THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 4050 Real Analysis

Tutorial 3 (March 8)

The following were discussed in the tutorial this week.

- 1. (a) Fatou's Lemma.
 - (b) The inequality can be strict.
 - (c) Nonnegativity of the sequence of functions cannot be dropped.
 - (d) Generalization: Let $\langle f_n \rangle$ be a sequence of nonnegative measurable functions on E. Then

$$\int_E \liminf_n f_n \le \liminf_n \int_E f_n.$$

- 2. (a) Monotone Convergence Theorem.
 - (b) It need not hold for negative or decreasing sequence of functions.
 - (c) It is true for decreasing sequence if we further assume that $\int f_1 < +\infty$.
- 3. Let f be a nonnegative integrable function on \mathbb{R} . Show that the function F defined by

$$F(x) = \int_{-\infty}^{x} f$$

is continuous.

- 4. Let f be an integrable function on [0,1]. Show that there exists $c \in [0,1]$ such that $\int_0^c f = \int_c^1 f$.
- 5. (a) Lebesgue's Dominated Convergence Theorem
 - (b) The domination condition cannot be dropped.
- 6. The improper Riemann integral of a function may exists without the function being integrable (in the sense of Lebesgue), e.g., $f(x) = \frac{\sin x}{x}$ on $[0, \infty)$. If f is Riemann integrable on [0, N] for all $N \in \mathbb{N}$ and is (Lebesgue) integrable on $[0, \infty)$, then its improper Riemann integral is equal to its Lebesgue integral.

7. Evaluate
$$\lim_{n \to \infty} \int_0^\infty n^2 e^{-nx} \tan^{-1} x \, dx.$$