1. (2 marks) Monotone convergence theorem states that if (§,) is a bounded
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decreasing sequence, then lim¢, exists and lim¢&,, = inf{¢, : n € N}.
Apply it to (y,), the result follows.

2. (4 marks)

(a)

(=)

Suppose y* < a. Let € > 0. Since limy,, = y*, 3N € N such that
Yn < a+¢ for all n > N (c.f. homework II 4(b)). In particular,
sup{Zn, Tni1,---} = yn < a+¢e. Therefore a + ¢ is greater than

an upper bound of {xy,xn41,...}. It follows that 2, < a + ¢ for
all n > N.

(=)

Let € > 0. By assumption, 9N € N such that x,, < a + ¢ for all
n > N. Therefore a+ ¢ is an upper bound of the {xy,xn41,. ..},
so o+ ¢ > sup{zn,TNi1,...} = yn. Since (y,) is a decreasing
sequence, we have a + ¢ > y,, whenever n > N. Hence

a+e=lim(a+e)> lim(y,) =y"

n—oo n—oo
Since € > 0 is arbitrary, we conclude that o > y*.
(=)

Suppose o < y*. Let £ > 0. Since limy,, = y*, 3M € N such that
a—e < y, foralln > M (c.f. homework IT 4(b)). Now for any N €

N, we have a—¢ < Ymax(v,N+1) = Sup{xmax(M,N—f—l)’ Tmax(M,N+1)+1, - -

As av—e¢ is less than the supremum of {@max(a,N+1)s Tmax(M,N+1)+1, - - - }

it fails to be an upper bound of that set. Hence, In > max(M, N+
1) such that o — ¢ < x,,. Done.

(<)
Let ¢ > 0. Given N € N, by assumption 3¢ > N such that
a—¢e <z Then a —e < sup{zn,Tn11,- -, To, Tog1,---F = YN-

Since this holds for all N € N, we have

3.

)



a—e=lim(a—e¢) < lim(y,) =y"

n—oo n—o0

Since € > 0 is arbitrary, we conclude that o < y*.

3. (2 marks)
(a) When (z,) = (1/n),
e yp=1/n
e y*=0
« V=(0,00)
. L= {0}
(b) When (z,) = (1 —1/n),
°* Yy = 1
. y* =1
e V=][1,00)
c L={1)
4. (2 marks)

Let u be an upper bound of (z,). Then z, < u Vn > 1. Referring to
the definition, we see that u is an essential upper bound of ().

Let [ be a lower bound of (z,). Then [ <z, ¥Yn > 1. If v € V| then
AN st. 2z, <vVn > N. Now ! < zxy < v. Since v € V is chosen
arbitrarily, this shows that [ is a lower bound of V.

Since (z,,) is bounded, it has an upper and lower bound. Therefore, by
the first paragraph, V is non-empty, while by the second paragraph, V'
is bounded below. Hence, inf V' exists in R.

5. We show the following:
o infV = y*
« There exists a subsequence (z,,) of (z,) such that limy z,,, = y*;

e sup L =y*.



(Since y* € L by the second statement, it then follows from the third
statement that max L = y*)

(a)

To show inf V' = y*, we go to show that y* is a lower bound of V,
while y* 4 ¢ fails to be a lower bound of V' for any ¢ > 0.

Let v € V. By the definition of V', there exists N, € N such that
x, < v Vn > N,. It follows from question 2(a) that y* < v. Since
v € V is arbitrarily chosen, we see that y* is a lower bound of V.

On the other hand, given ¢ > 0, since limy, = y*, there exists
N € N such that yy < y* +¢/2 (c.f. homework II question 4(b)).
Therefore, by the definition of yy, we have z, < y* + /2 for all
n > N. This means y* + £/2 is an essential upper bound of (x,,),
i.e. y*+¢/2 € V. Hence y* + ¢ cannot be a lower bound of V.
By question 2(b), Iny > 1 such that z,, > y* — 1 (take a = y*,
e=1, N=1).

Next, by question 2(b), Iny > ny such that z,,, > y* — 1/2 (take
a=y*e=1/2, N =ny).

Then, by question 2(b) again, 3ns > ns such that z,, > y* —1/3
(take a = y*, e = 1/3, N = ny).

Continuing this process by induction, we construct a subsequence
(2, ) of (z,) such that x,, > y* —1/k for all k. Since

L 1
y — % S Ty, S Sup{xnkaxnk+1a . } = Ynys

and that |
lim (y* — E) = y* = lim Ynys

k—o0 k—o0
we conclude that (z,,) converges to y* by squeeze theorem.

To show sup L = y*, we go to show that y* is an upper bound of
L, while y* — ¢ fails to be an upper bound of L for any ¢ > 0.

Let ¢ € L. Then by the definition of L, there exists (x,,) such
that limy z,, = ¢. Since z,, < sup{Zn,,Tn,+1,---} = Yn,, it
follows that
(= lim z,, < lim y, =y".
k—o0 k—oo
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Since ¢ € L is arbitrarily chosen, we see that y* is an upper bound
of L.

On the other hand, by (b), we see that y* € L, so y* — € cannot
be an upper bound of L for any € > 0.



