
Selected solution to 2050B Mid-term

3. (i). Note that for x < 1 and M > 0, one has the following equiva-
lences:

x

x− 1
< −M ⇔ x

1− x
> M

⇔ x > M − xM

⇔ x(1 +M) > M

⇔ x >
M

1 +M
.

Suggested by the last equivalence, we would like to have M
1+M

=

1−δ, so we set δ := 1− M
1+M

. Note that δ > 0, and if x ∈ (1−δ, 1),
one has M

1+M
= 1 − δ < x < 1, whence x

x−1
< −M . This shows

that
lim
x→1−

x

x− 1
= −∞,

because for any r ∈ R there exists M > 0 such that −M < r.

On the other hand, for x > 1, we have

x

x− 1
=

x

|x− 1|
>

1

|x− 1|
.

Hence, for any M > 0, if we set δ := 1
M

, then for all x ∈ (1, 1+ δ),
we have

x

x− 1
>

1

δ
= M.

This shows that
lim
x→1+

x

x− 1
= ∞.

Finally, since
lim
x→1−

x

x− 1
̸= lim

x→1+

x

x− 1
,

we see that limx→1
x

x−1
does not exist.∗

∗An alternative approach for question 3(i) is to use the result of question 2(ii).
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(ii). (It seems that the function in consideration is continuous, so we
guess that the limit is

√
x2
0 + 1)

Firstly, note that∣∣∣∣√x2 + 1−
√
x2
0 + 1

∣∣∣∣ =
∣∣∣∣∣ x2 − x2

0√
x2 + 1 +

√
x2
0 + 1

∣∣∣∣∣
=

|x− x0| |x+ x0|√
x2 + 1 +

√
x2
0 + 1

.

By the elementary inequality |x|√
x2+1

≤ 1, we have

|x+ x0|√
x2 + 1 +

√
x2
0 + 1

≤ |x|+ |x0|√
x2 + 1 +

√
x2
0 + 1

=
|x|

√
x2 + 1 +

√
x2
0 + 1

+
|x0|√

x2 + 1 +
√
x2
0 + 1

≤ |x|√
x2 + 1

+
|x0|√
x2
0 + 1

≤ 1 + 1 = 2.

Therefore ∣∣∣∣√x2 + 1−
√

x2
0 + 1

∣∣∣∣ ≤ 2 |x− x0| ,

which is nice enough for us to apply the ε-δ terminology.

Let ε > 0. For this ε, we set δε := ε/2. Now whenever x satisfies
0 < |x− x0| < δε, we have∣∣∣∣√x2 + 1−

√
x2
0 + 1

∣∣∣∣ ≤ 2 |x− x0|

< 2 · δε = ε.

By ε-δ terminology, we conclude that

lim
x→x0

√
x2 + 1 =

√
x2
0 + 1.
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(iii). Let ε > 0. Set δ := min(1, ε
2(5+M)

), where

M := (|x0|+ 1)2 + (|x0|+ 1) |x0|+ |x0|2 .

Let 0 < |x− x0| < δ. One checks |f(x)− f(x0)| < ε where
f(x) = x3 − 5x− 7:∣∣(x3 − 5x− 7)− (x3

0 − 5x0 − 7)
∣∣

≤
∣∣x3 − x3

0

∣∣+ 5 |x− x0|
= |x− x0|

∣∣x2 + xx0 + x2
0

∣∣+ 5 |x− x0|
≤ (M + 5) |x− x0| (as |x− x0| < δ ≤ 1 so |x| < |x0|+ 1 )

≤ ε

2
< ε.

By ε-δ terminology, we conclude that

lim
x→x0

(x3 − 5x− 7) = x3
0 − 5x0 − 7.

Second approach:
Firstly, we have the following result:

lim
x→x0

(f1(x)f2(x)) = ( lim
x→x0

f1(x)) · ( lim
x→x0

f2(x))

if limx→x0 fi(x) exists.
Therefore, since limx→x0 x exists and equals x0, we have

lim
x→x0

x2 = x2
0,

and so
lim
x→x0

x3 = ( lim
x→x0

x2) · ( lim
x→x0

x) = x3
0.

Similarly, since limx→x0(−5) = −5, the foregoing result for limits
gives

lim
x→x0

−5x = −5x0.
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Next, we have the following result:
lim
x→x0

(f1(x) + f2(x)) = lim
x→x0

f1(x) + lim
x→x0

f2(x)

if limx→x0 fi(x) exists.

Therefore, since limx→x0 x
3 and limx→x0 −5x exists, we have

lim
x→x0

(x3 − 5x) = lim
x→x0

x3 + lim
x→x0

(−5x) = x3
0 − 5x0.

Finally, since limx→x0(−7) = −7, by applying the foregoing result
once more, we have
lim
x→x0

(x3 − 5x− 7) = lim
x→x0

(x3 − 5x) + lim
x→x0

(−7) = x3
0 − 5x0 − 7.

5. We have lim inf
n

xn = lim
n→∞

yn, where yn is defined by yn := inf{xn, xn+1, xn+2, . . .}.

Brief explanation (FYR only, need not be given in the answer):
Since

{x1, x2, x3, x4, . . .} ⊇ {x2, x3, x4, . . .}
⊇ {x3, x4, . . .}
⊇ · · · ,

therefore
inf{x1, x2, x3, x4, . . .} ≤ inf{x2, x3, x4, . . .}

≤ inf{x3, x4, . . .}
≤ · · · .

Define yn := inf{xn, xn+1, xn+2, . . .}. By above we see that (yn) is
an increasing sequence. It is bounded above as well, because (xn) is
a bounded sequence. By monotone convergence theorem, limn→∞ yn
exists. We take

lim inf
n

xn = lim
n→∞

yn.
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