THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 4050 Real Analysis

Tutorial 4 (March 15)

The following were discussed in the tutorial this week.

Definition 1 (Vitali Cover). Let $E \subseteq \mathbb{R}$. A collection \mathcal{U} of nondegenerate intervals is said to be a Vitali cover of E if

$$\forall x \in E, \ \forall \varepsilon > 0, \ \exists I \in \mathcal{U} \text{ such that } x \in I \text{ and } \ell(I) < \varepsilon,$$

i.e. $\forall x \in E$, $\inf\{\ell(I) : x \in I \in \mathcal{U}\} = 0$.

Remark. If \mathcal{U} is a Vitali cover of E and G is an open set, then $\mathcal{V} := \{I \in \mathcal{U} : I \subseteq G\}$ is a Vitali cover of $E \cap G$.

Lemma 1 (Vitali Covering Lemma). Let $m^*(E) < \infty$. Let \mathcal{U} be a Vitali cover of E. Then $\forall \gamma > 0, \exists$ disjoint $\{I_1, \ldots, I_N\} \subseteq \mathcal{U}$ such that

$$m^*\left(E\setminus\bigcup_{n=1}^N I_n\right)<\gamma.$$

Remark. 1. E need not be measurable.

- 2. This version of Vitali lemma does not hold when $m^*(E) = \infty$.
- 3. In the proof, we actually find a countable disjoint subcollection $\{I_n\}_{n=1}^{\infty} \subseteq \mathcal{U}$ such that for some $N \in \mathbb{N}$,

$$E \subseteq \bigcup_{n=1}^{N} I_n \cup \bigcup_{n=N+1}^{\infty} \widehat{I}_n,$$

where \widehat{I}_n is the interval whose centre is the same as that of I_n and $\ell(\widehat{I}_n) = 5\ell(I_n)$, and

$$\sum_{n=N+1}^{\infty} m^*(I_n) < \gamma$$

Using the Vitali lemma, we readily deduce the following.

Theorem 2 (Vitali Covering Theorem). Let $m^*(E) < \infty$. Let \mathcal{U} be a Vitali cover of E. Then there exists a countable disjoint subcollection $\{I_n\}_{n=1}^{\infty} \subseteq \mathcal{U}$ such that

$$m^*\left(E\setminus\bigcup_{n=1}^{\infty}I_n\right)=0$$

Remark. The assumption " $m^*(E) < +\infty$ " can be dropped.

Exercise 1. Let E be a (not necessarily countable) union of nondegenerate intervals (open, closed, half open and half closed, infinite, etc). Show that E is measurable.

Exercise 2. Let $E \subseteq \mathbb{R}$, and let $f : E \to \mathbb{R}$ be a function (not necessarily measurable). For $\alpha > 0$, define

$$E_{\alpha} = \{ x \in E : f'(x) \text{ exists and } |f'(x)| < \alpha \}.$$

Show that $m^*(f(E_\alpha)) \leq \alpha m^*(E_\alpha)$.