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ABSTRACT: In this article we are concerned with a simplified Ericksen-Leslie system on R2, whose bounded

domain case was considered by Lin-Lin-Wang in [20]. With a study of its vorticity-stream formulation, we es-

tablish a global existence result of weak solutions when initial orientation has finite energy and initial vorticity

function lies in L1pR2q.

I. INTRODUCTION

I.1. BACKGROUND AND MOTIVATION Ericksen-Leslie system is a hydrodynamic system mod-

eling the flow of nematic liquid crystals. Proposed in [7], [19] and references therein, it is a continuum theory

without molecular details of a liquid crystal material. Recently some research works have been devoted to study-

ing the relationships between the theory of Ericksen-Leslie and two other favorable theories (Doi-Onsager theory

and Landau-de Gennes theory) for nematic liquid crystals. In [29] the Doi-Onsager theory (see [6] and [25]) is

connected with the Ericksen-Leslie theory by taking the Deborah number to zero. As a hydrodynamic Landau-

de Gennes model, the Beris-Edwards system (see [4]) was studied by the authors in [26]-[28]. Particularly in

[28], a Hilbert expansion was obtained for solutions of the Beris-Edwards system with which a well prepared

initial data is supplied. When elastic constants are small, their work rigorously shows that the Ericksen-Leslie

system serves as the limit of the Beris-Edwards system before the first singular time. For the static theory

of liquid crystals, readers should be referred to [1] and [24] for important connections and differences between

the Landau-de Gennes theory and the Oseen-Frank theory. As far as the Ericksen-Leslie system is concerned,

many research works have been established on its well-posedness. In 2-D case, the existence of global weak

solution for a simplified Ericksen-Leslie equation has been obtained by the authors in [20], where the domain

is supposed to be bounded and smooth. The associated uniqueness problem was later studied by Lin-Wang

in [21]. In [14] the author considered the same simplified Ericksen-Leslie equation but on the whole space R2.

When the spatial domain is R2 and the model is not restricted to the simplified one studied in [20], the global

existence of weak solutions for the Ericksen-Leslie system with general Oseen-Frank energy are also well studied

(see [15]-[16]). Amongst all the works in 2-D, global weak solutions have finite energy and are smooth except

possibly at finitely many singularities. Compared with the 2-D case, our knowledge on the 3-D Ericksen-Leslie

system is limited. In [30] the authors established the local well-posedness of the general Ericksen-Leslie system.

For the sake of describing its maximal existence time interval, a blow-up criterion (same as the one in [17])

is given. With this criterion, the authors proceed to prove the global existence of the general Ericksen-Leslie

system under the assumption that initial data is small in some Sobolev spaces. The spatial domain in [30] is

R3. For the bounded smooth domain in R3, the authors in [23] also established a global existence result for

weak solution of simplified Ericksen-Leslie equation. Different from [30], the consequence in [23] does not rely

on the smallness of initial data in Sobolev spaces. Instead Lin-Wang made a geometrically small assumption in

[23] for their initial data. More precisely by supposing that initial macroscopic orientation takes its image on

the upper hemisphere, the simplified Ericksen-Leslie equation studied in [20] admits a global weak solution on

any bounded smooth domain in R3, where initial data is only required to be in the natural energy space. For

more detailed mathematical studies of nematic liquid crystals, readers are referred to [22].

Without macroscopic orientation, the Ericksen-Leslie system is reduced to the pure Navier-Stokes equation.

It is well-known that the Navier-Stokes equation admits a vorticity-stream formulation (see [5]). For the 2-D
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viscous fluid, taking curl of the Navier-Stokes equation leads to the following vorticity equation:

Btω ` v ¨∇ω “ ∆ω.

Here v is the velocity of fluid. ω “ curlv is its vorticity. In [2] and the references therein the global existence of

the above vorticity equation is studied in R2, where the velocity v is recovered by the Biot-Savart law. Initial

vorticity is assumed to be in the L1-space. In [12] (see also [3]), the regularity of initial data is slightly weakened.

The global existence of the vorticity equation in 2-D is shown to hold with given initial data in the Radon mea-

sure space on R2. Besides the global existence result of the vorticity equation, the stability problem associated

with the Navier-Stokes equation in 2-D is also considered with the use of the above vorticity equation (see e.g.

[9] and [11]-[12]). In [12] the authors studied the long-time behavior of the vorticity of the 2-D Navier-Stokes

equation. With a smallness assumption on the Reynolds number of initial vorticity, it is shown that solutions

of the vorticity equation approach to the so-called Oseen’s vortex as t Ñ 8. The convergence is algebraic in

t. Still in [12], this result was further applied to study the stability of Burger’s vortex for 3-D Navier-Stokes

equation. Later in [9] and [11], the authors considered the long-time behavior of vorticity and its stability for

the 2-D Navier-Stokes equation from the point of view of dynamical system. Finally in [11] the authors dropped

the smallness assumption used in [12] for the Reynolds number of initial vorticity. A global stability result

is obtained by LaSalle’s invariance principle and the theory of Lyapunov. Some stability results on the 3-D

Navier-Stokes equation can be read from [10].

I.2. VORTICITY EQUATION OF ERICKSEN-LESLIE SYSTEM In this article we are concerned

with the simplified hydrodynamic system for nematic liquid crystals studied by Lin-Lin-Wang in [20]. The

spatial domain is supposed to be R2. With all parameters in the system normalized to be 1, the equation is

written as follows:
$

’

’

’

&

’

’

’

%

Btφ` v ¨∇φ´∆φ “ |∇φ |2φ , in R2 ˆ p0,8q;

Bt v ` v ¨∇v ´∆v “ ´∇p´∇ ¨
`

∇φd∇φ
˘

, in R2 ˆ p0,8q;

∇ ¨ v “ 0, in R2 ˆ p0,8q.

(1.1)

In (1.1) φ is an S2 -valued macroscopic orientation of a nematic liquid crystal. v : R2ˆp0,`8q Ñ R2 represents

the velocity of fluid. p is the pressure function. ∇φ d ∇φ denotes the 2 ˆ 2 matrix whose entry on the i-th

row and j -th column is given by Biφ ¨ Bjφ. As one can see, system (1.1) is a coupled system between the non-

homogeneous incompressible Navier-Stokes equation and the transported flow of harmonic maps. Since early

studies of fluid dynamics, problems associated with ”singular objects” have been intriguing a lot of attentions

from both mathematicians and physicists. These singular objects include point vortices and vortex filaments in

fluid dynamics, which are related to vortex phenomena of a fluid. Usually a system with such singular objects

might not have a finite kinetic energy, or equivalently square integrable velocity. Explicit examples can be given

by the so-called Oseen vortices (see [11]). For some rigorous proof one may refer to [5], where the authors show

that for an incompressible velocity recovered by the Biot-Savart law (vorticity has compact support in R2), it

has finite kinetic energy if and only if the total vorticity equals to 0. Thus to study some vortex phenomenon

associated with (1.1), it is more convenient to consider the equation of vorticity instead of velocity. In light of

the above arguments, now we take curl on both sides of the second equation in (1.1). Still using Biot-Savart

law to recover velocity from vorticity, we can rewrite (1.1) in terms of the vorticity of v. That is the system:

$

’

’

’

&

’

’

’

%

Btφ` v ¨∇φ´∆φ “ |∇φ |2φ , in R2 ˆ p0,8q;

v “ K ˚ ω , in R2 ˆ p0,8q;

Btω ` v ¨∇ω ´∆ω “ ´∇ˆ∇ ¨
`

∇φd∇φ
˘

, in R2 ˆ p0,8q.

(1.2)

In (1.2) ˚ denotes the standard convolution operator on R2. For all x “ px1, x2q P R2, Kpxq is the Biot-Savart
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kernel given by

Kpxq “
1

2π

xK

|x|2
,

where xK “ p´x2 , x1 q. Note that ∇ ¨K “ 0 implies the incompressibility condition: ∇ ¨v “ 0. In the remaining

of the article, (1.2) is referred as the vorticity equation of the Ericksen-Leslie system (1.1).

I.3. MAIN RESULTS AND ORGANIZATION OF THE ARTICLE Our first theorem is concerned

with the local existence of classical solutions to (1.2). Before we state the result, some notions should be given.

First of all we introduce some functional spaces in Definition 1.1, which will be used to control velocity field

v recovered by the Biot-Savart law. Since v “ K ˚ ω for some vorticity function ω, the decay of ω at spatial

infinity plays important roles in estimating the Hölder norm and the kinetic energy of v. However the standard

Hölder norms and Lp norms are not strong enough to control the decay of ω at spatial infinity. Therefore we

introduce the following C˚,kβ
“

I
‰

and C˚β
`

R2
˘

spaces, in which functions decay exponentially at spatial infinity.

Definition 1.1. Suppose that f takes value on some Euclidean space. Given a positive constant β and a finite

time interval I, we say f P C˚β
“

I
‰

if f is continuous on R2 ˆ I and satisfies

|||f |||β ;I :“ sup

"

ˇ

ˇfpx, tq
ˇ

ˇ e|x |
L

β : px, tq P R2 ˆ I

*

ă 8.

||| ¨ |||β ;I defines a norm on the space C˚β
“

I
‰

. Equipped with this norm, C˚β
“

I
‰

is a Banach space. Given a k P N,

we denote by C˚,kβ
“

I
‰

the function space so that for all f P C˚,kβ
“

I
‰

, it satisfies ∇if P C˚β
“

I
‰

. Here the index i

runs from 0 to k. C˚,kβ
“

I
‰

is also a Banach space with norm given by

|||f |||k;β ;I :“
k
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇if
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β ;I
.

Similarly we define C˚β
`

R2
˘

to be the space so that for all f P C˚β
`

R2
˘

, it holds

|||f |||β :“ sup

"

ˇ

ˇfpxq
ˇ

ˇ e|x |
L

β : x P R2

*

ă 8.

Equipped with this norm, C˚β
`

R2
˘

is a Banach space. Given a k P N, C˚,kβ
`

R2
˘

denotes the function space so

that for all f P C˚,kβ
`

R2
˘

, it satisfies ∇if P C˚β
`

R2
˘

. Here i runs from 0 to k. The space C˚,kβ
`

R2
˘

is also a

Banach space with norm given by

|||f |||k;β :“
k
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇if
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
.

In Sect.II we are concerned with some important properties associated with the functional spaces given in

Definition 1.1. With these properties, the following theorem is shown in Sect.III by a fixed-point argument.

Notice that in Theorem 1.2 below, we call pφ, ωq a classic solution of (1.2) on R2 ˆ r0, T s if on this domain
`

Btφ, Btω
˘

,
`

∇iφ,∇iω
˘

(i “ 0, 1, 2) are continuous and satisfy (1.2) in a pointwise sense.

Theorem 1.2. Suppose that ω0 P C˚,22

`

R2
˘

and φ0 is an S2-valued function with φ0 ´ e P C˚,41

`

R2
˘

. Then

there exists a T˚ ą 0 such that (1.2) admits a classic solution on R2ˆr0, T˚s with the given initial data pφ0, ω0q.

If we denote by pφ, ωq the classic solution, then we also have

`

φ´ e, ω
˘

P C˚,41 r0, T˚s ˆ C˚,22 r0, T˚s.

Here e P S2 is a constant unit vector in R3.
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Our next theorem is about the local existence of solutions for (1.2) with initial data pφ0, ω0q P H1
e

`

R2; S2
˘

ˆ

L1pR2q. Here for a given e P S2, H1
e

`

R2; S2
˘

denotes the space given below:

H1
e

`

R2; S2
˘

:“

"

φ : φpxq P S2 for almost all x P R2 and φ´ e P H1
`

R2
˘

*

.

Approximating pφ0 ´ e, ω0q by a sequence of smooth pairs with compact support, we can find a sequence of

solutions of (1.2) whose initial data equal to the smooth pairs. In Sect. IV, we show that these solutions exist

in a uniform time interval. Thus by appropriate compactness arguments, we can show

Theorem 1.3. Suppose that pφ0, ω0q is an initial data in H1
e

`

R2; S2
˘

ˆ L1
`

R2
˘

. Then there exists a T˚ ą 0

and a smooth solution, denoted by pφ, ωq, of (1.2) on p0, T˚q so that the following properties hold:

piq. As t Ó 0, we have

`

φp¨, tq ´ e, ωp¨, tq
˘

ÝÑ
`

φ0 ´ e, ω0

˘

, strongly in H1pR2q ˆ L1pR2q.

Let
`

L1pR2q X LppR2q
˘˚

be the dual space of L1pR2q X LppR2q. Then as t Ó 0, the velocity v “ K ˚ ω satisfies

vp¨, tq ÝÑ v0 “ K ˚ ω0, strongly in
`

L1pR2q X LppR2q
˘˚

, for all p ą 2.

Here we equip the space L1pR2q X LppR2q with the norm defined by } ¨ }1 ` } ¨ }p. Moreover we also have

`

φ´ e, ω
˘

P L8
`

r0, T˚s; H1
`

R2
˘˘

ˆ L8
`

r0, T˚s; L1
`

R2
˘˘

.

piiq. Fixing a τ P p0, T˚q and denoting by ω̄ the unique mild solution (see Chapter 4 of [3]) of the following

initial value problem:

$

’

’

&

’

’

%

Bt ω̄ ´∆ ω̄ ` v̄ ¨∇ω̄ “ 0, on R2 ˆ pτ,8q;

ω̄p¨, τq “ ωp¨, τq; v̄ “ K ˚ ω̄,
(1.3)

then we can decompose the velocity field v into the sum

v “ v̄ ` v˚, on R2 ˆ rτ, T˚s. (1.4)

The velocity field v˚ lies in the space L8
`

rτ, T˚s; L2
`

R2
˘˘

XL2
`

rτ, T˚s; H1
`

R2
˘˘

and satisfies the global energy

inequality given below:

ż

R2ˆtt2u

ˇ

ˇv˚
ˇ

ˇ

2
`
ˇ

ˇ∇φ
ˇ

ˇ

2
`

ż t2

t1

ż

R2

ˇ

ˇ∇v˚
ˇ

ˇ

2
`
ˇ

ˇ∆φ` |∇φ |2φ
ˇ

ˇ

2

ď exp

"

c

ż t2

t1

›

›∇v̄
›

›

8

*
ż

R2ˆtt1u

ˇ

ˇv˚
ˇ

ˇ

2
`
ˇ

ˇ∇φ
ˇ

ˇ

2
. (1.5)

Here c ą 0 is an universal constant. t1 and t2 satisfy τ ď t1 ă t2 ď T˚. Moreover as t Ó τ , v˚p¨, tq converges to

0 strongly in L2.

piiiq. If ω0 P L1 X Lp for some p ą 1, then τ in part (ii) can take value 0. The decomposition of the ve-

locity field v in (1.4) holds on R2 ˆ r0, T˚s.

We are also concerned about the global weak solutions of (1.1). Notice the decomposition of v in (1.4). v̄ already

exists on the time interval pτ,8q. Therefore to extend v globally in time, we just need extend v˚ to R2ˆpτ,8q.

In light of the global energy inequality (1.5), such extension of v˚ is expected . As a consequence, we have
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Theorem 1.4. Given pφ0, ω0q P H1
e

`

R2; S2
˘

ˆ L1
`

R2
˘

, there exists a global weak solution of (1.1) in the sense

given as follows:

piq. For some T˚ ą 0, pφ, vq is a smooth solution of (1.1) on R2 ˆ p0, T˚q. Moreover parts (i)-(ii) in The-

orem 1.3 hold for pφ, v, ωq, where ω is the vorticity of v;

piiq. Let pω̄, v̄q be the same as in part (ii) of Theorem 1.3. Then on R2 ˆ rτ,8q, v can be decomposed into the

sum v “ v̄ ` v˚. pφ, v˚q satisfies the global energy inequality (1.5) for all t1 and t2 satisfying τ ď t1 ă t2 ă 8.

Moreover pφ, v˚q is a global weak solution of the following system:

$

’

’

’

&

’

’

’

%

Btφ` v
˚ ¨∇φ´∆φ “ ´v̄ ¨∇φ` |∇φ |2φ , on R2 ˆ pτ,8q;

Btv
˚ ` v˚ ¨∇v˚ ´∆v˚ “ ´v˚ ¨∇v̄ ´ v̄ ¨∇v˚ ´∇p˚ ´∇ ¨

`

∇φd∇φ
˘

, on R2 ˆ
`

τ,8
˘

;

∇ ¨ v˚ “ 0,

together with the initial condition:

`

φ, v˚
˘
ˇ

ˇ

t“τ
“
`

φp¨, τq, 0
˘

.

More precisely it holds

´

ż T

τ

ż

R2

〈
φ´ e, η1ψ

〉
`

ż T

τ

ż

R2

〈
v˚ ¨∇φ, ηψ

〉
`

ż T

τ

ż

R2

η∇ψ : ∇φ

“ η pτq

ż

R2

〈
φp¨, τq ´ e, ψ

〉
´

ż T

τ

ż

R2

〈
v̄ ¨∇φ, ηψ

〉
`

ż T

τ

ż

R2

ˇ

ˇ∇φ
ˇ

ˇ

2〈
φ, ηψ

〉
;

and

´

ż T

τ

ż

R2

〈
v˚, η1ϕ

〉
`

ż T

τ

ż

R2

〈
v˚ ¨∇v˚, ηϕ

〉
`

ż T

τ

ż

R2

η∇v˚ : ∇ϕ

“ ´

ż T

τ

ż

R2

〈
v˚ ¨∇v̄, ηϕ

〉
´

ż T

τ

ż

R2

〈
v̄ ¨∇v˚, ηϕ

〉
`

ż T

τ

ż

R2

η∇φd∇φ : ∇ϕ,

for all T P rτ,8s, ψ P H1
`

R2; R3
˘

, ϕ P H1
div

`

R2; R2
˘

and η P C8 rτ, T s with η pT q “ 0. Here

H1
div

`

R2; R2
˘

“ closure of C8c
`

R2; R2
˘

X
 

v : divv “ 0
(

in H1
`

R2; R2
˘

.

I.4. NOTATIONS In this article we use Lp, W k,p and Ck,α to denote the standard Lp-space, W k,p -Sobolev

spaces and Ck,α -spaces on R2. The corresponding norms are denoted by } ¨ }p, } ¨ }k,p and } ¨ }Ck,α , respectively.

For the Hölder space Cα, we also use r¨sα to denote its semi-Hölder norm. If p “ 2, then we use Hk to denote

the Sobolev spaces W k,2. On the space-time R2 ˆ I, where I is an arbitrary time interval, we say a function is

Cα{2,α if it is Cα{2 -Hölder continuous with respect to the time variable and Cα -Hölder continuous with respect

to the space variables. Some times we also use | ¨ |0; I to denote the L8 -norm of a continuous function on R2ˆ I.

Letting X be a functional space on R2 with norm } ¨ }X , usually we denote by Lp
`

I; X
˘

the space so that for all

f P Lp
`

I; X
˘

, f p¨, tq lies in X for almost every t P I and }f p¨, tq}X is Lp-integrable on I. If g p¨, tq is a continuous

mapping from I to X with topology on X induced by } ¨ }X , then we call g P CrI; Xs. Moreover in this article

A À B means that there is a universal constant c so that A ď cB. If we want to emphasize the dependence of

c on parameters a and b, then we use the notation A Àa,b B.

5



II. PRELIMINARY RESULTS

This section is devoted to studying some basic properties associated with functions in C˚,kβ
“

I
‰

and C˚,kβ
`

R2
˘

(see Definition 1.1). k is a non-negative integer. When k “ 0, the spaces C˚,0β
“

I
‰

and C˚,0β
`

R2
˘

are coincident

with C˚β
“

I
‰

and C˚β
`

R2
˘

, respectively. The first lemma is about solution of a nonhomogeneous linear heat

equation with nonhomogeneous term in C˚β r0, T s. Throughout the article we use G to denote the standard heat

kernel in R2.

Lemma 2.1. Suppose that β and T are two positive constants. α and θ are two constants in p0, 1q. Given g a

function in L8
`

r0, T s; Cα
`

R2
˘˘

X C˚β r0, T s, we define

Φrgspx, tq “

ż t

0

ż

R2

Gpx´ z, t´ sq gpz, sqdzds, @ px, tq P R2 ˆ r0, T s. (2.1)

Then Φrgs is a solution of the following nonhomogenous Cauchy problem:

$

&

%

Bt f ´∆f “ g, in R2 ˆ r0, T s;

f ” 0 , at t “ 0.
(2.2)

Moreover Φrgs satisfies the estimate given below:

|||Φ rgs |||β; r0,T s ` T
1{2 |||∇Φ rgs |||β; r0,T s À |||g |||β; r0,T s T e

2T
L

β2

. (2.3)

The second order derivatives of Φrgs can be estimated by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2Φrgs
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
L

θ ; r0,T s
Àθ,α max

tPr0,T s

“

gp¨, tq
‰1´θ

α
|||g |||

θ
β; r0,T s T

p1´θqα
L

2 e2T θ
2
L

β2

. (2.4)

Proof. By Theorem 12 in Chapter 1 of [8], Φrgs is a solution of (2.2). Moreover Φrgs, BtΦrgs and ∇iΦrgs

(i “ 1, 2) are continuous on R2 ˆ r0, T s. Thus we are left to show (2.3)-(2.4). Let f denote the function Φrgs.

By (2.1) and the norm ||| ¨ |||β; r0,T s given in Definition 1.1, fpx, tq can be estimated as follows:

|fpx, tq | ď |||g |||β;r0,T s

ż t

0

ż

R2

1

4πpt´ sq
e´|x´z |

2
L

4 pt´sq e´|z |
L

β dzds.

Applying the change of variable ξ “ x´ z to the integral on the right-hand side above, we get

|fpx, tq | ď |||g |||β; r0,T s

ż t

0

ż

R2

1

4πpt´ sq
e´|ξ |

2
L

4 pt´sq e´p|ξ´x |`|ξ| q
L

β e|ξ |
L

β dξ ds

ď |||g |||β; r0,T s e
´|x |

L

β

ż t

0

ż

R2

1

4πpt´ sq
e´|ξ |

2
L

4 pt´sq e|ξ |
L

β dξ ds.

Now we let 2η “ ξ
L

pt´ sq1{2 and reduce the last estimate to

|fpx, tq | À |||g |||β; r0,T s e
´|x |

L

β

ż t

0

ż

R2

e´|η |
2
`2 pt´sq1{2 |η |

L

β dη ds

À |||g |||β; r0,T s t e
´|x |

L

β`2 t
L

β2

. (2.5)

The first derivatives of f can be represented as follows:

∇f px, tq “ 2´1

ż t

0

ż

R2

Gpx´ z, t´ sq gpz, sq
z ´ x

t´ s
dz ds. (2.6)
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Similarly to the above arguments for f , the following estimate holds for ∇f

|∇fpx, tq | À |||g |||β; r0,T s

ż t

0

ż

R2

e´|x´z |
2
L

4 pt´sq e´|z |
L

β |x´ z |

pt´ sq2
dz ds

À |||g |||β; r0,T s

ż t

0

ż

R2

e´|ξ |
2
L

4 pt´sq e´|ξ´x |
L

β´|ξ |
L

β e|ξ |
L

β |ξ |

pt´ sq2
dξ ds

À |||g |||β; r0,T s e
´|x |

L

β

ż t

0

ż

R2

e´|η |
2
`2 pt´sq1{2 |η |

L

β |η |

pt´ sq1{2
dη ds

À |||g |||β; r0,T s t
1{2 e´|x |

L

β`2 t
L

β2

. (2.7)

In light of (2.6), the second order derivatives of f can be represented as follows:

Bijf px, tq “ 2´1

ż t

0

ż

R2

Gpx´ z, t´ sq
“

gpz, sq ´ gpx, sq
‰

„

pzi ´ xiqpzj ´ xjq

2pt´ sq2
´

δij
t´ s



dz ds, (2.8)

where δij is the Kronecker delta. Therefore we can estimate Bijf as shown below:

ˇ

ˇBijf px, tq
ˇ

ˇ À

ż t

0

ż

R2

Gpx´ z, t´ sq
ˇ

ˇgpz, sq ´ gpx, sq
ˇ

ˇ

θ ˇ
ˇgpz, sq ´ gpx, sq

ˇ

ˇ

1´θ
„

|z ´ x|2

pt´ sq2
`

1

t´ s



dz ds

À max
tPr0,T s

“

gp¨, tq
‰1´θ

α

ż t

0

ż

R2

Gpz, t´ sq
|z |2 ` pt´ sq

pt´ sq2
|z | p1´θqα

ˆ

ˇ

ˇgpx´ z, sq
ˇ

ˇ

θ
`
ˇ

ˇgpx, sq
ˇ

ˇ

θ
˙

Àθ,α max
tPr0,T s

“

gp¨, tq
‰1´θ

α
|||g |||

θ
β; r0,T s t

p1´θqα
L

2 e´θ |x |
L

β`2 tθ2
L

β2

.

The third inequality above holds by similar arguments as in the derivations of (2.5) and (2.7). The proof is then

finished in light of (2.5), (2.7) and the last estimate.

In the next lemma, we present an L8Cβ -estimate for the second order derivatives of f , where β P p0, αq

and f “ Φrgs as in Lemma 2.1. Since the proof is similar to the proof of Lemma 4.4 in [13], we omit it here.

Lemma 2.2. Under the same assumptions for g as in Lemma 2.1, ∇2f lies in the space L8
`

r0, T s ; Cβ
`

R2
˘˘

for all β P p0, αq. Here f “ Φrg s is a solution of (2.2). Moreover ∇2f satisfies the estimate given below:

max
tPr0,T s

“

∇2fp¨, tq
‰

β
Àα,β max

tPr0,T s
rgp¨, tqsα T

α{2´β{2.

As for the initial value problem for the homogeneous linear heat equation, we have

Lemma 2.3. Suppose that g P CkpR2 q with k P N Y t0u. Moreover we assume that ∇kg P C˚βpR2 q for some

β ą 0. With the function g, we define

Ψrgspx, tq “

ż

R2

Gpx´ z, tq gpzqdz, @ px, tq P R2 ˆ r0, T s.

Then Ψrgs is a solution of the following initial value problem:

$

&

%

BtF ´∆F “ 0, in R2 ˆ r0, T s;

F “ g , at t “ 0.

Moreover for all T ą 0, Ψrgs satisfies the estimate given below:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇kΨrgs
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T s
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇kg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
e2T

L

β2

.
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Proof. For simplicity we use F to denote the function Ψrgs. By making derivatives k times, it holds

∇kF px, tq “

ż

R2

Gpx´ z, tq∇kgpzqdz, @ px, tq P R2 ˆ r0, T s.

Since ∇kg P C˚βpR2 q, we then have

ˇ

ˇ∇kF px, tq
ˇ

ˇ ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇kg
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β

ż

R2

Gpx´ z, tq e´|z|
L

β dz.

The proof then follows by a similar argument as the derivation of (2.5).

Now we consider some embedding properties associated with C˚β rI s and C˚β
`

R2
˘

.

Lemma 2.4. For any p P r1,8q and β ą 0, the space C˚β
`

R2
˘

is embedded into Lp
`

R2
˘

. Moreover for any

f P C˚β
`

R2
˘

, we have

›

›f
›

›

p
Àp,β |||f |||β .

In the same fashion C˚β rI s is embedded into the space C
`

I ; LppR2q
˘

. Here I is a finite time interval. For any

f P C˚β rI s, the following estimate is satisfied:

›

›f
›

›

L8pI ;LppR2 q q
Àp,β |||f |||β;I .

Proof. The proof of the estimates in this lemma is simple in that f is exponentially decay at spatial infinity if

f P C˚β rI s or C˚β
`

R2
˘

. We only need show that fpt, ¨q is a continuous mapping from I to Lp
`

R2
˘

if f P C˚βrI s.

Let tn be an arbitrary sequence in I which converges to some t0 P I. Since f P C˚βrI s, it holds

ˇ

ˇfptn, xq ´ fpt0, xq
ˇ

ˇ À
ˇ

ˇfptn, xq
ˇ

ˇ e|x|
L

β e´|x|
L

β
`
ˇ

ˇfpt0, xq
ˇ

ˇ e|x|
L

β e´|x|
L

β
À |||f |||β;I e

´|x| {β .

The most-right-hand side above is Lp -integrable on R2. Thus the continuity of the function f and Lebesgue’s

dominated convergence theorem imply that fptn, ¨q ÝÑ fpt0, ¨q in Lp, as nÑ8. The proof is finished.

This lemma combined with the Calderon-Zygmund estimate leads to the following result:

Lemma 2.5. If ω P C˚βpR2 q, then for all p P p2,8q, v “ K ˚ ω lies in W 1,ppR2 q. Moreover by Morrey’s

inequality, we have

›

›v
›

›

Cpp´2q{p Àp
›

›v
›

›

1, p
Àp

›

›ω
›

›

2p { pp`2q
`
›

›ω
›

›

p
Àp,β |||ω |||β .

Here the first inequality is Morrey’s inequality. The second inequality above is the Calderon-Zygmund estimate.

The last inequality uses our Lemma 2.4.

In the end we study the continuity of v “ K ˚ ω with ω P C˚β r0, T s.

Lemma 2.6. If ω P C˚β r0, T s, then v “ K ˚ ω is continuous on R2 ˆ r0, T s.

Proof. Suppose that px0, t0q is an arbitrary point on R2 ˆ r0, T s and
 

pxn, tnq
(

Ă R2 ˆ r0, T s is an arbitrary

sequence which converges to px0, t0q. By the definition of v, we have

vpxn, tnq “

ż

R2

Kpzq ωpxn ´ z, tnq dz. (2.9)

In light of ω P C˚β r0, T s, it holds

ˇ

ˇKpzq ωpxn ´ z, tnq
ˇ

ˇ À |z |´1
ˇ

ˇ ωpxn ´ z, tnq
ˇ

ˇ e|xn´z |
L

β e´|xn´z |
L

β
Àβ, maxn |xn| |||ω |||β; r0,T s |z |

´1 e´|z |
L

β .

Here we have used the boundedness of the sequence txnu. Since the function on the most-right-hand side above

is integrable on R2 and ω is continuous on R2ˆr0, T s, then by (2.9) and the Lebesgue’s dominated convergence

theorem, we have vpxn, tnq Ñ vpx0, t0q as nÑ8. The proof is finished.
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III. EXISTENCE OF SHORT-TIME CLASSIC SOLUTIONS

In this section we prove Theorem 1.2.

III.1. SKETCH OF THE PROOF AND SOME PRELIMINARY LEMMAS

Our proof is based on a fixed point argument in the functional space X given below:

X :“

"

`

φ, ω
˘

: |||φ´ φ˚ |||2;1; r0,T s `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3φ´∇3φ˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s
` |||ω ´ ω˚ |||1;2; r0,T s (3.1)

`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ω ´∇2ω˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
ď 1 and pφ, ωq | t“0 “ pφ0, ω0q

*

,

where with the operator Ψ defined in Lemma 2.3, pφ˚, ω˚q :“
`

Ψrφ0s,Ψrω0s
˘

is a solution of the following

initial value problem:
$

’

&

’

%

Btφ˚ ´∆φ˚ “ 0, Btω˚ ´∆ω˚ “ 0, in R2 ˆ p0,8q;

φ˚ p¨, 0q “ φ0 p¨q, ω˚ p¨, 0q “ ω0 p¨q.

(3.2)

Since we are studying local existence of (1.2), T can be supposed to be as small as possible.

Now we sketch the proof and make some preliminary lemmas for later use. Letting pφ, ωq be an arbitrary

element in X and v “ K ˚ ω, we denote by pψ,wq “ S pφ, ωq the solution of the following Cauchy problem:

$

’

’

’

’

’

&

’

’

’

’

’

%

Bt ψ ´∆ψ “ Fpφ, ωq :“ η p |φ | q
“
ˇ

ˇ∇φ̂
ˇ

ˇ

2
φ̂´ v ¨∇φ̂

‰

, in R2 ˆ p0, T q;

Bt w ´∆w “ ´v ¨∇ω ´∇ˆ∇ ¨ p∇ψ d∇ψ q , in R2 ˆ p0, T q;

v “ K ˚ ω, ψ p0, ¨q “ φ0 p¨q , w p0, ¨q “ ω0 p¨q .

(3.3)

In (3.3) η is a non-negative smooth cut-off function defined on R` which satisfies η ” 1 on p1{2,8q and η ” 0

on p0, 1{4q. Moreover φ̂ “ φ
L

|φ| is the normalized vector of φ. If the operator S has a fixed point in X, then

by (3.3), the fixed point must solve the following initial value problem:

$

’

’

’

’

’

&

’

’

’

’

’

%

Bt φ´∆φ “ Fpφ, ωq, in R2 ˆ p0, T q;

Bt ω ´∆ω “ ´v ¨∇ω ´∇ˆ∇ ¨ p∇φd∇φq , in R2 ˆ p0, T q;

v “ K ˚ ω, φ p0, ¨q “ φ0 p¨q , ω p0, ¨q “ ω0 p¨q .

(3.4)

A simple maximum principle yields that solutions of (3.4) with the images of φ0 in S2 is a solution of (1.2).

Therefore the proof of Theorem 1.2 is then reduced to show that S is a contraction mapping from X to itself.

To do so, we substract (3.2) from (3.3) and get the following Cauchy problem satisfied by pψ ´ φ˚, w ´ ω˚q:

$

’

’

’

’

’

&

’

’

’

’

’

%

Bt pψ ´ φ˚ q ´∆ pψ ´ φ˚ q “ Fpφ, ωq, in R2 ˆ p0, T q;

Bt pw ´ ω˚ q ´∆ pw ´ ω˚q “ ´v ¨∇ω ´∇ˆ∇ ¨
`

∇ψ d∇ψ q, in R2 ˆ p0, T q;

ψ p0, ¨q ´ φ˚ p0, ¨q “ 0, wp0, ¨q ´ ω˚ p0, ¨q “ 0.

(3.5)

Now we should prove pψ,wq P X. Thus we need
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Lemma 3.1. There exists a positive constant M so that for all pφ, ωq P X, we have

|||Fpφ, ωq |||1;1 `
ˇ

ˇ∇2 Fpφ, ωq
ˇ

ˇ

0
ď M.

Here M depends on ||| ¨ |||4;1-norm of φ0 ´ e and ||| ¨ |||2;2-norm of ω0.

In this lemma and the remainings of this section, if the space-time is R2 ˆ r0, T s, we always use | ¨ |0 to simply

denote the L8-norm of a given quantity on R2ˆr0, T s. To show that S is a contraction mapping, the following

lemma is required:

Lemma 3.2. There exists a positive constant M depending only on the ||| ¨ |||4;1-norm of φ0 ´ e and ||| ¨ |||2;2-

norm of ω0 such that for all pφj , ωjq P X (j “ 1, 2), we have

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ˇ

ˇFpφ1, ω1q ´ Fpφ2, ω2q
ˇ

ˇ ÀM
ř1
i“0

ˇ

ˇ∇iφ1 ´∇iφ2
ˇ

ˇ`

ˆ

ř2
i“1

ˇ

ˇ∇φi
ˇ

ˇ

˙

ˇ

ˇv1 ´ v2
ˇ

ˇ;

ˇ

ˇ∇Fpφ1, ω1q ´∇Fpφ2, ω2q
ˇ

ˇ ÀM
ř2
i“0

ˇ

ˇ∇iφ1 ´∇iφ2
ˇ

ˇ`

ˆ

ř2
i,j“1

ˇ

ˇ∇iφj
ˇ

ˇ

˙ ˆ

ř1
i“0

ˇ

ˇ∇iv1 ´∇iv2
ˇ

ˇ

˙

ˇ

ˇ∇2Fpφ1, ω1q ´∇2Fpφ2, ω2q
ˇ

ˇ

0
ÀM

ř3
i“0

ˇ

ˇ∇iφ1 ´∇iφ2
ˇ

ˇ

0
`
ř2
i“0

ˇ

ˇ∇iv1 ´∇iv2
ˇ

ˇ

0
.

Here vj “ K ˚ ωj (j “ 1, 2) are two velocity fields recovered by the Biot-Savart law.

In the remaining of this section we finish the proof of Lemma 3.1. With (3.8) and (3.10) below, the proof

of Lemma 3.2 can be easily obtained and hence is omitted for brevity.

Proof of Lemma 3.1. Under the assumptions made for pφ0, ω0q in Theorem 1.2, Lemma 2.3 implies that

|||φ˚ ´ e |||4;1; r0,T s À |||φ0 ´ e |||4;1 e
2T and |||ω˚ |||2;2; r0,T s À |||ω0 |||2;2 e

T {2. (3.6)

In view of the definition of the space X in (3.1), we have ω P C˚,24 r0, T s and φ P C˚,32 r0, T s, which yield, by

Lemma 2.6, the continuity of v, ∇v and ∇2v on R2ˆ r0, T s. Therefore we know that ∇iFpφ, ωq (i “ 0, 1, 2) are

all continuous on R2 ˆ r0, T s. We are left to show the estimate in Lemma 3.1.

For any p ą 2 and t P r0, T s, it holds

}∇i vp¨, tq }8 Àp }∇iωp¨, tq}1 ` }∇iωp¨, tq}p, i “ 0, 1, 2.

Taking supremum over all t P r0, T s and using Lemma 2.4, we can reduce the above estimates to

ˇ

ˇ∇i v
ˇ

ˇ

0
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇iω
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
, i “ 0, 1, 2. (3.7)

Employing (3.6) and the definition of X in (3.1), we can show

|||φ´ e |||2;1; r0,T s `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s
À |||φ0 ´ e |||4;1 ` 1 (3.8)

and

|||ω |||1;2; r0,T s `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ω
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
À |||ω0 |||2;2 ` 1. (3.9)

Thus by (3.7) and (3.9), it holds

2
ÿ

i“0

|∇iv |0 ď M. (3.10)
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Here and in what follows M is a constant depending only on the ||| ¨ |||4;1-norm of φ0´ e and ||| ¨ |||2;2-norm of ω0.

In light of the definition of Fpφ, ωq in (3.3), by (3.8), (3.10) and direct calculations, we can show that

$

’

’

’

’

’

&

’

’

’

’

’

%

ˇ

ˇFpφ, ωq
ˇ

ˇ À
ˇ

ˇ∇φ
ˇ

ˇ

2
`
ˇ

ˇv
ˇ

ˇ

ˇ

ˇ∇φ
ˇ

ˇ,

ˇ

ˇ∇Fpφ, ωq
ˇ

ˇ À
“

|v | ` |∇φ |
‰ “

|∇φ |2 ` |∇2φ |
‰

`
“

|v |2 ` |∇v |
‰

|∇φ |,

ˇ

ˇ∇2Fpφ, ωq
ˇ

ˇ

0
ď M,

(3.11)

Using (3.8), (3.10) and the first estimate in (3.11), we get

ˇ

ˇFpφ, ωq
ˇ

ˇ e|x| À
ˇ

ˇ∇φ
ˇ

ˇ

2
e|x| `

ˇ

ˇv
ˇ

ˇ

0

ˇ

ˇ∇φ
ˇ

ˇ e|x| ď M, @ px, tq P R2 ˆ r0, T s.

Taking supreme over R2 ˆ r0, T s, we obtain the desired uniform boundedness of Fpφ, ωq. Same arguments can

be applied to show that ∇Fpφ, ωq is uniformly bounded from above by M in C˚1 r0, T s. Here one just needs

(3.8), (3.10) and the second estimate in (3.11).

III.2. PROOF OF THEOREM 1.2

Now we proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2: In the proof we still use M to denote a large positive constant depending only on the

||| ¨ |||4;1-norm of φ0 ´ e and ||| ¨ |||2;2-norm of ω0.

Step 1. Let pφ, ωq be an arbitrary element in X. pψ,wq “ Spφ, ωq is the solution of (3.5). The |||¨|||1;1-

norm of ψ ´ φ˚ can be estimated by Lemma 2.1. With (2.3) and the first equation in (3.5), one can show that

|||ψ ´ φ˚ |||1; r0,T s ` T
1{2 |||∇ψ ´∇φ˚ |||1; r0,T s À T |||Fpφ, ωq |||1; r0,T s.

Applying Lemma 3.1 to the right-hand side above implies

|||ψ ´ φ˚ |||1; r0,T s ` T
1{2 |||∇ψ ´∇φ˚ |||1; r0,T s ÀM T. (3.12)

Making spatial derivative one more time on both sides of the first equation in (3.5), by Lemma 2.1 and Lemma

3.1, we can derive that

|||∇ψ ´∇φ˚ |||1; r0,T s ` T
1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ψ ´∇2φ˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1; r0,T s
À T |||∇Fpφ, ωq |||1; r0,T s ÀM T. (3.13)

Moreover in light of (2.4), ∇3ψ ´∇3φ˚ can be estimated as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ψ ´∇3φ˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ; r0,T s
Àα T α{4 max

tPr0,T s

“

∇Fpφ, ωqp¨, tq
‰1{2

α
|||∇Fpφ, ωq |||

1{2
1; r0,T s

Àα,M T α{4 max
tPr0,T s

“

∇Fpφ, ωqp¨, tq
‰1{2

α
.

Here we take θ “ 1{2 and β “ 1 in (2.4). α is a constant in p0, 1q. In light of Lemma 3.1, by interpolation

inequality, we can show that

max
tPr0,T s

“

∇Fpφ, ωqp¨, tq
‰

α
À

ˇ

ˇ∇Fpφ, ωq
ˇ

ˇ

0
`
ˇ

ˇ∇2Fpφ, ωq
ˇ

ˇ

0
ď M. (3.14)

Thus the above two estimates imply that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ψ ´∇3φ˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ; r0,T s
Àα,M T α{4. (3.15)
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Combining this estimate with the first estimate in (3.6), we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ψ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ; r0,T s
ď M. (3.16)

Furthermore by (3.13) and the first estimate in (3.6), the following boundedness holds

|||∇ψ |||1; r0,T s `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ψ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1; r0,T s
ď M. (3.17)

In light of (3.9)-(3.10) and (3.16)-(3.17), one can easily show that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇv ¨∇ω `∇ˆ∇ ¨
`

∇ψ d∇ψ
˘
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s
ď M. (3.18)

Applying this estimate and Lemma 2.1 to the second equation in (3.5) yields

|||w ´ ω˚ |||2; r0,T s ` T
1{2 |||∇w ´∇ω˚ |||2; r0,T s ÀM T. (3.19)

Taking one more spatial derivative on both sideds of the first equation in (3.5), by (3.14) and Lemma 2.2, we

can show for any β P p0, αq that

max
tPr0,T s

“

∇3ψp¨, tq ´∇3φ˚p¨, tq
‰

β
Àα,β max

tPr0,T s

“

∇Fpφ, ωqp¨, tq
‰

α
T α{2´β{2 Àα,β,M T α{2´β{2.

By an interpolation inequality, the first estimate in (3.6) yields

max
tPr0,T s

“

∇3φ˚p¨, tq
‰

β
ď M.

Thus the above two estimates imply that

max
tPr0,T s

“

∇3ψp¨, tq
‰

β
Àβ M. (3.20)

In light of this estimate, (3.9)-(3.10) and (3.16)-(3.17), by interpolation inequalities, it can be shown that

max
tPr0,T s

“

v ¨∇ω `∇ˆ∇ ¨
`

∇ψ d∇ψ
˘‰

β
Àβ M. (3.21)

Using this estimate, (3.18) and (2.4) in Lemma 2.1, ∇2w ´∇2ω˚ can be estimated as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2w ´∇2ω˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
(3.22)

Àβ max
tPr0,T s

“

v ¨∇ω `∇ˆ∇ ¨
`

∇ψ d∇ψ
˘‰1{2

β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇv ¨∇ω `∇ˆ∇ ¨
`

∇ψ d∇ψ
˘
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1{2

2; r0,T s
T β{4 Àβ,M T β{4.

Here we used the second equation in (3.5). In light of (3.12)-(3.13), (3.15), (3.19) and (3.22), if we take T

depending on M and β to be small enough, then pψ,wq P X. This shows that S is an operator from X to itself.

Step 2. This step is devoted to showing that S is a contraction mapping. In the remaining of this step

we let pφ1, ω1q and pφ2, ω2q be two arbitrary elements in X. For j “ 1, 2, we denote by vj the vector field K ˚ ωj .

If pψj , wjq “ Spφj , ωjq (j “ 1, 2), then by (3.5) it holds

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bt pψ1 ´ ψ2 q ´∆ pψ1 ´ ψ2 q “ Fpφ1, ω1q ´ Fpφ2, ω2q, in R2 ˆ p0, T q;

Bt pw1 ´ w2 q ´∆ pw1 ´ w2q “ ´
“

v1 ¨∇ω1 ´ v2 ¨∇ω2

‰

in R2 ˆ p0, T q;

´
“

∇ˆ∇ ¨
`

∇ψ1 d∇ψ1 q ´∇ˆ∇ ¨
`

∇ψ2 d∇ψ2 q
‰

;

ψ1 p0, ¨q ´ ψ2 p0, ¨q “ 0, w1p0, ¨q ´ w2 p0, ¨q “ 0.

(3.23)
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The |||¨|||1;1-norm of ψ1 ´ ψ2 can be estimated by Lemma 2.1. With (2.3) and the first equation in (3.23),

one can show that

|||ψ1 ´ ψ2 |||1; r0,T s ` T
1{2 |||∇ψ1 ´∇ψ2 |||1; r0,T s À T |||Fpφ1, ω1q ´ Fpφ2, ω2q |||1; r0,T s.

Using the first estimate in Lemma 3.2 and (3.8), we have

|||Fpφ1, ω1q ´ Fpφ2, ω2q |||1; r0,T s ÀM |||φ1 ´ φ2 |||1;1; r0,T s `
ˇ

ˇv1 ´ v2
ˇ

ˇ

0
.

The last two estimates imply that

|||ψ1 ´ ψ2 |||1; r0,T s ` T
1{2 |||∇ψ1 ´∇ψ2 |||1; r0,T s ÀM T

„

|||φ1 ´ φ2 |||1;1; r0,T s `
ˇ

ˇv1 ´ v2
ˇ

ˇ

0



.

Moreover by Lemma 2.5, this estimate can be reduced to

|||ψ1 ´ ψ2 |||1; r0,T s ` T
1{2 |||∇ψ1 ´∇ψ2 |||1; r0,T s ÀM T

„

|||φ1 ´ φ2 |||1;1; r0,T s ` |||ω1 ´ ω2 |||2; r0,T s



ď T ||| pφ1 ´ φ2, ω1 ´ ω2q|||X . (3.24)

Here we used ||| pφ1 ´ φ2, ω1 ´ ω2q |||X to simply denote the sum

|||φ1 ´ φ2 |||2;1; r0,T s `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3φ1 ´∇3φ2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s
` |||ω1 ´ ω2 |||1;2; r0,T s `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ω1 ´∇2ω2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
.

Making spatial derivative one more time on both sides of the first equation in (3.23), by Lemma 2.1, we have

|||∇ψ1 ´∇ψ2 |||1; r0,T s ` T
1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ψ1 ´∇2ψ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1; r0,T s
À T |||∇Fpφ1, ω1q ´∇Fpφ2, ω2q |||1; r0,T s.

In light of the second estimate in Lemma 3.2, by Lemma 2.5, it holds

|||∇Fpφ1, ω1q ´∇Fpφ2, ω2q |||1; r0,T s ÀM |||φ1 ´ φ2 |||2;1; r0,T s `
1
ÿ

i“0

ˇ

ˇ∇iv1 ´∇iv2
ˇ

ˇ

0

ÀM |||φ1 ´ φ2 |||2;1; r0,T s ` |||ω1 ´ ω2 |||1;2; r0,T s. (3.25)

The last two estimates then yield

|||∇ψ1 ´∇ψ2 |||1; r0,T s ` T
1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ψ1 ´∇2ψ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1; r0,T s
ÀM T ||| pφ1 ´ φ2, ω1 ´ ω2q |||X . (3.26)

The third order derivatives of ψ1 ´ ψ2 can be estimated by (2.4) and (3.25) as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ψ1 ´∇3ψ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ; r0,T s
Àα,M (3.27)

T α{4 max
tPr0,T s

“

∇Fpφ1, ω1qp¨, tq ´∇Fpφ2, ω2qp¨, tq
‰1{2

α
||| pφ1 ´ φ2, ω1 ´ ω2q |||

1{2
X .

Here we take θ “ 1{2 and β “ 1 in (2.4). α is a constant in p0, 1q. In light of the second and third estimates in

Lemma 3.2, by interpolation inequality, we can show that

max
tPr0,T s

“

∇Fpφ1, ω1qp¨, tq ´∇Fpφ2, ω2q
‰

α
À

2
ÿ

i“1

ˇ

ˇ∇iFpφ1, ω1q ´∇iFpφ2, ω2q
ˇ

ˇ

0

ÀM

3
ÿ

i“0

ˇ

ˇ∇iφ1 ´∇iφ2
ˇ

ˇ

0
`

2
ÿ

i“0

ˇ

ˇ∇iv1 ´∇iv2
ˇ

ˇ

0
.
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By Lemma 2.5, this estimate can be reduced to

max
tPr0,T s

“

∇Fpφ1, ω1qp¨, tq ´∇Fpφ2, ω2q
‰

α
ÀM ||| pφ1 ´ φ2, ω1 ´ ω2q |||X . (3.28)

Thus (3.27)-(3.28) imply that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ψ1 ´∇3ψ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ; r0,T s
Àα,M T α{4 |||pφ1 ´ φ2, ω1 ´ ω2q |||X . (3.29)

Direct calculations show that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇ˆ∇ ¨
`

∇ψ1 d∇ψ1

˘

´∇ˆ∇ ¨
`

∇ψ2 d∇ψ2

˘
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s

À
ˇ

ˇ∇ψ1

ˇ

ˇ

0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ψ1 ´∇3ψ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s

`
ˇ

ˇ∇3ψ2

ˇ

ˇ

0
|||∇ψ1 ´∇ψ2 |||2; r0,T s `

“
ˇ

ˇ∇2ψ1

ˇ

ˇ

0
`
ˇ

ˇ∇2ψ2

ˇ

ˇ

0

‰
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ψ1 ´∇2ψ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s
.

Therefore by (3.16)-(3.17), (3.26) and (3.29), this estimate can be reduced to
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇ˆ∇ ¨
`

∇ψ1 d∇ψ1

˘

´∇ˆ∇ ¨
`

∇ψ2 d∇ψ2

˘
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2; r0,T s
Àα,M T α{4 ||| pφ1 ´ φ2, ω1 ´ ω2q |||X .

On the other hand using Lemma 2.5 and (3.9)-(3.10) yields

|||v1 ¨∇ω1 ´ v2 ¨∇ω2 |||2; r0,T s À
ˇ

ˇv1 ´ v2
ˇ

ˇ

0
|||∇ω1 |||2; r0,T s `

ˇ

ˇv2
ˇ

ˇ

0
|||∇ω1 ´∇ω2 |||2; r0,T s

À |||ω1 ´ ω2 |||2; r0,T s |||∇ω1 |||2; r0,T s `
ˇ

ˇv2
ˇ

ˇ

0
|||∇ω1 ´∇ω2 |||2; r0,T s

ÀM |||ω1 ´ ω2 |||1;2; r0,T s.

The last two estimates then imply that

|||R.H.S. |||2; r0,T s ÀM ||| pφ1 ´ φ2, ω1 ´ ω2q |||X . (3.30)

Here we used R.H.S. to simply denote the right-hand side of the second equation in (3.23). Applying this

estimate and Lemma 2.1 to the second equation in (3.23), we get

|||w1 ´ w2 |||2; r0,T s ` T
1{2 |||∇w1 ´∇w2 |||2; r0,T s ÀM T ||| pφ1 ´ φ2, ω1 ´ ω2q |||X . (3.31)

Taking one more spatial derivative on both sideds of the first equation in (3.23), by (3.28) and Lemma 2.2, we

can show for any β P p0, αq that

max
tPr0,T s

“

∇3ψ1p¨, tq ´∇3ψ2p¨, tq
‰

β
Àα,β max

tPr0,T s

“

∇Fpφ1, ω1qp¨, tq ´∇Fpφ2, ω2qp¨, tq
‰

α
T α{2´β{2

Àα,β,M T α{2´β{2 ||| pφ1 ´ φ2, ω1 ´ ω2q |||X .

Using this estimate, (3.16)-(3.17), (3.20), (3.26) and (3.29), by interpolation inequalities, we have

max
tPr0,T s

“

∇ˆ∇ ¨
`

∇ψ1 d∇ψ1

˘

´∇ˆ∇ ¨
`

∇ψ2 d∇ψ2

˘‰

β
Àα,β,M T γ ||| pφ1 ´ φ2, ω1 ´ ω2q |||X ,

where γ is a positive constant depending on α and β. The Hölder estimate for v1 ¨ ∇ω1 ´ v2 ¨ ∇ω2 can be

estimated as follows:

max
tPr0,T s

“

v1 ¨∇ω1 ´ v2 ¨∇ω2

‰

β
À

ˇ

ˇ∇ω1

ˇ

ˇ

0
max
tPr0,T s

“

v1 ´ v2
‰

β
`
ˇ

ˇv1 ´ v2
ˇ

ˇ

0
max
tPr0,T s

“

∇ω1

‰

β

`
ˇ

ˇ∇ω1 ´∇ω2

ˇ

ˇ

0
max
tPr0,T s

“

v2
‰

β
`
ˇ

ˇv2
ˇ

ˇ

0
max
tPr0,T s

“

∇ω1 ´∇ω2

‰

β

ÀM |||ω1 ´ ω2 |||1;2; r0,T s `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ω1 ´∇2ω2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
.
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To derive the above estimate, we used (3.9)-(3.10), Lemma 2.5 and various interpolation inequalities. Combining

the last two estimates, one can easily show that

max
tPr0,T s

“

R.H.S.
‰

β
Àβ,M ||| pφ1 ´ φ2, ω1 ´ ω2q |||X .

In light of this estimate and (3.30), the following estimate holds by (2.4) in Lemma 2.1:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2w1 ´∇2w2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4; r0,T s
Àβ max

tPr0,T s

“

R.H.S.
‰1{2

β
|||R.H.S. |||

1{2
2; r0,T s T

β{4

Àβ,M T β{4 ||| pφ1 ´ φ2, ω1 ´ ω2q |||X . (3.32)

By (3.24), (3.26), (3.29) and (3.31)-(3.32), it holds

||| pψ1 ´ ψ2, w1 ´ w2q |||X Àβ,M T β{4 ||| pφ1 ´ φ2, ω1 ´ ω2q |||X .

Therefore S is a contraction mapping from X to itself, provided that T is small enough.

Step 3. Now we choose T to be small enough. By the contraction mapping theorem, S admits a fixed

point in X. Denoting by pφ, ωq the fixed point, we know that pφ, ωq is a solution of (3.4). Since φ P C˚,21 r0, T s,

by Lemma 3.1 and the first equation in (3.4), we have Btφ P C˚1 r0, T s. It then turns out that

1´
ˇ

ˇφpx, tq | ď
ˇ

ˇφpx, tq ´ φ0
ˇ

ˇ ď

ż t

0

ˇ

ˇ Bsφpx, sq
ˇ

ˇ ds ď t |||Btφ |||1; r0,T s, @ px, tq P R2 ˆ p0, T q.

If t ă T˚ ă T , where T˚ is sufficiently small, then |φpx, tq | ą 1{2, for all px, tq P R2 ˆ
`

0, T˚
˘

. In light that

η ” 1 on p1{2,8q, the first equation in (3.4) can then be reduced to

Btφ´∆φ “
ˇ

ˇ∇φ̂
ˇ

ˇ

2
φ̂´ v ¨∇φ̂, on R2 ˆ

`

0, T˚
˘

.

On the domain R2 ˆ p0, T˚ q, this equation yields

Btρ´∆ρ “ ´2
ˇ

ˇ∇φ´∇φ̂
ˇ

ˇ

2
, where ρ “

ˇ

ˇφ´ φ̂
ˇ

ˇ

2
.

A standard maximal principle implies that ρ ” 0 on R2 ˆ
`

0, T˚
˘

. In other words on R2 ˆ
`

0, T˚
˘

, pφ, ωq is a

solution of (1.2) with |φ | ” 1.

Step 4. In this step we show that pφ, ωq P C˚,41 r0, T˚s ˆ C˚,22 r0, T˚s. Taking spatial derivative one more

time on the both sides of the first equation in (1.2) and using φ˚ in (3.2), we have

Bt
`

Bj φ´ Bj φ˚
˘

´∆
`

Bj φ´ Bj φ˚
˘

“ ´Bj v ¨∇φ´ v ¨∇Bj φ` 2
`

∇φ : ∇Bj φ
˘

φ`
ˇ

ˇ∇φ
ˇ

ˇ

2
Bj φ. (3.33)

In light of (3.14) and Lemma 3.1, by Lemma 2.1, it holds ∇3φ ´ ∇3φ˚ P C˚β r0, T˚s for all β P p1,8q. This

result and the first estimate in (3.6) imply that ∇3φ P C˚β r0, T˚s for all β P p1,8q. Taking one more spatial

derivative on both sides of (3.33) and using φ˚ in (3.2), we have

Bt
`

Bi Bj φ´ Bi Bj φ˚
˘

´∆
`

Bi Bj φ´ Bi Bj φ˚
˘

“ ´Bi Bj v ¨∇φ´ v ¨∇Bi Bj φ` 2
`

∇φ : ∇Bi Bj φ
˘

φ` l.o.t., (3.34)

where l.o.t. is a quantity containing all the lower order terms on the right-hand side of (3.34). It can also be

shown that l.o.t. lies in the space C˚1 r0, T˚s. Applying (2.3) to the above equation, we obtain

|||∇Bi Bj φ´∇Bi Bj φ˚ |||β;r0,T˚s À T
1{2
˚

ˆ

ˇ

ˇv
ˇ

ˇ

0; r0,T˚s
`
ˇ

ˇ∇φ
ˇ

ˇ

0;r0,T˚s

˙

|||∇Bi Bj φ |||β; r0,T˚s

`
ˇ

ˇ∇2 v
ˇ

ˇ

0; r0,T˚s
|||∇φ |||β; r0,T˚s ` ||| l.o.t. |||β; r0,T˚s, β P p1,8q.
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Employing (3.8) and (3.10), we can reduce the last estimate to

|||∇Bi Bj φ |||β;r0,T˚s À |||∇Bi Bj φ˚ |||β;r0,T˚s `MT
1{2
˚ |||∇Bi Bj φ |||β; r0,T˚s `M |||∇φ |||β; r0,T˚s ` ||| l.o.t. |||β; r0,T˚s

À |||∇Bi Bj φ˚ |||1;r0,T˚s `MT
1{2
˚ |||∇Bi Bj φ |||β; r0,T˚s `M |||∇φ |||1; r0,T˚s ` ||| l.o.t. |||1; r0,T˚s.

Thus if we choose T˚ small enough depending on the constant M , then it follows that

|||∇Bi Bj φ |||β;r0,T˚s À |||∇Bi Bj φ˚ |||1;r0,T˚s `M |||∇φ |||1; r0,T˚s ` ||| l.o.t. |||1; r0,T˚s. (3.35)

Taking β Ñ 1 yields that ∇3φ P C˚1 r0, T˚s.

In light of (3.9), ∇2ω P C˚4 r0, T˚s. Then by Lemma 2.5, ∇2v has finite L8Cγ -norm on R2 ˆ r0, T˚s for

all γ P p0, 1q. This result and (3.20) show that the right-hand side of (3.34) lies in L8
`

r0, T˚s; CγpR2q
˘

for

some γ P p0, 1q. Therefore Lemma 2.1 shows that ∇4φ ´ ∇4φ˚ P C˚β r0, T˚s for all β ą 1. Here we used the

previous consequence that ∇3φ P C˚1 r0, T˚s. Therefore in light of the first estimate in (3.6), ∇4φ P C˚β r0, T˚s

for all β ą 1. This result and interpolation inequality show that the right-hand side of the last equation in (1.2)

has finite L8Cγ -norm for all γ P p0, 1q, which furthermore shows by (2.4) that ∇2ω ´ ∇2ω˚ P C˚α r0, T˚s for

all α ą 2. Here we have used the fact that v ¨∇ω and the right-hand side of the last equation in (1.2) lies in

C˚2 r0, T˚s. Moreover by the second estimate in (3.6), it holds ∇2ω˚ P C˚α r0, T˚s for all α ą 2. Therefore we can

imply from the above arguments that ∇2ω P C˚α r0, T˚s for all α ą 2. Now we make spatial derivative once for

the last equation in (1.2). It turns out that

Bt∇ω ´∆∇ω “ R1 :“ ´∇v ¨∇ω ´ v ¨∇2ω ´∇4φ ¨∇φ´∇3φ ¨∇2φ. (3.36)

Similar derivation as for (3.35) shows that the ||| ¨ |||α; r0,T˚s -norm of ∇2ω is uniformly bounded from above by

a constant independent of α. Then we take α Ñ 2 and get the optimal exponential decay of ∇2ω at spatial

infinity. That is ∇2ω P C˚2 r0, T˚s.

We are left to show that ∇4φ P C˚1 r0, T˚s. Since ∇2v has finite L8Cγ -norm on R2ˆr0, T˚s for all γ P p0, 1q

and ∇4φ P C˚β r0, T˚s for all β ą 1, the right-hand side of (3.34) has finite L8C3{4-norm on R2 ˆ r0, T˚s. It

then follows, by Lemma 2.2, that ∇4φ´∇4φ˚ has finite L8C1{2-norm on R2 ˆ r0, T˚s. Moreover this norm is

bounded from above by a constant depending on M . As for ∇4φ˚, we do not know that it has finite L8C1{2 -

norm on R2 ˆ r0, T˚s. But we can represent ∇5φ˚ as follows:

∇5φ˚ px, tq “

ż

R2

∇Gpx´ z, tq∇4φ0 pzq dz, @ px, tq P R2 ˆ p0,8q.

Therefore it holds, for all px, tq P R2 ˆ p0,8q, that

ˇ

ˇ∇5φ˚ px, tq
ˇ

ˇ À

ż

R2

Gpx´ z, tq
|x´ z|

t

ˇ

ˇ∇4φ0pzq
ˇ

ˇe|z| e´|z| À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
t´1{2,

which furthermore implies the following L8 -boundedness of ∇5φ˚:

›

›∇5φ˚p¨, tq
›

›

8
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
t´1{2, @ t P

`

0,8
˘

. (3.37)

By (3.37) and the first estimate in (3.6), we have, with an use of simple interpolation inequality, that

›

›∇4φ˚p¨, tq
›

›

C1{2 À
›

›∇4φ˚p¨, tq
›

›

8
`
›

›∇5φ˚p¨, tq
›

›

8
ÀM t´1{2, @ t P

`

0, T˚
‰

.

Therefore the above arguments show that

›

›∇4φp¨, tq
›

›

C1{2 ď
›

›∇4φp¨, tq ´∇4φ˚p¨, tq
›

›

C1{2 `
›

›∇4φ˚p¨, tq
›

›

C1{2 ÀM t´1{2, @ t P
`

0, T˚
‰

. (3.38)

Using the same derivation as for (3.38), by the last eqution in (1.2), we get

›

›∇2ωp¨, tq
›

›

C1{2 ÀM t´1{2, @ t P
`

0, T˚
‰

. (3.39)

16



Now we come back to (3.36). Using ω˚ in (3.2) and (2.8), we can represent ∇3ω ´∇3ω˚ as follows:

Bij∇ω px, tq ´ Bij∇ω˚ px, tq “ 2´1

ż t

0

ż

R2

Gpx´ z, t´ sq
“

R1pz, sq ´ R1px, sq
‰

„

pzi ´ xiqpzj ´ xjq

2pt´ sq2
´

δij
t´ s



dz ds.

Here px, tq is a fixed point in R2 ˆ
`

0, T˚s. In light of (3.38)-(3.39) and the fact that R1 P C˚2 r0, T˚s, it holds

from the above equality that

ˇ

ˇBij∇ω px, tq ´ Bij∇ω˚ px, tq
ˇ

ˇ À

ż t

0

ż

R2

Gpx´ z, t´ sq

ˇ

ˇ

ˇ

ˇ

R1pz, sq ´ R1px, sq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇz ´ x
ˇ

ˇ

2
` pt´ sq

pt´ sq2
dz ds

ÀM

ż t

0

ż

R2

Gpx´ z, t´ sq

ˇ

ˇ

ˇ

ˇ

R1pz, sq ´ R1px, sq

ˇ

ˇ

ˇ

ˇ

1{2 „

e´|z|{4 ` e´|x|{4


ˇ

ˇz ´ x
ˇ

ˇ

2
` pt´ sq

pt´ sq2
dz ds

ÀM

ż t

0

ż

R2

Gpx´ z, t´ sq
|z ´ x|1{4

s1{4

„

e´|z|{4 ` e´|x|{4


ˇ

ˇz ´ x
ˇ

ˇ

2
` pt´ sq

pt´ sq2
dz ds.

By the same derivation for (2.5), the above estimate can be reduced to
ˇ

ˇBij∇ω px, tq ´ Bij∇ω˚ px, tq
ˇ

ˇ ÀM e´|x|{4 t´1{8 À e´|x|{4 t´1{2, @ px, tq P R2 ˆ
`

0, T˚
‰

.

Similar derivation as for (3.37) yields that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ω˚p¨, tq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
À t´1{2. Thus it holds by this result and the last

estimate that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ω p¨, tq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
ÀM t´1{2, @ t P

`

0, T˚
‰

.

Applying this estimate and Lemma 2.5, we have
›

›∇3 vp¨, tq
›

›

8
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇3ωp¨, tq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
ÀM t´1{2, @ t P

`

0, T˚
‰

. (3.40)

Now we make spatial derivative one more time on both sides of (3.34). It follows that

Bt
`

∇3φ´∇3φ˚
˘

´∆
`

∇3φ´∇3φ˚
˘

“ R2 :“ ´∇3v ¨∇φ´ v ¨∇4φ` 2
`

∇φ : ∇4φ
˘

φ` l.o.t. (3.41)

It then turns out by (2.6) that

∇4φpx, tq ´∇4φ˚px, tq “ 2´1

ż t

0

ż

R2

Gpx´ z, t´ sqR2pz, sq
z ´ x

t´ s
dz ds.

This equality yields, for all px, tq P R2 ˆ
`

0, T˚
‰

, that

ˇ

ˇ∇4φpx, tq ´∇4φ˚px, tq
ˇ

ˇ À M e´|x|.`

ż t

0

ż

R2

Gpx´ z, t´ sq
ˇ

ˇ∇3vpz, sq
ˇ

ˇ

ˇ

ˇ∇φpz, sq
ˇ

ˇ

|z ´ x|

t´ s

`

ˆ

ˇ

ˇv
ˇ

ˇ

0; r0,T˚s
`
ˇ

ˇ∇φ
ˇ

ˇ

0; r0,T˚s

˙
ż t

0

ż

R2

Gpx´ z, t´ sq
ˇ

ˇ∇4φpz, sq
ˇ

ˇ

|z ´ x|

t´ s
.

The first term on the right-hand side above follows from the term l.o.t. in (3.41). In fact we know that

l.o.t. P C˚1 r0, T˚s. Therefore (2.3) implies that Φr l.o.t.s also lies in C˚1 r0, T˚s, which gives us the first term on

the right-hand side above. Using (3.8), (3.10), (3.40) and the same derivation as for (2.5), we can get from the

above estimate that

ˇ

ˇ∇4φpx, tq ´∇4φ˚px, tq
ˇ

ˇ ÀM e´|x| `

ż t

0

ż

R2

Gpx´ z, t´ sq s´1{2 e´|z|
|z ´ x|

t´ s

`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s

ż t

0

ż

R2

Gpx´ z, t´ sq e´|z |{β
|z ´ x|

t´ s

ÀM e´|x| ` e´|x|
ż t

0

pt´ sq´1{2 s´1{2 ds`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
e´|x|{β

ż t

0

pt´ sq´1{2 ds

ÀM e´|x| `
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
e´|x|{β T

1{2
˚ .
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Here β is an arbitrary constant larger than 1. Multiplying e|x|{β on both sides of the above estimate and taking

supreme over px, tq P R2 ˆ r0, T˚s, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ´∇4φ˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
ď M `M

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
T

1{2
˚ .

Using the first estimate in (3.6), we have ∇4φ˚ P C˚1 r0, T˚s. This result together with the above estimate yield

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
ď M `M

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
T

1{2
˚ .

Now we choose T˚ small enough (smallness depends on M). The last estimate can then be reduced to

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇4φ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β; r0,T˚s
ď M.

Taking β Ñ 1, we know that ∇4φ P C˚1 r0, T˚s. The proof is then finished.

We also claim without proof that

Remark 3.3. Let pφ, ωq be the classic solution obtained from Theorem 1.2. v “ K ˚ ω is the velocity field

recovered from ω by the Biot-Savart law. Then for any given α P p0, 1q, v has finite Cα{2,α-norm on R2ˆr0, T˚s.

IV. LOCAL EXISTENCE OF WEAK SOLUTION

In this section we study the local existence of solutions for (1.2) with φ0 P H1
e

`

R2; S2
˘

and ω0 P L1
`

R2
˘

.

Before we prove Theorem 1.3, two lemmas are given as follows.

Lemma 4.1. Let pφ0, ω0q be a smooth initial data on R2. Moreover we suppose that pφ0 ´ e, ω0q is compactly

supported on R2. By Theorem 1.2, for some T ą 0, the system (1.2) admits a classic solution on R2 ˆ r0, T s

with the given initial data pφ0, ω0q. Then for all p P p4{3, 2q and t P r0, T s, the following estimates hold:

Apptq Àp max
sPr0,ts

s1´1{p
›

›Gp¨, sq ˚ ω0

›

›

p
`A2

pptq `BptqCptq; (4.1)

Bptq Àp max
sPr0,ts

s1{4
›

›Gp¨, sq ˚∇φ0
›

›

4
`ApptqBptq `B

2ptq; (4.2)

Cptq Àp max
sPr0,ts

s1{2
›

›∇Gp¨, sq ˚∇φ0
›

›

2
`ApptqBptq `ApptqCptq `BptqCptq `B

3ptq. (4.3)

Here for any t P r0, T s, we define

Apptq :“ max
sPr0,ts

s1´1{p }ωp¨, sq}p , Bptq :“ max
sPr0,ts

s1{4 }∇φp¨, sq}4 , Cptq :“ max
sPr0,ts

s1{2
›

›∇2φp¨, sq
›

›

2
. (4.4)

Proof. The proof is divided into three steps.

Step 1. Let px, tq be an arbitrary point in R2 ˆ r0, T s. By the last equation in (1.2), ωpx, tq can be rep-

resented as shown below:

ωpx, tq “

ż

R2

Gpx´ z, tq ω0pzq `

ż t

0

ż

R2

Gpx´ z, t´ sq

„

´∇z ¨
`

ωv
˘

`∇z ¨
`

∇φ ¨∆φ
˘K



.

Integrating by part with respect to the z variable, we get from the above equality that

ωpx, tq “

ż

R2

Gpx´ z, tq ω0pzq `

ż t

0

ż

R2

∇zGpx´ z, t´ sq ¨

„

ωv ´
`

∇φ ¨∆φ
˘K



. (4.5)
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For any p P p4{3, 2q, 2p
L

p3p´ 2q and 2p
L

p4´ pq are two numbers larger than 1. Thus it holds

›

›

›

›

ż t

0

ż

R2

∇zGpx´ z, t´ sq ¨
`

ωv
˘

›

›

›

›

p

ď

ż t

0

›

›

›

›

ż

R2

∇zGpx´ z, t´ sq ¨
`

ωv
˘

›

›

›

›

p

ď

ż t

0

›

›∇Gp¨, t´ sq
›

›

2p { p3p´2q

›

› ωv
›

›

2p { p4´pq
. (4.6)

The second inequality in (4.6) follows by Young’s inequality for convolutions. With the use of Hölder’s inequality

and Calderon-Zygmund estimate, ωv can be estimated by

›

› ωv
›

›

2p { p4´pq
À

›

›ω
›

›

p

›

›v
›

›

2p { p2´pq
Àp

›

›ω
›

›

2

p
.

Applying the last estimate to (4.6) yields
›

›

›

›

ż t

0

ż

R2

∇zGpx´ z, t´ sq ¨
`

ωv
˘

›

›

›

›

p

Àp

ż t

0

pt´ sq´1{p
›

›ω
›

›

2

p
. (4.7)

Still using Young’s inequality for convolutions and noticing that 4p{pp` 4q ą 1, we can show that
›

›

›

›

ż t

0

ż

R2

∇zGpx´ z, t´ sq ¨
`

∇φ ¨∆φ
˘K

›

›

›

›

p

ď

ż t

0

›

›

›

›

ż

R2

∇zGpx´ z, t´ sq ¨
`

∇φ ¨∆φ
˘K

›

›

›

›

p

ď

ż t

0

›

›∇Gp¨, t´ sq
›

›

4p { pp`4q

›

›∇φ ¨∆φ
›

›

4{3

Àp

ż t

0

pt´ sq´5{4`1{p
›

›∇φ ¨∆φ
›

›

4{3
.

It then turns out by (4.5), (4.7) and the last estimate that

›

›ωp¨, tq
›

›

p
ď

›

›Gp¨, tq ˚ ω0

›

›

p
` Cp

ż t

0

pt´ sq´1{p
›

›ω
›

›

2

p
` Cp

ż t

0

pt´ sq´5{4`1{p
›

›∇φ ¨∆φ
›

›

4{3

Àp
›

›Gp¨, tq ˚ ω0

›

›

p
`

ż t

0

pt´ sq´1{p
›

›ω
›

›

2

p
`

ż t

0

pt´ sq´5{4`1{p
›

›∇φ
›

›

4

›

›∆φ
›

›

2
. (4.8)

Step 2. By the first equation in (1.2), Bj φ can be represented by

Bj φpx, tq “

ż

R2

Gpx´ z, tq Bj φ0pzq `

ż t

0

ż

R2

BzjGpx´ z, t´ sq

„

v ¨∇φ´
ˇ

ˇ∇φ
ˇ

ˇ

2
φ



pz,sq

. (4.9)

Still by Young’s inequality for convolution, it can be shown that
›

›

›

›

ż t

0

ż

R2

BzjGpx´ z, t´ sq
“

v ¨∇φ
‰

pz,sq

›

›

›

›

4

À

ż t

0

›

›∇Gp¨, t´ sq
›

›

2p { p3p´2q

›

›v ¨∇φ
›

›

4p { p4´pq

Àp

ż t

0

pt´ sq´1{p
›

›v
›

›

2p { p2´pq

›

›∇φ
›

›

4

Àp

ż t

0

pt´ sq´1{p
›

›ω
›

›

p

›

›∇φ
›

›

4
.

The last inequality above used Calderon-Zygmund estimate. Same method can be applied to show that
›

›

›

›

ż t

0

ż

R2

BzjGpx´ z, t´ sq
“
ˇ

ˇ∇φ
ˇ

ˇ

2
φ
‰

pz,sq

›

›

›

›

4

À

ż t

0

›

›∇Gp¨, t´ sq
›

›

4{3

›

›

ˇ

ˇ∇φ
ˇ

ˇ

2 ›
›

2

À

ż t

0

pt´ sq´3{4
›

›∇φ
›

›

2

4
.
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Using the last two estimates, by (4.9), we have

›

›∇φp¨, tq
›

›

4
ď

›

›Gp¨, tq ˚ Bjφ0
›

›

4
` Cp

ż t

0

pt´ sq´1{p
›

›ω
›

›

p

›

›∇φ
›

›

4
` C

ż t

0

pt´ sq´3{4
›

›∇φ
›

›

2

4
. (4.10)

Taking spatial derivative one more time on both sides of (4.9) implies that

Bij φpx, tq “

ż

R2

BiGpx´ z, tq Bjφ0pzq `

ż t

0

ż

R2

BxiGpx´ z, t´ sq Bj

„

v ¨∇φ´ |∇φ |2φ


pz,sq

. (4.11)

By Young’s inequality for convolutions, it holds

›

›

›

›

ż t

0

ż

R2

BxiGpx´ z, t´ sq
“

Bjv ¨∇φ
‰

pz,sq

›

›

›

›

2

ď

ż t

0

›

›∇Gp¨, t´ sq
›

›

4p { p5p´4q

›

›Bjv ¨∇φ
›

›

4p { pp`4q

Àp

ż t

0

pt´ sq´1{4´1{p
›

›∇v
›

›

p

›

›∇φ
›

›

4

Àp

ż t

0

pt´ sq´1{4´1{p
›

›ω
›

›

p

›

›∇φ
›

›

4
.

Similar arguments yield the following three estimates:

›

›

›

›

ż t

0

ż

R2

BxiGpx´ z, t´ sq
“

v ¨∇Bjφ
‰

pz,sq

›

›

›

›

2

ď

ż t

0

›

›∇Gp¨, t´ sq
›

›

2p { p3p´2q

›

›v ¨∇Bjφ
›

›

p

Àp

ż t

0

pt´ sq´1{p
›

›v
›

›

2p { p2´pq

›

›∇2φ
›

›

2

Àp

ż t

0

pt´ sq´1{p
›

›ω
›

›

p

›

›∇2φ
›

›

2
;

›

›

›

›

ż t

0

ż

R2

BxiGpx´ z, t´ sq
“

∇φ : ∇Bjφ
‰

pz,sq
φpz, sq

›

›

›

›

2

ď

ż t

0

›

›∇Gp¨, t´ sq
›

›

4{3

›

›∇φ : ∇Bjφ
›

›

4{3

À

ż t

0

pt´ sq´3{4
›

›∇φ
›

›

4

›

›∇2φ
›

›

2
;

›

›

›

›

ż t

0

ż

R2

BxiGpx´ z, t´ sq
“
ˇ

ˇ∇φ
ˇ

ˇ

2
Bjφ

‰

pz,sq

›

›

›

›

2

ď

ż t

0

›

›∇Gp¨, t´ sq
›

›

4{3

›

›

ˇ

ˇ∇φ
ˇ

ˇ

3 ›
›

4{3

À

ż t

0

pt´ sq´3{4
›

›∇φ
›

›

3

4
.

Applying the above four estimates to (4.11), we get

›

›∇2φp¨, tq
›

›

2
Àp

›

›∇Gp¨, tq ˚∇φ0
›

›

2
`

ż t

0

pt´ sq´1{4´1{p
›

›ω
›

›

p

›

›∇φ
›

›

4

`

ż t

0

pt´ sq´1{p
›

›ω
›

›

p

›

›∇2φ
›

›

2

`

ż t

0

pt´ sq´3{4
›

›∇φ
›

›

4

›

›∇2φ
›

›

2
`

ż t

0

pt´ sq´3{4
›

›∇φ
›

›

3

4
. (4.12)
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Step 3. Recalling the notations defined in (4.4), then by (4.8), we have, for all s P r0, ts, that

s1´1{p
›

›ωp¨, sq
›

›

p
Àp s1´1{p

›

›Gp¨, sq ˚ ω0

›

›

p
`A2

pptq s
1´1{p

ż s

0

ps´ τq´1{p τ´2`2{pdτ

` BptqCptq s1´1{p

ż s

0

ps´ τq´5{4`1{p τ´3{4 dτ

Àp max
sPr0,ts

s1´1{p
›

›Gp¨, sq ˚ ω0

›

›

p
`A2

pptq `BptqCptq.

Taking supreme over s P r0, ts yields (4.1). The proofs for (4.2)-(4.3) are similar. One just needs to use (4.10)

and (4.12).

The estimate (4.1) in Lemma 4.2 also holds when p “ 4{3. More precisely we have

Lemma 4.2. Suppose that pφ0, ω0q and pφ, ωq are the same as in Lemma 4.2. Then for all t P r0, T s, the

estimate (4.1) also holds if p is taken to be 4{3.

Proof. Repeating the same arguments as the derivation for (4.8) yields

›

›ωp¨, tq
›

›

4{3
À

›

›Gp¨, tq ˚ ω0

›

›

4{3
`

ż t

0

pt´ sq´3{4
›

›ω
›

›

2

4{3
`

ż t

0

pt´ sq´1{2
›

›∇φ
›

›

4

›

›∆φ
›

›

2
.

Here t is an arbitrary number in r0, T s. Using the same arguments as for (4.10), we have

A4{3ptq À max
sPr0,ts

s1{4
›

›Gp¨, sq ˚ ω0

›

›

4{3
`A2

4{3ptq `BptqCptq, @ t P r0, T s.

The proof is finished.

Now we prove part (i) of Theorem 1.3.

Proof of (i) in Theorem 1.3. We divide the proof into four steps.

Step 1. Let
`

φ0;n, ω0;n

˘

be a sequence of smooth pairs so that as nÑ8,

φ0;n ´ e ÝÑ φ0 ´ e, strongly in H1
`

R2
˘

; ω0;n ÝÑ ω0, strongly in L1
`

R2
˘

. (4.13)

Here φ0;n takes values in S2. Thus for any ε ą 0, there exists an N P N such that

›

›∇φ0;m ´∇φ0;N

›

›

2
`
›

›ω0;m ´ ω0;N

›

›

1
ď ε, @ m ą N . (4.14)

Moreover we can suppose that
`

φ0;n ´ e, ω0;n

˘

is compactly supported on R2 for all n P N. It then turns out,

for all t P p0, 1q, that

t1´1{p
›

›Gp¨, tq ˚ ω0;m

›

›

p
ď t1´1{p

›

›Gp¨, tq ˚ ω0;N

›

›

p
` t1´1{p }Gp¨, tq ˚ pω0;m ´ ω0;N q }p

Àp t1´1{p max
tPr0,1s

›

›Gp¨, tq ˚ ω0;N

›

›

p
` }ω0;m ´ ω0;N }1

Àp t1´1{p |||Gp¨, tq ˚ ω0;N |||1; r0,1s ` }ω0;m ´ ω0;N }1

Àp t1´1{p |||ω0;N |||1 ` }ω0;m ´ ω0;N }1 .
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To derive the second inequality above, we used Young’s inequality for convolutions. The third inequality is an

application of Lemma 2.4 with β “ 1. The last inequality above holds by Lemma 2.3. In light of (4.14) and the

last estimate, we can choose τN ą 0 small enough (the smallness depends on ε and |||ω0;N |||1) so that

t1´1{p
›

›Gp¨, tq ˚ ω0;m

›

›

p
Àp ε, @ t P r0, τN s and m ą N. (4.15)

Similar arguments can be applied to show that

t1{4 }Gp¨, tq ˚∇φ0;m }4 À ε, t1{2 }∇Gp¨, tq ˚∇φ0;m}2 À ε, @ t P r0, τN s and m ą N. (4.16)

Here we need (4.14), particularly the bound for the L2 -norm of ∇φ0;m ´∇φ0;N in (4.14).

Step 2. In the next we fix an m ą N and let p “ 8{5. In light of Theorem 1.2, there exists a Tm P r0, τN s

so that (1.2) admits a classic solution on R2 ˆ r0, Tms with the given initial data pφ0;m, ω0;mq. Moreover the

solution, denoted by pφm, ωmq, also satisfies

pφm, ωmq P C˚,41 r0, Tms ˆ C˚,22 r0, Tms. (4.17)

Associated with pφm, ωmq, Am; 8{5p¨q, Bmp¨q and Cmp¨q are quantities given in (4.4). Here we used a subscript

m, which means that these three quantities are defined in terms of pφm, ωmq. Letting δ be a positive number,

we define

t˚1 “ sup

"

t P
`

0, Tm
˘

: Am; 8{5ptq ă δ

*

, t˚2 “ sup

"

t P
`

0, Tm
˘

: Bmptq ă δ

*

, t˚3 “ sup

"

t P
`

0, Tm
˘

: Cmptq ă δ

*

.

Moreover we let s˚ be the minimum number between t˚1 , t˚2 and t˚3 . Clearly it satisfies

s˚ “ min

"

t˚1 , t
˚
2 , t

˚
3

*

ď Tm ď τN .

Since s˚ ď t˚1 ^ t
˚
2 , it holds

Am; 8{5ps
˚q ď δ and Bmps

˚q ď δ. (4.18)

In view of the first estimate in (4.16) and (4.18), (4.2) then yields

Bmps
˚q À ε` δ Bmps

˚q.

Now we choose δ to be small enough. The above estimate is then reduced to

Bmps
˚q À ε. (4.19)

Applying the second estimate in (4.16) and (4.18)-(4.19) to (4.3), we obtain

Cmps
˚q À ε` δBmps

˚q ` δCmps
˚q À ε` δCmps

˚q.

Therefore we can keep choosing δ small enough so that

Cmps
˚q À ε. (4.20)

Similar arguments can be applied to (4.1) and yields

Am; 8{5ps
˚q À ε. (4.21)

Here we need (4.15) and (4.18)-(4.20). In view of (4.19)-(4.21), we can choose ε to be small enough so that

Am; 8{5ps
˚q `Bmps

˚q ` Cmps
˚q ď δ{2. (4.22)
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By (4.17), ωm, ∇φm, ∇2φm have finite ||| ¨ |||2; r0,Tms -norm. Lemma 2.4 then implies that

}ωmp¨, tq }8{5, }∇φmp¨, tq }4 and }∇2φmp¨, tq}2

are continuous functions for t P r0, Tms. If s˚ ă Tm, then one of t˚i (i “ 1, 2, 3) must be less than Tm. Suppose

that s˚ “ t˚1 ă Tm (the cases when s˚ “ t˚2 and s˚ “ t˚3 can be similarly treated). Then by the definition of t˚1
at the beginning of this step, we have Am; 8{5pt

˚
1 q “ δ. Here we used the continuity of the function }ωp¨, tq}8{5.

On the other hand (4.22) shows that Am; 8{5pt
˚
1 q “ Am; 8{5ps

˚q ď δ{2. This is a contradiction to the fact that

Am; 8{5pt
˚
1 q “ δ. Thus we have s˚ “ Tm.

Step 3. In this step we extend the existence interval of pφm, ωmq from r0, Tms to r0, τN s. Suppose that

T˚m is a number in rTm, τN s so that pφm, ωmq is a classic solution of (1.2) on R2 ˆ r0, T˚m
˘

. Moreover it is

assumed to satisfy

pφm, ωmq P C˚,41 r0, T s ˆ C˚,22 r0, T s, for all T ă T˚m. (4.23)

Using the same derivation for (4.22), we get

Am; 8{5pT q `BmpT q ` CmpT q ď δ
L

2, @ T ă T˚m.

Particularly the above estimate yields

T 3{8
m

›

›ωmp¨, tq
›

›

8{5
` T 1{4

m

›

›∇φmp¨, tq
›

›

4
` T 1{2

m

›

›∇2φmp¨, tq
›

›

2
À 1, for all t P

“

Tm{2, T
˚
m

˘

. (4.24)

By Calderon-Zygmund estimate, it follows from (4.24) that

›

›vmp¨, tq
›

›

8
À

›

›ωmp¨, tq
›

›

8{5
À T´3{8

m , for all t P
“

Tm{2, T
˚
m

˘

. (4.25)

Now we consider the equation satisfied by pφm, vmq. The equation satisfied by φm can be obtained from the

first equation in (1.2). That is

Btφm ´∆φm “ ´vm ¨∇φm `
ˇ

ˇ∇φm
ˇ

ˇ

2
φm, on R2 ˆ rTm

L

2, T˚m q. (4.26)

Using the second and the last equations in (1.2), we know that vm satisfies

∇ˆ
`

Bt vm ´∆vm ` vm ¨∇vm
˘

“ ´∇ˆ
`

∇φm ¨∆φm
˘

, on R2 ˆ rTm
L

2, T˚m q.

Therefore we can find a pm so that

Bt vm ´∆vm ` vm ¨∇vm “ ´∇pm ´∇φm ¨∆φm, on R2 ˆ rTm
L

2, T˚m q. (4.27)

Since div vm “ 0, the equation satisfied by pm can be derived from the last equation as follows:

´∆pm “ div
`

vm ¨∇vm
˘

` div
`

∇φm ¨∆φm
˘

. (4.28)

Moreover pm can be represented by

pmpx, tq “ ´p2πq
´1

ż

R2

xj ´ zj
|x´ z|2

„

vm ¨∇vm,j ` Bjφm ¨∆φm


pz,tq

dz.

Using this representation and (4.24), by Calderon-Zygmund estimate, we have the following estimate for ∇pm:

›

›∇pmp¨, tq
›

›

4{3
À

›

›vmp¨, tq ¨∇vmp¨, tq
›

›

4{3
`
›

›∇φmp¨, tq ¨∆φmp¨, tq
›

›

4{3
(4.29)

À
›

›vmp¨, tq
›

›

8

›

›∇vmp¨, tq
›

›

8{5
`
›

›∇φmp¨, tq
›

›

4

›

›∆φmp¨, tq
›

›

2

À
›

›ωmp¨, tq
›

›

2

8{5
`
›

›∇φmp¨, tq
›

›

4

›

›∆φmp¨, tq
›

›

2
ď cpTmq, @ t P rTm

L

2, T˚m q.
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Here cpTmq is a constant depending only on Tm. In light that the bounds in (4.24)-(4.25) and (4.29) are

independent of t P rTm {2, T
˚
m q, one can apply the standard Lp-estimate for parabolic and elliptic equations

(see [18]) to (4.26)-(4.28) and obtain the L8-boundedness of pvm,∇φmq on R2ˆrTm {2, T
˚
m q. Here we also need

to use Morrey’s inequality. Making derivatives on both sides of (4.26)-(4.28), we can apply similar arguments

for the L8 -boundedness of pvm,∇φmq to get the L8 -boundedness of the higher-order derivatives of pvm,∇φmq
on R2 ˆ rTm {2, T

˚
m q. With the L8 -boundedness obtained above, by Arzelà-Ascoli theorem, pφm, vmq and all

their higher-order derivatives converge locally uniformly as t Ò T˚m. Since ωm “ curl vm, we also know that ωm

and all its higher-order derivatives converge locally uniformly as t Ò T˚m.

In the remaining of this step, we show the uniform boundedness of |||φmp¨, tq ´ e |||4;1 and |||ωmp¨, tq |||2;2 for

all t P rT, T˚mq, where T is a number less than T˚m. Suppose that f is the solution of the following initial value

problem:

$

’

&

’

%

Btf ´∆f “ 0, on R2 ˆ pT, 8q;

fp¨, T q “ φmp¨, T q.

Then by (2.3) in Lemma 2.1, we have, for all T1 P pT, T
˚
mq, that

|||φm ´ f |||1; rT,T1s
` |||∇φm ´∇f |||1; rT,T1s

À pT1 ´ T q
1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vm ¨∇φm `

ˇ

ˇ∇φm
ˇ

ˇ

2
φm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1; rT,T1s

Àc˚

`

T˚m ´ T
˘1{2

|||∇φm |||1; rT,T1s
,

where c˚ is a constant depending on the L8-norm of pvm,∇φmq on R2ˆ
“

T, T˚m
˘

. Employing Lemma 2.3 yields

|||f ´ e |||1; rT,T1s
` |||∇f |||1; rT,T1s

À |||φmp¨, T q ´ e |||1 ` |||∇φmp¨, T q |||1.

It then turns out by the last two estimates that

|||φm ´ e |||1; rT,T1s
` |||∇φm |||1; rT,T1s

À |||φmp¨, T q ´ e |||1;1 ` c˚
`

T˚m ´ T
˘1{2

|||∇φm |||1; rT,T1s
.

Now we choose T so that T˚m´T is sufficiently small (smallness depends on the constant c˚). The above estimate

can then be reduced to

|||φm ´ e |||1;1; rT,T1 s
À |||φmp¨, T q ´ e |||1;1.

Therefore ||| ¨ |||1;1-norm of φmp¨, tq ´ e is uniformly bounded for all t P rT, T˚m q. This shows that the limit of

φm ´ e as t Ò T˚m has finite ||| ¨ |||1;1-norm. In light of (4.23), we can repeat the method used above and show

that the limit of pφm ´ e, ωmq as t Ò T˚m is contained in the space C˚,41

`

R2
˘

ˆ C˚,22

`

R2
˘

. Letting the limit of

pφm, ωmq as t Ò T˚m be an initial data at T˚m, by Theorem 1.2, we can keep solving the equation (1.2) to a time

inverval rT˚m, T
˚
m ` εq. By this way we can extend the solution pφm, ωmq till the time arrives at τN .

Step 4. In the last step we have shown that the solution pφm, ωmq can be extended to the time interval

r0, τN s for all m ą N . Using the same method as for (4.22), we know that

Am; 8{5pτN q `BmpτN q ` CmpτN q ď δ{2.

Thus for all τ P p0, τN q, it holds

τ3{8
›

›ωmp¨, tq
›

›

8{5
` τ1{4

›

›∇φmp¨, tq
›

›

4
` τ1{2

›

›∇2φmp¨, tq
›

›

2
À 1, for all t P

“

τ, τN
‰

. (4.30)

By Calderon-Zygmund estimate, it follows from the above estimate that

›

›vmp¨, tq
›

›

8
À

›

›ωmp¨, tq
›

›

8{5
À τ´3{8, for all t P

“

τ, τN
‰

.
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Same arguments as for (4.29) yields

›

›∇pmp¨, tq
›

›

4{3
À

›

›ωmp¨, tq
›

›

2

8{5
`
›

›∇φmp¨, tq
›

›

4

›

›∆φmp¨, tq
›

›

2
ď cpτ q, @ t P rτ, τN s.

Here cpτ q is a constant depending only on τ . In light of the last three estimates, by the same arguments as

in Step 3, we know that pφm, vm, ωmq (also their higher-order derivatives) are L8-bounded in R2 ˆ rτ, τN s.

Moreover the upper bound is independent of m. Therefore by Arzelà-Ascoli theorem and a diagonal process,

we can extract a subsequence, still denoted by pφm, vm, ωmq so that as mÑ8, this sequence converges locally

uniformly on R2 ˆ p0, τN s. Now we denote by pφ, v, ωq the limit of pφm, vm, ωmq as m Ñ 8. Clearly on

R2 ˆ p0, τN q, it solves the first and third equations in (1.2) smoothly. Now we show that

v “ K ˚ ω. (4.31)

In view of (4.30), for any t P rτ, τN s, ωmp¨, tq converges weakly in L8{5 to ωp¨, tq. Letting ψ be a smooth test

function compactly supported on R2, then we have, for all t P rτ, τN s, that

ż

R2

ψpxqvmpx, tq dx “

ż

R2

ψpxq dx

ż

R2

Kpx´ zq ωmpz, tq dz “

ż

R2

ωmpz, tq dz

ż

R2

Kpx´ zq ψpxq dx. (4.32)

Since vm converges locally uniformly to v on R2 ˆ rτ, τN s, the most-left-hand side of (4.32) satisfies

ż

R2

ψpxqvmpx, tq dx ÝÑ

ż

R2

ψpxqvpx, tq dx, as mÑ8.

In light that K ˚ ψ P L8{3, applying the L8{5-weak convergence of ωmp¨, tq then yields

ż

R2

ωmpz, tq dz

ż

R2

Kpx´ zq ψpxq dx ÝÑ

ż

R2

ωpz, tq dz

ż

R2

Kpx´ zq ψpxq dx, as mÑ8.

Employing the last two convergence, we then can take mÑ8 in (4.32) and obtain

ż

R2

ψpxqvpx, tq dx “

ż

R2

ωpz, tq dz

ż

R2

Kpx´ zq ψpxq dx “

ż

R2

ψpxq dx

ż

R2

Kpx´ zq ωpz, tq dz.

(4.31) then follows.

In the remaining of the proof, we only need show that pφp¨, tq, vp¨, tq, ωp¨, tqq converges to pφ0, v0, ω0q as t Ó 0,

in the sense given in Theorem 1.3. Let pφm, vm, ωmq be the convergent subsequence obtained above. Using the

same derivations as for (4.19)-(4.21), for any ε ą 0, we can find a N 1 ą N and τN 1 ă τN so that

Am; 4{3pτN 1q `BmpτN 1q ` CmpτN 1q ď ε, @ m ą N 1. (4.33)

Here we used Lemma 4.2 so that the estimate for Am;p in (4.1) is valid when p “ 4{3. Using Calderon-Zygmund

estimate and the estimate for Am; 4{3pτN 1q in (4.33), we can bound the L4-norm of vm as follows:

›

›vmp¨, tq
›

›

4
À

›

›ωmp¨, tq
›

›

4{3
ď ε t´1{4, @ t P p0, τN 1s. (4.34)

Now we prove the L2 -convergence of φp¨, tq ´ e as t Ó 0. In light of (4.26), φm ´ e can be represented by

φmpx, tq ´ e “ Gp¨, tq ˚ pφ0;m ´ eq `

ż t

0

ż

R2

Gpx´ z, t´ sq
“

´ vm ¨∇φm `
ˇ

ˇ∇φm
ˇ

ˇ

2
φm

‰

pz,sq
dz ds. (4.35)

Here px, tq is an arbitrary point in R2 ˆ p0, τN 1q. It then turns out, by the above equality, that

›

›

`

φmp¨, tq ´ e
˘

´Gp¨, tq ˚ pφ0;m ´ eq
›

›

2
ď

ż t

0

›

›´ vmp¨, sq ¨∇φmp¨, sq `
ˇ

ˇ∇φm
ˇ

ˇ

2
p¨, sq φmp¨, sq

›

›

2
ds

À

ż t

0

›

›vmp¨, sq
›

›

4

›

›∇φmp¨, sq
›

›

4
`
›

›∇φmp¨, sq
›

›

2

4
ds.
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With (4.33)-(4.34), this estimate can be reduced to

›

›

`

φmp¨, tq ´ e
˘

´Gp¨, tq ˚ pφ0;m ´ eq
›

›

2
À ε2 t1{2.

Since
`

φmp¨, tq ´ e
˘

´ Gp¨, tq ˚ pφ0;m ´ eq converges to
`

φp¨, tq ´ e
˘

´ Gp¨, tq ˚ pφ0 ´ eq pointwisely as m Ñ 8,

by Fatou’s lemma, we can take mÑ8 in the above estimate and get

›

›

`

φp¨, tq ´ e
˘

´Gp¨, tq ˚ pφ0 ´ eq
›

›

2
À ε2 t1{2, @ t P p0, τN 1q.

This estimate shows that φ´ e has finite L8t L2
x -norm on R2 ˆ p0, τN 1 q. In light that Gp¨, tq ˚ pφ0 ´ eq converges

to φ0 ´ e strongly in L2 as t Ó 0, the above estimate also implies that φp¨, tq ´ e converges to φ0 ´ e strongly in

L2 as t Ó 0. Taking spatial derivative once on both sides of (4.35), we get

∇φmpx, tq “ Gp¨, tq ˚∇φ0;m `
ż t

0

ż

R2

∇Gpx´ z, t´ sq
“

´ vm ¨∇φm `
ˇ

ˇ∇φm
ˇ

ˇ

2
φm

‰

pz,sq
dz ds.

Thus it holds for all t P r0, τN 1s that

›

›∇φmp¨, tq ´Gp¨, tq ˚∇φ0;m
›

›

2
ď

ż t

0

pt´ sq´1{2
›

›´ vmp¨, sq ¨∇φmp¨, sq `
ˇ

ˇ∇φm
ˇ

ˇ

2
p¨, sq φmp¨, sq

›

›

2
ds

À

ż t

0

pt´ sq´1{2

ˆ

›

›vmp¨, sq
›

›

4

›

›∇φmp¨, sq
›

›

4
`
›

›∇φmp¨, sq
›

›

2

4

˙

ds

À ε2
ż t

0

pt´ sq´1{2 s´1{2 ds À ε2. (4.36)

Here we also used (4.33)-(4.34). Still by Fatou’s lemma, we can take mÑ8 in the above estimate and get

›

›∇φp¨, tq ´Gp¨, tq ˚∇φ0
›

›

2
À ε2, @ t P p0, τN 1q. (4.37)

This estimate shows that ∇φ has finite L8t L2
x -norm on R2 ˆ p0, τN 1 q. Since Gp¨, tq ˚ ∇φ0 converges to ∇φ0

strongly in L2 as t Ó 0, (4.37) also implies that ∇φp¨, tq converges to ∇φ0 strongly in L2 as t Ó 0. Similar

arguments can be applied to the vorticity ω. By the last equation in (1.2), ωm can be represented by

ωmpx, tq “

ż

R2

Gpx´ z, tq ω0;mpzq `

ż t

0

ż

R2

∇zGpx´ z, t´ sq ¨

„

ωm vm ´
`

∇φm ¨∆φm
˘K



pz,sq

dz ds.

In view of Young’s inequality for convolutions, it then follows from the above estimate that

›

›ωmp¨, tq ´Gp¨, tq ˚ ω0;m

›

›

1
À

ż t

0

›

›∇Gp¨, t´ sq
›

›

1

›

›ωmp¨, sqvmp¨, sq
›

›

1

`

ż t

0

›

›∇Gp¨, t´ sq
›

›

1

›

›∇φmp¨, sq ¨∆φmp¨, sq
›

›

1
.

By Hölder’s inequality and Calderon-Zygmund estimate, the last estimate yields

›

›ωmp¨, tq ´Gp¨, tq ˚ ω0;m

›

›

1
À

ż t

0

pt´ sq´1{2
›

›ωmp¨, sqvmp¨, sq
›

›

1
`

ż t

0

pt´ sq´1{2
›

›∇φmp¨, sq ¨∆φmp¨, sq
›

›

1

À

ż t

0

pt´ sq´1{2
›

›ωmp¨, sq
›

›

4{3

›

›vmp¨, sq
›

›

4
`

ż t

0

pt´ sq´1{2
›

›∇φmp¨, sq
›

›

2

›

›∆φmp¨, sq
›

›

2

À

ż t

0

pt´ sq´1{2
›

›ωmp¨, sq
›

›

2

4{3
` max
sPp0,τN1 q

›

›∇φmp¨, sq
›

›

2

ż t

0

pt´ sq´1{2
›

›∆φmp¨, sq
›

›

2
.
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In light of (4.36),
›

›∇φmp¨, sq
›

›

2
is uniformly bounded for all s P p0, τN 1q. The upper bound depends only on the

L2-norm of ∇φ0. Using result together with (4.33), we can reduce the last estimate to

›

›ωmp¨, tq ´Gp¨, tq ˚ ω0;m

›

›

1
À ε2

ż t

0

pt´ sq´1{2 s´1{2 (4.38)

` c
`

}∇φ0 }2
˘

ε

ż t

0

pt´ sq´1{2 s´1{2 ď c
`

}∇φ0 }2
˘

ε, @ t P p0, τN 1q.

Here c
`

}∇φ0 }2
˘

is a constant depending on the L2-norm of ∇φ0. Still by Fatou’s lemma, we can take mÑ8

in the above estimate and get

›

›ωp¨, tq ´Gp¨, tq ˚ ω0

›

›

1
ď c

`

}∇φ0 }2
˘

ε, @ t P
`

0, τN 1
˘

. (4.39)

This estimate shows that ω has finite L8L1 -norm on R2 ˆ p0, τN 1 q. Since Gp¨, tq ˚ ω0 converges to ω0 strongly

in L1 as t Ó 0, (4.39) also implies that ωp¨, tq converges to ω0 strongly in L1 as t Ó 0. The convergence of vp¨, tq

follows by a simple duality argument. In fact for any ψ P C8c pR2q, we have

ż

R2

ψpxq
`

vpx, tq ´ v0pxq
˘

dx “

ż

R2

ψpxq

ż

R2

Kpx´ zq
`

ωpz, tq ´ ω0pzq
˘

dz dx

“

ż

R2

`

ωpz, tq ´ ω0pzq
˘

ż

R2

Kpx´ zq ψpxq dx dz

“ ´

ż

R2

`

ωpz, tq ´ ω0pzq
˘

ż

R2

Kpz ´ xq ψpxq dx dz.

Thus it holds, for all p ą 2, that
ˇ

ˇ

ˇ

ˇ

ż

R2

ψpxq
`

vpx, tq ´ v0pxq
˘

dx

ˇ

ˇ

ˇ

ˇ

ď
›

›ωp¨, tq ´ ω0p¨q}1
›

›K ˚ ψ
›

›

8
Àp

›

›ωp¨, tq ´ ω0p¨q}1

ˆ

›

›ψ
›

›

1
`
›

›ψ
›

›

p

˙

.

By density arguments, the above estimate still holds for all ψ P L1 X Lp. Taking supreme over all ψ P L1 X Lp,

we get from the above estimate that

›

›vp¨, tq ´ v0p¨q
›

›

pL1XLp q˚
Àp

›

›ωp¨, tq ´ ω0p¨q}1.

The convergence of vp¨, tq then follows since ωp¨, tq Ñ ω0 strongly in L1 as t Ó 0.

Slight modifications of the above proof leads to

Remark 4.3. Let pφ0, ω0q be the same as in Theorem 1.3. Then we can extend the solution obtained in Theorem

1.3 to a global solution defined on R2 ˆ p0,8q, provided that
›

›∇φ0
›

›

2
`
›

›ω0

›

›

1
ď ε. Here ε ą 0 is a number

suitably small. Moreover on R2 ˆ p0,8q, the extended solution is smooth.

V. GLOBAL EXISTENCE OF WEAK SOLUTION

This section is devoted to finishing the proofs of Theorems 1.3-1.4. The key point to extend a solution globally in

time is a global energy inequality concerning the kinetic energy of v and the L2 -norm of ∇φ. However formally

from the last equation in (1.2),

Ωptq :“

ż

R2

ω px, tq dx

is a conserved quantity. If initially Ωp0q does not equal to 0, then for all t ą 0, Ωptq should not be 0. In light of

Proposition 3.3 in [5], we can not expect that the kinetic energy of v is finite. A decomposition of v is required.
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Still by Proposition 3.3 in [5], if we want some part of the velocity v has finite kinetic energy, then the vorticity

function obtained by taking curl of this part should have zero value when it is integrated over R2. Upon this

consideration, we decompose v into the sum given in (1.4). Formally by (1.3) and the last equation in (1.2), the

curl of v˚ is a conserved quantity and satisfies
ż

R2ˆttu

curl v˚ “

ż

R2ˆttu

ω ´

ż

R2ˆttu

ω̄ “

ż

R2ˆtτ u

ω ´

ż

R2ˆtτ u

ω̄ “ 0, for all t P rτ, T˚s.

Thus we can expect that the kinetic energy of v˚ is finite. This is exactly part (ii) of Theorem 1.3. Before

proving it, in the next, we give a global energy inequality. That is

Lemma 5.1 (Global Energy Inequality). Given t1 ă t2, we suppose that pψ, ū, u˚q is a weak solution of the

following system:
$

’

’

’

’

&

’

’

’

’

%

Btψ ` u
˚ ¨∇ψ ´∆ψ “ ´ū ¨∇ψ ` |∇ψ |2ψ , on R2 ˆ pt1, t2q;

Btu
˚ ` u˚ ¨∇u˚ ´∆u˚ “ ´u˚ ¨∇ū´ ū ¨∇u˚ ´∇p˚ ´∇ ¨

`

∇ψ d∇ψ
˘

, on R2 ˆ
`

t1, t2
˘

;

div ū “ div u˚ “ 0.

(5.1)

Here p˚ is a pressure. ψ is an S2-valued map. If in addition we have
$

’

’

’

&

’

’

’

%

∇ψ P L8
`

rt1, t2 s; L2
˘

X L2
`

rt1, t2 s; H1
˘

;

p˚ P L4{3
`

rt1, t2 s; W1,4{3
˘

;

ū P L1
`

rt1, t2s; W1,8
˘

and u˚ P L8
`

rt1, t2s; L2
˘

X L2
`

rt1, t2 s; H1
˘

,

(5.2)

then it holds
ż

R2ˆtt2u

ˇ

ˇu˚
ˇ

ˇ

2
`
ˇ

ˇ∇ψ
ˇ

ˇ

2
`

ż t2

t1

ż

R2

ˇ

ˇ∇u˚
ˇ

ˇ

2
`
ˇ

ˇ∆ψ ` |∇ψ |2ψ
ˇ

ˇ

2
ď exp

"

c

ż t2

t1

›

›∇ū
›

›

8

*
ż

R2ˆtt1u

ˇ

ˇu˚
ˇ

ˇ

2
`
ˇ

ˇ∇ψ
ˇ

ˇ

2
.

Here c ą 0 is an universal constant.

The proof of Lemma 5.1 follows similarly as the proof of Lemma 4.1 in [20]. We omit it here. The following

lemma is also required in the proof of Theorem 1.3, which is an improvement of Proposition 3.3 in [5].

Lemma 5.2. Suppose that w P C˚β
`

R2
˘

for some β ą 0. Then u “ K ˚ w P L2pR2q if and only if
ż

R2

w “ 0. (5.3)

If the ||| ¨ |||β -norm of w is bounded from above by a constant W , then the L2pR2q-norm of u is bounded from

above by a constant depending on W .

Proof: In light of Lemma 2.5, u is uniformly bounded on R2. The upper bound depends on the ||| ¨ |||β -norm

of w. Therefore we only need to study the L2 -integrability of u on BcR. Here R is a positive radius sufficiently

large. For any x P BcR, upxq can be rewritten as follows:

upxq “
1

2π

ż

R2

px´ zqK

|x´ z|2
wpzqdz

“
1

2π

xK

|x|2

ż

R2

wpzqdz `
1

2π

ż

R2

„

px´ zqK

|x´ z|2
´

xK

|x|2



wpzqdz. (5.4)

The last term in (5.4) can be further written as
ż

R2

„

px´ zqK

|x´ z|2
´

xK

|x|2



wpzqdz “

ż

 

|z|ă|x|1{2
(

„

px´ zqK

|x´ z|2
´

xK

|x|2



wpzqdz (5.5)

`

ż

 

|z|ě |x|1{2
(

„

px´ zqK

|x´ z|2
´

xK

|x|2



wpzqdz.
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Since |x| ą R with R sufficiently large, then for all z with |z | ă |x|1{2, we have

|x´ z |´2 “ |x|´2

ˆ

1´
2x ¨ z

|x|2
`
|z |2

|x|2

˙´1

“ |x|´2 `O
`

|x|´5{2
˘

.

It turns out that
ˇ

ˇ

ˇ

ˇ

px´ zqK

|x´ z|2
´

xK

|x|2

ˇ

ˇ

ˇ

ˇ

À |x|´3{2, for all x and z satisfying |x| ą R and |z | ă |x|1{2.

Applying the above estimate to the first term on the right-hand side of (5.5), we get
ˇ

ˇ

ˇ

ˇ

ˇ

ż

 

|z|ă|x|1{2
(

„

px´ zqK

|x´ z|2
´

xK

|x|2



wpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

À |x|´3{2

ż

R2

|w | ď |x|´3{2 |||w |||β

ż

R2

e´|z |
L

β dz. (5.6)

If |z | ě |x|1{2, then wpzq satisfies

|wpzq | ď |||w |||β e
´|z |

L

β
ď |||w |||β e

´|z |
L

2β e´|x|
1{2

L

2β .

Thus the second term on the right-hand side of (5.5) can be estimated by
ˇ

ˇ

ˇ

ˇ

ˇ

ż

 

|z |ě |x|1{2
(

„

px´ zqK

|x´ z|2
´

xK

|x|2



wpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

À |||w |||β |x|´1 e´|x|
1{2

L

2β

ż

R2

e´|z|
L

2β dz

` e´|x|
1{2

L

2β

ż

R2

1

|x´ z|
e´|z |

L

2β dz

Àβ, |||w |||β
e´|x|

1{2
L

2β . (5.7)

In view of (5.6)-(5.7), the last term in (5.4) is L2 -integrable on BcR. Therefore the L2 -integrability of u on BcR
is equivalent to the L2-integrability of the first term on the second line of (5.4), which is L2 -integrable on BcR
if and only if (5.3) holds. The proof is finished.

In the next, we prove part (ii) and (iii) of Theorem 1.3.

Proof of (ii) and (iii) in Theorem 1.3. The arguments in the following are continued from the last section,

where part (i) of Theorem 1.3 was proved.

Step 5. In the proof of part (i) of Theorem 1.3 (see Step 4 there), the approximation solutions pφm, ωmq

were shown to exist on the time interval p0, τN 1s, for all m ą N 1. Moreover for a fixed τ P p0, τN 1q, the L8-norm

of ωm on R2 ˆ rτ, τN 1s are uniformly bounded from above by a constant independent of m. Thus by (4.38), it

follows that

›

›ωmp¨, tq
›

›

p
ď c1, @m ą N 1, p P r1,8s and t P rτ, τN 1s. (5.8)

Here c1 is a positive constant depending on p, τ and the initial data pφ0, ω0q. In view of (4.33), it holds

›

›∇2φmp¨, tq
›

›

2
ď cpτq, @m ą N 1 and t P rτ, τN 1 s.

With this estimate and (4.36), it follows that

›

›∇φmp¨, tq
›

›

2
`
›

›∇2φmp¨, tq
›

›

2
ď c2, @m ą N 1 and t P rτ, τN 1 s. (5.9)

Here c2 is a constant depending on τ and the L2 -norm of ∇φ0. Taking mÑ8 in (5.8)-(5.9), by Fatou’s lemma,

we have

›

›ω p¨, tq
›

›

p
`
›

›∇φp¨, tq
›

›

2
`
›

›∇2φp¨, tq
›

›

2
ď c1 ` c2, @ p P r1,8s and t P rτ, τN 1s. (5.10)
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In the next we consider the velocity field vm “ K˚ωm. Let pω̄m, v̄mq be the unique mild solution of the following

initial value problem:

$

’

’

&

’

’

%

Bt ω̄m ´∆ ω̄m ` v̄m ¨∇ω̄m “ 0, on R2 ˆ pτ,8q;

ω̄mp¨, τq “ ωmp¨, τq; v̄m “ K ˚ ω̄m

(5.11)

Using v̄m in (5.11), we can decompose vm into the sum vm “ v̄m ` v˚m. In view of (5.11), v̄m satisfies the

following Navier-Stokes equation:

Bt v̄m ` v̄m ¨∇v̄m ´ ∆v̄m “ ´∇p̄m, (5.12)

where p̄m is the pressure which satisfies the Poisson equation:

´∆p̄m “ Bij
`

v̄m;i v̄m;j

˘

. (5.13)

Subtracting (5.12) from (4.27) yields

Btv
˚
m ` v

˚
m ¨∇v˚m ´∆v˚m “ ´v

˚
m ¨∇v̄m ´ v̄m ¨∇v˚m ´∇p˚m ´∇ ¨

`

∇φm d∇φm
˘

, on R2 ˆ
`

τ, τN 1
˘

. (5.14)

By Calderon-Zygmund estimate and (3.27) in [3], it holds

›

› v̄mp¨, tq
›

›

4
À

›

› ω̄mp¨, tq
›

›

4{3
ď

›

›ωmp¨, τq
›

›

L4{3X L1 , @ t ą τ.

In light of (5.8), we get

›

› v̄mp¨, tq
›

›

4
ď c1, @ t ą τ. (5.15)

Since p v̄m, p̄mq satisfies (5.12)-(5.13) and (5.15), then by standard Lp-estimate for parabolic and elliptic equa-

tions (see [18]), any derivative of v̄m is uniformly bounded on R2ˆrτ ` ε,8q with the upper bound independent

of m. Here ε ą 0 is a constant arbitrarily given. Thus by Arzelà-Ascoli theorem, we can extract a subsequence,

still denoted by pω̄m, v̄mq, so that pω̄m, v̄mq and all its derivatives converge locally uniformly on R2 ˆ pτ,8q, as

m Ñ 8. The limit is denoted by pω̄8, v̄8q. Fixing the subsequence obtained and using the fact (see (3.27) in

[3]) that

›

› ω̄mp¨, tq
›

›

q
ď

›

›ωmp¨, τq
›

›

LqX L1 , @ q P r1,8s and t ą τ, (5.16)

we then have, for all p ą 1 and t ą τ , that the Lp -norm of ω̄mp¨, tq is uniformly bounded from above by a

constant independent of m. Here we also used (5.8). Thus there is a subsequence, still denoted by ω̄mp¨, tq, so

that ω̄mp¨, tq converges weakly in Lp to a limit as m Ñ 8. This limit must equal to ω̄8p¨, tq in the sense of

distribution. It then follows that

ω̄mp¨, tq ÝÑ ω̄8, weakly in Lp, for all p ą 1 and t ą τ . (5.17)

In light of the local uniform convergence of v̄m and (5.17), it holds, by the same derivations as for (4.31), that

v̄8 “ K ˚ ω̄8. (5.18)

Now we show that

pω̄8, v̄8q “ pω̄, v̄q, (5.19)

where ω̄ is the unique mild solution of (1.3). Since ω̄m is the mild solution of (5.11), it can be represented by

ω̄mpx, tq “

ż

R2

Gpx´ z, t´ τq ωmpz, τq dz `

ż t

τ

ż

R2

∇Gpx´ z, t´ sq ¨ ω̄mpz, sq v̄mpz, sq dzds. (5.20)
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Here px, tq is an arbitrary point in R2 ˆ pτ,8q. Applying (3.28) in [3] yields

›

› v̄mp¨, tq
›

›

8
Àp

›

›ωmp¨, τq
›

›

L1XLp
, @ p ą 2 and t ě τ. (5.21)

Therefore by (5.8), (5.16) and (5.21), ω̄m and v̄m are uniformly bounded on R2ˆrτ,8q. Employing this uniform

boundedness result and the fact that pω̄m, v̄m, ωmp¨, τqq converges to pω̄8, v̄8, ωp¨, τqq pointwisely, by Lebesgue’s

dominated convergence theorem, we can take mÑ8 in (5.20) and get

ω̄8px, tq “

ż

R2

Gpx´ z, t´ τq ω pz, τq dz `

ż t

τ

ż

R2

∇Gpx´ z, t´ sq ¨ ω̄8pz, sq v̄8pz, sq dzds. (5.22)

Moreover it also follows that pω̄8, v̄8q are uniformly bounded on R2 ˆ rτ,8q. Using the same derivation as for

(5.16) and (5.21), we can also show that pω̄, v̄q are uniformly bounded on R2 ˆ rτ,8q since ω p¨, τq P Lp, for all

p P r1,8s (see (5.10)). Using these two uniform boundedness results, (5.18) and (5.22), we can easily show that

(5.19) holds, by a similar fashion as the proof of Lemma 4.2 in [3]. Here one just needs to know that ω̄ and ω̄8

share same initial data at t “ τ . In light that for all i “ 0, 1, 2, ..., we have ∇ivm Ñ ∇iv and ∇i v̄m Ñ ∇i v̄

pointwisely, as mÑ8, it then turns out that

∇iv˚m ÝÑ ∇iv˚, pointwisely on R2 ˆ rτ, τN 1s, for all i “ 0, 1.2, ... (5.23)

Here v˚ “ v ´ v̄.

Step 6. This step is devoted to studying the uniform boundedness of the kinetic energy of v˚m (see (5.31)). In

order to use Lemma 5.1, we need φm, v̄m, v˚m and p˚m satisfy the assumption (5.2). Here p˚m is the pressure in

(5.14). By (5.9), ∇φm satisfies the corresponding assumption in (5.2). In the following we consider v̄m, v˚m and

p˚m.

(I). Estimate of v̄m. The L8-estimate of v̄m is obtained in (5.21). Now we consider the estimate for ∇v̄m.

Using (3.29) in [3], one can find a τ˚ ą τ , where τ˚ ´ τ depends on the L1 X Lp-norm of ωmp¨, τq, such that

›

›∇ω̄mp¨, tq
›

›

L1XLp
Àp pt´ τq´1{2

›

›ωmp¨, τq
›

›

L1XLp
, @ t P

`

τ, τ˚
˘

.

In light of (5.8), τ˚ ´ τ can be independent of m. Therefore it follows that

›

›∇v̄mp¨, tq
›

›

8
Àp

›

›∇ω̄mp¨, tq
›

›

L1XLp
Àp pt´ τq´1{2

›

›ωmp¨, τq
›

›

L1XLp
, @ t P

`

τ, τ˚
˘

.

By (3.38) in [3], we also have

›

›∇v̄mp¨, tq
›

›

8
ď c

`
›

›ωmp¨, τq
›

›

1

˘ `

t´ τ
˘´1

ď c
`
›

›ωmp¨, τq
›

›

1

˘ `

τ˚ ´ τ
˘´1

, @ t ą τ˚.

Thus the above two estimates imply that
ż τN1

τ

›

›∇v̄mp¨, tq
›

›

8
“

ż τN1^τ˚

τ

›

›∇v̄mp¨, tq
›

›

8
`

ż τN1

τN1^τ˚

›

›∇v̄mp¨, tq
›

›

8

Àp
›

›ωmp¨, τq
›

›

L1XLp
` c

`
›

›ωmp¨, τq
›

›

1

˘ `

τ˚ ´ τ
˘´1

ď c3, (5.24)

where c3 is a positive constant independent of m.

(II). Estimate of v˚m. Since ωm p¨, τq P C˚,22

`

R2
˘

and p ω̄m, v̄m q satisfies (5.11), then by similar arguments

as the proof of Theorem 1.2, we can show that ω̄m P C˚,22 rτ, τ ` δ s, for some δ ą 0 suitably small. In view

of (5.8) and (5.21), similar arguments as in Step 3 of the proof for Theorem 1.3 can be applied to show that

ω̄m P C˚,22 rτ, τ ` δ s, for all δ ą 0. Using the exponential decay of ω̄m at spatial infinity, by (5.11), we have
ż

R2

ω̄mpx, tq dx “

ż

R2

ωmpx, τq dx, @ t P rτ, τN 1s. (5.25)
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As for ωm, since it satisfies

Btωm ` vm ¨∇ωm ´∆ωm “ ´∇ˆ∇ ¨
`

∇φm d∇φm
˘

,

then we can integrate the above equation over R2 and get

ż

R2

ωmpx, tq dx “

ż

R2

ωmpx, τq dx, @ t P rτ, τN 1s. (5.26)

Here we have used the exponential decay of ∇iφm for i “ 1, 2, 3. (5.25)-(5.26) imply that

ż

R2

ωmpx, tq ´ ω̄mpx, tq dx “ 0, @ t P rτ, τN 1s.

Since for all t P rτ, τN 1s, ωmp¨, tq ´ ω̄mp¨, tq decays exponentially at spatial infinity. Moreover the ||| ¨ |||2 -norm of

ωmp¨, tq ´ ω̄mp¨, tq are uniformly bounded by the norm of ωm ´ ω̄m in C˚2 rτ, τN 1s, for all t P rτ, τN 1s. Therefore

we can apply Lemma 5.2 to v˚m “ K ˚ ωm ´K ˚ ω̄m and show that

›

›v˚mp¨, tq
›

›

2
ď c4

´

|||ωm ´ ω̄m |||2; rτ,τN1 s

¯

, @ t P rτ, τN 1s. (5.27)

The L2-estimate of ∇v˚m can be obtained by Calderon-Zygmund estimate as follows:

ż

R2ˆttu

ˇ

ˇ∇v˚m
ˇ

ˇ

2
À

ż

R2ˆttu

ˇ

ˇ∇vm
ˇ

ˇ

2
`

ż

R2ˆttu

ˇ

ˇ∇v̄m
ˇ

ˇ

2
À

ż

R2ˆttu

ˇ

ˇωm
ˇ

ˇ

2
`

ż

R2ˆttu

ˇ

ˇ ω̄m
ˇ

ˇ

2
.

Here t P rτ, τN 1s is arbitrarily given. Applying Lemma 2.4 and (5.16) to the most-right-hand side above, we get

ż

R2ˆttu

ˇ

ˇ∇v˚m
ˇ

ˇ

2
ď c5 ` |||ωm|||

2
2; rτ,τN1 s

, @ t P pτ, τN 1q. (5.28)

Here c5 is a positive constant depending on τ and the initial data pφ0, ω0q.

(III). Estimate of p˚m. Since v˚m is divergent free, it then follows by (5.14) that

´∆p˚m “ Bij
`

v˚m;i v
˚
m;j

˘

` 2 Bij
`

v̄m;i v
˚
m;j

˘

` div
`

∇ ¨
`

∇φm d∇φm
˘˘

.

Therefore Calderon-Zygmund estimate implies that

›

›p˚m
›

›

4{3
À

›

›v˚m
›

›

2

8{3
`
›

›

ˇ

ˇ v̄m
ˇ

ˇ

ˇ

ˇv˚m
ˇ

ˇ

›

›

4{3
`
›

›∇φm
›

›

2

8{3
. (5.29)

On the other hand p˚m can be represented by

p˚mpx, tq “ ´p2πq
´1

ż

R2

xj ´ zj
|x´ z|2

„

v˚m ¨∇v˚m,j ` 2 v̄m ¨∇v˚m,j ` Bjφm ¨∆φm


pz,tq

dz.

Still by Calderon-Zygmund estimate, it follows that

›

›∇p˚m
›

›

4{3
À

›

›v˚m ¨∇v˚m
›

›

4{3
`
›

› v̄m ¨∇v˚m
›

›

4{3
`
›

›∇φm ¨∆φm
›

›

4{3
. (5.30)

In light of (5.9), (5.15), (5.27)-(5.28), one then can apply Ladyzhenskaya’s inequality and Hölder’s inequality to

the right-hand sides of (5.29)-(5.30) and show that p˚m P L4{3
`

rτ, τN 1s; W
1,4{3

˘

.

Notice that pφm, v
˚
m q satisfies (4.26) and (5.14) on R2ˆpτ, τN 1q. (5.9) and the above arguments in (I), (II),

(III) show that φm, v̄m, v˚m and p˚m satisfy the assumption (5.2). Thus we can apply Lemma 5.1 to get, for all

t P pτ, τN 1q, that

ż

R2ˆttu

ˇ

ˇv˚m
ˇ

ˇ

2
`
ˇ

ˇ∇φm
ˇ

ˇ

2
`

ż t

τ

ż

R2

ˇ

ˇ∇v˚m
ˇ

ˇ

2
`
ˇ

ˇ∆φm ` |∇φm |2φm
ˇ

ˇ

2
ď exp

"

c

ż t

τ

›

›∇v̄m
›

›

8

*
ż

R2ˆtτ u

ˇ

ˇ∇φm
ˇ

ˇ

2
.
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Here we have used the fact that v˚mp¨, τq ” 0. By (5.9) and (5.24), the right-hand side above is uniformly

bounded by a constant independent of m. Therefore it follows that

max
tPrτ,τN1 s

ż

R2ˆttu

ˇ

ˇv˚m
ˇ

ˇ

2
`
ˇ

ˇ∇φm
ˇ

ˇ

2
`

ż τN1

τ

ż

R2

ˇ

ˇ∇v˚m
ˇ

ˇ

2
`
ˇ

ˇ∆φm ` |∇φm |2φm
ˇ

ˇ

2
ď c6, @ m ą N 1. (5.31)

Here c6 ą 0 is a constant independent of m.

Step 7. In view of (5.23) and the pointwise convergence of ∇iφm (i “ 0, 1, 2), by Fatou’s lemma, we can

take mÑ8 in (5.31) and get

max
tPrτ,τN1 s

ż

R2ˆttu

ˇ

ˇv˚
ˇ

ˇ

2
`
ˇ

ˇ∇φ
ˇ

ˇ

2
`

ż τN1

τ

ż

R2

ˇ

ˇ∇v˚
ˇ

ˇ

2
`
ˇ

ˇ∆φ` |∇φ |2φ
ˇ

ˇ

2
ď c6,

which furthermore implies

v˚ P L8
`

rτ, τN 1s; L2
˘

X L2
`

rτ, τN 1 s; H1
˘

. (5.32)

As mÑ8, v̄m Ñ v̄ and ∇v̄m Ñ ∇v̄ pointwisely. Then by (5.15), (5.21), (5.24) and Fatou’s lemma, we have

max
tPrτ,τN1 s

›

› v̄ p¨, tq
›

›

4
` max
tPrτ,τN1 s

›

› v̄ p¨, tq
›

›

8
`

ż τN1

τ

›

›∇v̄
›

›

8
ă 8. (5.33)

In light of (5.10), (5.32)-(5.33), by the same arguments as in (III) of Step 6, we know that

p˚ P L4{3
`

rτ, τN 1s; W
1,4{3

˘

. (5.34)

Here p˚ is the pressure in the following equation:

Btv
˚ ` v˚ ¨∇v˚ ´∆v˚ “ ´v˚ ¨∇v̄ ´ v̄ ¨∇v˚ ´∇p˚ ´∇ ¨

`

∇φd∇φ
˘

, on R2 ˆ
`

τ, τN 1
˘

. (5.35)

The derivation of this equation is the same as (5.14). One just needs to know that pφ, vq satisfies the second

equation in (1.1) and pω̄, v̄q solves (1.3) in Theorem 1.3. (5.10), (5.32)-(5.34) imply that φ, v̄, v˚ and p˚ satisfy

the assumption (5.2). Recalling that pφ, v˚q satisfies the first equation in (1.2) and (5.35) above, we then obtain

the global energy inequality (1.5) in Theorem 1.3, with an use of Lemma 5.1. Here we take T˚ “ τN 1 in Theorem

1.3. Noticing that v˚p¨, τq ” 0, then we have, by taking t1 “ τ in (1.5), that

ż

R2ˆttu

ˇ

ˇv˚
ˇ

ˇ

2
`
ˇ

ˇ∇φ
ˇ

ˇ

2
`

ż t

τ

ż

R2

ˇ

ˇ∇v˚
ˇ

ˇ

2
`
ˇ

ˇ∆φ` |∇φ |2φ
ˇ

ˇ

2
ď exp

"

c

ż t

τ

›

›∇v̄
›

›

8

*
ż

R2ˆtτ u

ˇ

ˇ∇φ
ˇ

ˇ

2
,

for all t satisfying τ ă t ă τN 1 . Since at t “ τ , ω p¨, τq P L1 X Lp for all p ą 2, then we know, by similar

arguments as for (5.24), that
›

›∇v̄
›

›

8
is L1-integrable on rτ, τN 1s. Therefore we can take t Ñ τ` in the above

estimate and get

lim sup
tÑτ`

ż

R2ˆttu

ˇ

ˇv˚
ˇ

ˇ

2
`
ˇ

ˇ∇φ
ˇ

ˇ

2
ď

ż

R2ˆtτ u

ˇ

ˇ∇φ
ˇ

ˇ

2
.

Since ∇φp¨, tq converges weakly in L2 to ∇φp¨, τq, as t Ñ τ`, by lower semi-continuity of the L2-norm, we

further have from the last inequality that

ż

R2ˆtτ u

ˇ

ˇ∇φ
ˇ

ˇ

2
ď lim sup

tÑτ`

ż

R2ˆttu

ˇ

ˇv˚
ˇ

ˇ

2
`
ˇ

ˇ∇φ
ˇ

ˇ

2
ď

ż

R2ˆtτ u

ˇ

ˇ∇φ
ˇ

ˇ

2
.

This shows that v˚p¨, tq Ñ 0 and ∇φp¨, tq Ñ ∇φp¨, τq strongly in L2 as t Ñ τ`. Same strong convergence

and also the decomposition (1.4) hold when τ “ 0, provided that we know ω0 P L1 X Lp for some p ą 1.

Indeed we just need to check the L1-integrability of
›

›∇v̄
›

›

8
near t “ 0. Without loss of generality, in the
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following arguments, we assume p P p1, 2q. Moreover we let pω̄, v̄q satisfy (1.3) with τ “ 0 there. For any

px, tq P R2 ˆ p0,8q, it holds

∇ω̄ px, tq “ ∇G ˚ ω0 ´

ż t

0

ż

R2

∇Gpx´ z, t´ sq
`

v̄ pz, sq ¨∇z

˘

ω̄pz, sqdzds.

By Minkowski’s and Young’s inequality, it follows, for all

q P

ˆ

max

"

p,
2p

3p´ 2

*

,
2p

2´ p

˙

, (5.36)

that

›

›∇ω̄ p¨, tq }q ď
›

›∇G ˚ ω0

›

›

q
`

ż t

0

›

›∇Gp¨, t´ sq
›

›

2pq
3pq´2q

›

› v̄ ¨∇ω̄
›

›

2pq
2p`2q´pq

psqds

Àp,q
›

›∇Gp¨, tq
›

›

pq
pq`p´q

›

›ω0

›

›

p
`

ż t

0

pt´ sq´1{p
›

› v̄
›

›

2p
2´p

›

›∇ω̄
›

›

q
.

Applying Calderon-Zygmund estimate and (3.27) in [3], we get from the above estimate that

›

›∇ω̄ p¨, tq }q Àp,q t´1{2`1{q´1{p
›

›ω0

›

›

p
`

ż t

0

pt´ sq´1{p
›

› ω̄
›

›

p

›

›∇ω̄
›

›

q

À t´1{2`1{q´1{p
›

›ω0

›

›

p
`
›

›ω0

›

›

LpX L1

ż t

0

pt´ sq´1{p
›

›∇ω̄
›

›

q
. (5.37)

Now we denote by A˚q p¨q the quantity:

A˚q ptq “ max
0ăτăt

τ1{2´1{q`1{p
›

›∇ω̄p¨, τq
›

›

q
.

Then (5.37) can be reduced to

A˚q ptq Àp,q
›

›ω0 }p `A
˚
q ptq t

1´1{p
›

›ω0 }LpX L1 .

Therefore we can find a T small enough (smallness depends on p, q and }ω0 }p) such that

›

›∇ω̄ p¨, tq
›

›

q
Àp,q t´1{2`1{q´1{p

›

›ω0

›

›

p
, @ t P

`

0, T
‰

. (5.38)

In light of

∇v̄ px, tq “
1

2π

ż

R2

px´ zqK

|x´ z|2
∇ω̄ pz, tq dz

“
1

2π

ż

|x´z|ă1

px´ zqK

|x´ z|2
∇ω̄ pz, tq dz `

ż

|x´z|ě1

px´ zqK

|x´ z|2
∇ω̄ pz, tq dz,

then for q1 P p1, 2q and q2 ą 2 satisfying (5.36), it holds

ˇ

ˇ∇v̄ px, tq
ˇ

ˇ À

ż

|x´z|ă1

1

|x´ z|

ˇ

ˇ∇ω̄
ˇ

ˇpz, tq dz `

ż

|x´z|ě1

1

|x´ z|

ˇ

ˇ∇ω̄
ˇ

ˇpz, tq dz

ď
›

›∇ω̄p¨, tq
›

›

q2

˜

ż

|x´z|ă1

1

|x´ z|q
1
2

dz

¸1{q12

`
›

›∇ω̄p¨, tq
›

›

q1

˜

ż

|x´z|ě1

1

|x´ z|q
1
1

dz

¸1{q11

Àq1,q2

›

›∇ω̄p¨, tq
›

›

q2
`
›

›∇ω̄p¨, tq
›

›

q1
.

Here q11 and q12 are Hölder conjugates of q1 and q2, respectively. Applying (5.38) to the last estimate yields

›

›∇v̄ p¨, tq
›

›

8
Àp,q1, q2

›

›ω0

›

›

p
t´1{2`1{q2´1{p `

›

›ω0

›

›

p
t´1{2`1{q1´1{p, @ t P

`

0, T
‰

.

Therefore by (5.36), }∇v̄ p¨, tq}8 is integrable near t “ 0. The proof is finished.
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In the end we finish this article by a proof of Theorem 1.4.

Proof of Theorem 1.4. In view of Theorem 1.3, (1.1) can be solved on
`

0, T˚
˘

. Moreover the velocity v

satisfies the decomposition (1.4). Since pφ, v˚q solves the system:

$

’

’

’

&

’

’

’

%

Btφ` v
˚ ¨∇φ´∆φ “ ´v̄ ¨∇φ` |∇φ |2φ , on R2 ˆ pτ, T˚q;

Btv
˚ ` v˚ ¨∇v˚ ´∆v˚ “ ´v˚ ¨∇v̄ ´ v̄ ¨∇v˚ ´∇p˚ ´∇ ¨

`

∇φd∇φ
˘

, on R2 ˆ
`

τ, T˚
˘

;

div v̄ “ div v˚ “ 0.

(5.39)

and v̄ already exists on the whole space R2ˆ pτ,8q, we only need to extend pφ, v˚q globally in time so that the

extended pφ, v˚q solves (5.39) weakly on R2 ˆ pτ,8q. In light of the global energy estimate (1.5), we can use

similar arguments as the proofs of Theorems 1.2-1.3 and Lemma 5.2 in [20] to obtain such extension of pφ, v˚q.

Details of the proof are omitted for brevity.
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