Suggested Solution of Assignment 3

1. Show that inf $X \ge \inf Y$ whenever $X \subseteq Y \subseteq \mathbb{R}$ and hence that $m^*(A) \uparrow$ (i.e. $m^*(A) \le m^*(B)$ if $A \subseteq B \subseteq \mathbb{R}$).

Solution. Let $x \in X$. Then $x \in Y$, and hence by the definition of infimum, $x \ge \inf Y$. Since $x \in X$ is arbitrary, we have $\inf X \ge \inf Y$. The last statement follows immediately from the definition

$$m^*(A) := \inf\{\sum_{k=1}^{\infty} \ell(I_k) : \{I_k\}_{k=1}^{\infty} \text{ is a countable open-interval cover of } A\},$$

and the fact that if $A \subseteq B \subseteq \mathbb{R}$, then any countable interval cover of B is also a countable interval cover of A.

2. Let \mathcal{A} be an algebra of subsets of X. Show that \mathcal{A} is a σ -algebra if (and only if) \mathcal{A} is stable with respect to countable disjoint unions:

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \text{ whenever } A_n \in \mathcal{A} \ \forall n \in \mathbb{N} \text{ and } A_m \cap A_n = \emptyset \ \forall m \neq n.$$

Solution. Suppose \mathcal{A} is an algebra of subset of X that is stable with respect to countable disjoint unions. To show that \mathcal{A} is a σ -algebra, it suffices to show that \mathcal{A} is stable with respect to countable (but not necessarily disjoint) union. Let $B_n \in \mathcal{A}$ for $n \in \mathbb{N}$. Define

$$C_1 := B_1$$
 and $C_n := B_n \setminus \bigcup_{k=1}^{n-1} B_k$ for $n \ge 2$.

Clearly the collection $\{C_n\}_{n=1}^{\infty}$ is pairwise disjoint, and each $C_n \in \mathcal{A}$ since \mathcal{A} is an algebra. Moreover,

$$C_1 \cup C_2 = B_1 \cup (B_2 \setminus B_1) = B_1 \cup B_2,$$

 $C_1 \cup C_2 \cup C_3 = B_1 \cup B_2 \cup (B_3 \setminus (B_1 \cup B_2)) = B_1 \cup B_2 \cup B_3,$
 \vdots

and so on. Hence $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} C_n \in \mathcal{A}$.

3. Suppose $[a, b] \subseteq \mathbb{R}$ is covered by a finite family \mathcal{C} of open intervals. Show that $b - a \leq$ sum of lengths of intervals in \mathcal{C} (by MI to $n := \#(\mathcal{C})$, the number of elements of \mathcal{C}).

Solution. Let P(n) be the statement: if [a,b] is a closed bounded interval that is covered by a finite family \mathcal{C} of open intervals with $\#(\mathcal{C}) = n$, then $b - a \leq \text{sum}$ of lengths of intervals in \mathcal{C} .

Suppose $\#(\mathcal{C}) = 1$ and $\mathcal{C} = \{[c,d]\}$. Then clearly $b - a \leq d - c$. Hence P(1) is true.

Assume that P(k) is true. Suppose [a, b] is a closed bounded interval that is covered by a finite family $C = \{(c_i, d_i)\}_{i=1}^{k+1}$ of open intervals. Without loss of generality, we may assume that $a \in (c_1, d_1)$.

If $b \leq d_1$, then $b - a \leq d_1 - c_1 \leq \sum_{i=1}^{k+1} |c_i - d_i|$, and we are done.

On the other hand, suppose $b > d_1$. Then $[d_1, b]$ is a closed bounded interval covered by $\{(c_i, d_i)\}_{i=2}^{k+1}$. Now the induction assumption implies that

$$b-d_1 \le \sum_{i=2}^{k+1} |c_i - d_i|,$$

and hence

$$b-a = (d_1-a) + (b-d_1) \le |c_1-d_1| + \sum_{i=2}^{k+1} |c_i-d_i| = \sum_{i=1}^{k+1} |c_i-d_i|.$$

So P(k+1) is true.

By MI, P(n) is true for all $n \in \mathbb{N}$.

4. (cf. Royden 3rd, p.52, Q51) Upper/Lower Envelopes of $f:[a,b] \to \mathbb{R}$.

Define $h, g : [a, b] \to [-\infty, \infty]$ by

$$h(y) := \inf\{h_{\delta}(y) : \delta > 0\}$$
 for all $y \in [a, b]$,

where $h_{\delta}(y) := \sup\{f(x) : x \in [a, b], |x - y| < \delta\}$; and

$$g(y) := \sup\{g_{\delta}(y) : \delta > 0\}$$
 for all $y \in [a, b]$,

where $g_{\delta}(y) := \inf\{f(x) : x \in [a, b], |x - y| < \delta\}$. Prove the following:

- (a) $g \le f \le h$ pointwisely on [a, b], and for all $x \in [a, b]$, g(x) = f(x) if and only if f is lower semicontinuous (l.s.c) at x (f(x) = h(x) if and only if f is upper semicontinuous (u.s.c) at x), so g(x) = h(x) if and only if f is continuous at f.
- (b) If f is bounded (so g, h are real-valued), then g is l.s.c and h is u.s.c.
- (c) If ϕ is a l.s.c function on [a, b] such that $\phi \leq f$ (pointwise) on [a, b], then $\phi \leq g$. State and show the corresponding result for h.
- (d) Let $C_n := \{x \in [a, b] : h(x) g(x) < \frac{1}{n}\}$ for all $n \in \mathbb{N}$. Then $C := \bigcap_{n=1}^{\infty} C_n$ is exactly the set of all continuity points of f and is a G_{δ} -set.

Note: More suggestive notations for g,h are $\underline{f},\overline{f}.$

Solution. (a) Clearly $g_{\delta}(x) \leq f(x) \leq h_{\delta}(x)$ for all $x \in [a, b]$ and $\delta > 0$. Hence $g \leq f \leq h$ pointwisely on [a, b].

Suppose f is l.s.c at x, that is, for all $\varepsilon > 0$, there exists $\delta > 0$ such that $f(x) - \varepsilon < f(y)$ whenever $y \in [a, b]$ and $|y - x| < \delta$. Then $f(x) - \varepsilon \le g_{\delta}(x) \le g(x)$. Since $\varepsilon > 0$ is arbitrary, we have $f(x) \le g(x)$, and hence f(x) = g(x).

On the other hand, suppose f(x) = g(x). Then, by the definition of g and g_{δ} , given any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$f(x) - \varepsilon = g(x) - \varepsilon < g_{\delta}(x) \le f(y)$$
 whenever $y \in [a, b]$ and $|y - x| < \delta$.

Thus f is l.s.c at x.

Similarly, one can show that f(x) = h(x) if and only if f is u.s.c at x.

The last assertion now follows immediately from above and the simple fact that f is continuous at x if and only if it is both l.s.c and u.s.c at x.

(b) Let $x \in [a, b]$ and $\varepsilon > 0$. Since g is real-valued, we can find $\delta > 0$ such that $g(x) < g_{\delta}(x) + \varepsilon$. Note that $(y - \delta/2, y + \delta/2) \subseteq (x - \delta, x + \delta)$ if $|x - y| < \delta/2$. It follows from the definition of g and g_{δ} that whenever $y \in [a, b]$ with $|y - x| < \delta/2$, we have

$$g(x) - \varepsilon < g_{\delta}(x) \le g_{\delta/2}(y) \le g(y).$$

Therefore g is l.s.c at x and hence on [a, b].

Similarly one can show that h is u.s.c on [a, b].

(c) It suffices to prove that if ϕ is l.s.c at x and $\phi \leq f$ on [a, b], then $\phi(x) \leq g(x)$. From the definition,

$$\underline{\phi}(x) := \sup_{\delta > 0} \inf_{|y-x| < \delta} \phi(y) \leq \sup_{\delta > 0} \inf_{|y-x| < \delta} f(y) = g(x).$$

Since ϕ is l.s.c at x, we have $\phi(x) = \phi(x)$ by (a), and the result follows.

Similarly, one can prove the corresponding result for h: if ψ is a u.s.c function on [a,b] such that $f \leq \psi$ on [a,b], then $h \leq \psi$.

(d) By (a), we have

$$\{x\in[a,b]:f\text{ continuous at }x\}=\{x\in[a,b]:g(x)=h(x)\}$$

$$=\bigcap_{n=1}^{\infty}\{x\in[a,b]:h(x)-g(x)<1/n\}$$

$$=\bigcap_{n=1}^{\infty}C_n=C.$$

Note that k := h - g is u.s.c on $[a, b] \setminus \{x : h(x) = +\infty \text{ or } g(x) = -\infty\}.$

To see that C is a G_{δ} -set (in [a,b]), it suffices to show that, given any $\lambda \in \mathbb{R}$, $A := \{x \in [a,b] : k(x) < \lambda\}$ is an open set in [a,b].

Let $x \in A$. Then $k(x) \neq +\infty$. Set $\varepsilon_0 := (\lambda - k(x))/2 > 0$. Since k is u.s.c at x, there exists $\delta > 0$ such that if $y \in [a, b]$ and $|y - x| < \delta$, then

$$k(y) < k(x) + \varepsilon_0 = k(x) + \frac{\lambda - k(x)}{2} = \frac{\lambda + k(x)}{2} < \lambda.$$

Thus $B_{\delta}(x) \cap [a,b] \subseteq A$. Hence A is open in [a,b].

5. Let $f:[a,b] \to [m,M]$. For each $P \in \operatorname{Par}[a,b]$, let u(f;P) and U(f;P) denote the lower/upper Riemann-sum functions. Let $\{P_n:n\in\mathbb{N}\}$ be a sequence of partitions such that $P_n\subseteq P_{n+1}\ \forall n$ and $\|P_n\|\to 0$ ($\|P\|$ is the max subinterval length of P). Show that, $\forall x\in[a,b]\setminus A$

$$\lim_{n} (u(f; P_n))(x) = \underline{f}(x)$$
 and $\lim_{n} (U(f; P_n))(x) = \overline{f}(x)$,

where A denotes the union of all end-points of $P_n \, \forall \, n$.

Solution. Let P be the partition $a = t_0 < t_1 < \cdots < t_k = b$. Then the lower and upper Riemann-sum functions can be defined as follow:

$$u(f,P) := \sum_{i=1}^{k} \inf_{x \in (t_{i-1},t_i]} f(x) \chi_{(t_{i-1},t_i]}, \qquad U(f,P) := \sum_{i=1}^{k} \sup_{x \in (t_{i-1},t_i]} f(x) \chi_{(t_{i-1},t_i]}.$$

Let $\{P_n\}$ be a sequence of partitions such that $P_n \subseteq P_{n+1} \,\forall n$ and $\|P_n\| \to 0$. Then $u(f; P_n)$ is an increasing sequence of functions, so that $\lim_n u(f; P_n)$ exists. Since $u(f; P_n)$ is bounded above by f on (a, b] and is l.s.c at $x \in [a, b] \setminus A$, it follows from (the proof of) 4(c) that

$$u(f; P_n)(x) \le f(x), \text{ for all } x \in [a, b] \setminus A, \ n \in \mathbb{N}.$$
 (1)

Fix $x \in [a, b] \setminus A$. Let $\varepsilon > 0$. Since f is l.s.c at x, there exists $\delta > 0$ such that

$$\underline{f}(x) - \varepsilon < \underline{f}(y) \le f(y)$$
 whenever $y \in [a, b]$ and $|y - x| < \delta$.

Choose N so large such that $||P_N|| < \delta$. Suppose $a = t_0 < t_1 < \cdots < t_k = b$ are the end-points of P_N . Then

$$\underline{f}(x) - \varepsilon \le \sum_{i=1}^{k} \inf_{y \in (t_{i-1}, t_i]} f(y) \chi_{(t_{i-1}, t_i]}(x) = u(f; P_N)(x). \tag{2}$$

Combining (1) and (2), we have

$$f(x) - \varepsilon \le u(f; P_N)(x) \le u(f; P_n)(x) \le f(x)$$
 for $n \ge N$,

and hence $\lim_{n} u(f; P_n)(x) = \underline{f}(x)$.

Similarly we can show that $\lim_{n} U(f; P_n)(x) = \overline{f}(x)$ for $x \in [a, b] \setminus A$.

•