THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 4050 Real Analysis Tutorial 1 (February 1)

The following were discussed in the tutorial this week.

- 1. Recall the definition of outer measure m^* and its properties.
- 2. Recall the Carathéodory's criterion, measurable sets and Lebesgue measure m.
- 3. Recall the existence of a non-measurable set.
- 4. (Monotone Convergence Lemma for Measures) Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of measure sets.
 - (a) If $E_n \uparrow E$ (i.e. $E = \bigcup_{n \in \mathbb{N}} E_n$ and $E_n \subseteq E_{n+1} \forall n$), then $m(E_n) \uparrow m(E)$.
 - (b) Suppose $m(E_{n_0}) < +\infty$ for some n_0 . If $E_n \downarrow E$ (i.e. $E = \bigcap_{n \in \mathbb{N}} E_n$ and $E_n \supseteq E_{n+1} \forall n$), then $m(E_n) \downarrow m(E)$.
 - (c) Can we drop the extra assumption in (b)?
- 5. Give an example of a sequence of set $\{E_n\}_{n=1}^{\infty}$ such that $m^*(E_1) < +\infty, E_n \downarrow E$ but $m^*(E) < \lim_n m^*(E_n)$.
- 6. Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of set such that $E_n \uparrow E$. Show that $\lim_n m^*(E_n) = m^*(E)$.