(c) There exists a vector in Y hypertangent to A at a € A. Then there exists c* € CT
with ||c*|| = 1 such that —c* € N.(A, a).

If Y is assumed to be an Asplund space, then the preceding two theorems can be
strengthened to following theorems 5.3 and 5.4 where N (A,)or Np(A, ) is used in
place of N (A, -). The proofs are similar as before but one applies (5.3) and results in
Section 4 in place of (5.2) and results in Section 3.

Theorem 5.3. Let Y be an Asplund space and a € E(A, C). Then for any ¢ > 0 there
exista, € AN B(a, ¢) and a¥ € C* with ||a¥| = 1 such that

—ay e N(A, a;) + eBy~.

Recall [17, 18] that A is said to be sequentially normally compact at a € A if any

sequence (x,, x;1) satisfying x € Np(A, x,,), x, — a and x} Y5 0 contains a subse-
quence with |lx; || — 0. It is easy to verify that ® 4 is partially sequentially normally
compact at (a, a) with respect to Y if A is sequentially normally compact at a.

Theorem 5.4. Let Y be an Asplund space and a € E(A, C). Suppose that one of the
following conditions is satisfied.

(a) C be dually compact.
(b) A is sequentially normally compact at a. Then there exists ¢* € Ct with ||c*|| = 1
such that —c* € N.(A, a).
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