THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 4050 Real Analysis

Tutorial 2 (March 1)

The following were discussed in the tutorial this week.

- 1. In the following discussion, let $E \subseteq \mathbb{R}$ be a measurable set and let f_n, f be measurable functions on E.
- 2. Consider the following modes of convergence:
 - (I) We say that $f_n \to f$ pointwise almost everywhere if there exists $A \subseteq E$ such that $m(E \setminus A) = 0$ and $f_n(x) \to f(x)$ for all $x \in A$.
 - (II) We say that $f_n \to f$ in measure if for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, we have $m(\{x \in E : |f_n(x) f(x)| \ge \varepsilon\}) < \varepsilon$.
 - (III) We say that $f_n \to f$ in L^1 if $||f_n f||_1 \to 0$, where $||g||_1 := \int_E |g|$.
- 3. (II) is equivalent to any of the following conditions:
 - (i) For any $\varepsilon, \eta > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, we have $m(\{x \in E : |f_n(x) f(x)| \ge \varepsilon\}) < \eta$.
 - (ii) For any $\varepsilon > 0$, $\lim_{n} m(\{x \in E : |f_n(x) f(x)| \ge \varepsilon\}) = 0.$
- 4. The three modes of convergence do not imply the other, except that (III) \implies (II).
- 5. If $f_n \to f$ in measure, then (f_n) has a subsequence (f_{n_k}) such that $f_{n_k} \to f$ almost everywhere.
- 6. Suppose that $m(E) < \infty$. If $f_n \to f$ almost everywhere, then $f_n \to f$ in measure.
- 7. (I) \implies (III) and (II) \implies (III) if (f_n) is "dominated" by an integrable function:

(Lebesgue Convergence Theorem or Dominated Convergence Theorem)

Suppose g is an integrable function on E such that $|f_n| \leq g$ on E. If $f_n \to f$ almost everywhere (or in measure), then $f_n \to f$ in L^1 .

8. Even though the three modes of convergence are different, they are compatible in the following sense:

If $f_n \to f$ along one mode of convergence, and $f_n \to g$ along another mode of convergence at the same time, then f = g almost everywhere.