MATH2050B 2021 HW 6
TA’s solutionsﬂ to selected problems

Q1. Let f: R — R be additive: f(x +y) = f(x) + f(y) for all z,y € R. Show that

%) QforallméNzER

re) =rf(z) forallr € Q,x € R

and that lim,_,;, f(x) exists in R for some z¢ € R iff lim,_,. f(x) exists for any ¢ € R (what
then lim,_,o f(z) is?) Show further that (assuming lim,_,,, f(x) exists in R for some xy € R),
with k := f(1), f(z) = kx for all x € R.

Solution. (i): Put z,y = 0 into f(z +y) = f(z) + f(y) gives f(0) =0. (ii): 0 = f(x —z) =
f(x) + f(—=z) gives f(—x) = —f(x) for all z.

(7i7): Let n € Z and € R. The case n = 0 is (¢). First we deal with the case n > 0. Note
the case when n = 1 is clearly true. Suppose for some ng > 0 we have f(nozx) = nof(x), then
flno+1)z) = f(x)+ f(noz) = (np+1)f(z). By MI f(nz) =nf(x) foralln > 0 and z € R. For
the case n < 0, note by the previous case and (it): f(nz) = f(—n-—z) = —nf(—x) = nf(x).

(iv): Let m € N,z € R. By () =

:%( mf(;-)) = L #(x). (v): Let r € Q, then there exist
nEZ,mENsuchthatr— , 80 f(rx) = f(2

FO) = *f(m“) =rf(z).

Next, assume that lim,_,,, f(z) exists at one point z, we prove that lim,_,. f(x) exists at any
point ¢ € R. Put L = limy_,,, f(x). Let € > 0, then there exists § > 0 such that for any x with
0 < |z —z0| <6, we have |f(x) — L| <e.

Note for any  with 0 < |z — ¢| < 4, we have 0 < |(z — ¢+ ) — xo| < 0, therefore
[f(x) = fle—mo) = L| = [f(z —c+zo) — L] <e

We conclude that lim,_,. f(z) exists and equals f(c — xg) + L. To calculate lim,_¢ f(z), use
fO+1)=F0)+1f(1) = 0asn— oo

Finally, assume lim,_,,, f(z) exists in R for some xp, and &k = f(1). Let x € R, we show
f(z) = kx. Choose a sequence of rational numbers ()22, such that r, — z. By assumption

f(rn) — f(x). By (v), f(rn) = rnk. Hence f(z) = lim,, r,k = kz.
(Q14-17 of Section 4.1, 4th edition)

Q14. Let c € R, f : R — R such that lim,_,. f(z)? = L.

(a) Show that if L =0, then lim,_,. f(z) =0

(b) Show by example that if L # 0, then f may not have a limit at c.
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Solution. (a): Let ¢ > 0, then ¢ > 0, then there exists > 0 such that for all z with
0 < |z —c| <6, wehave |f(2)?] < €2, i.e. |f(z)| < e. Hence lim, . f(x) exists and equals 0.

(b): Let f: R — R be defined by f(x) = —1 for z < 0 and f(z) = 1 for z > 0. Then
lim, o f(2)? = 1 = L but lim,_,o f(z) does not exist.

Q15. Let f : R — R be defined by setting f(z) := z if z is rational, and f(z) = 0 if z is
irrational.

(a) Show that f has a limit at x = 0.

(b) Use a sequential argument to show that if ¢ # 0, then f does not have a limit at c.

Solution. (a): Let € > 0. Choose 6 = ¢ > 0. For any = with 0 < |z| < §, we have either
f(z) == or f(z) =0. So |f(z) — 0] < € and hence lim,_,o f(z) exists.

(b): Choose a sequence (ry,) of rational numbers with r, — ¢, and a sequence (¢,) of irrational
numbers with ¢, — ¢. Then f(r,) = ¢ and f(¢,) — 0. Hence lim,_,. f(x) does not exist.

Q16. Let f: R — R, let I be an open interval in R and let ¢ € I. If f; is the restriction of f to
I, show that f; has a limit at ¢ if and only if f has a limit at ¢, and that the limits are equal.

Solution. (=)Assume f; has a limit at ¢, say the limit is L. Let € > 0, then there exists §; > 0
such that for x € I with 0 < |z — ¢| < J, we have |fi(z) — L| < e.

Choose 0 < 01 such that Vs(c) C I (this is do-able because [ is open), then for all x € R with
0 < |z —¢| <9, we must have x € I and so |f(z) — L| < e. Hence lim,_,. f(x) = L.

(«<=)Assume f has a limit at ¢, say the limit is L. Let € > 0, then there exists ¢ > 0 such that
for z € R with 0 < |z — ¢| < 0, we have |f(z) — L| < e. Now, for any x € I with 0 < |z —¢| < 0,
we have |fi(x) — L| < e. Hence lim,_,. f1(z) = L.

Q17. Let f: R — R, let J be a closed interval in R, and let ¢ € J. If f5 is the restriction of f
to J, show that if f has a limit at ¢ then fs has a limit at ¢. Show by example that it does not
follow that if fo has a limit at ¢ then f has a limit at c.

Solution. The first part is identical to (<) part of Q16. Consider the function f defined in
Q14(b), J = [0,1], then f5 : [0,1] — R is given by fa(x) = 1, and clearly lim,_,o fa(z) = 1.
But lim,_o f(z) does not exist.

Q3. Use ¢ definition to check that

(i) limg, 1 5t =4

(i) limgy—ox + sgn(z), lim,_0 sin(z—g) does not exist in R

Solution. (i) Note 25 — 4 = (2 + 1)5-05, and if 0 < [z + 1| < {5, then 3 <2243 < . Let

e > 0, take § = min(e, 15), for any = with 0 < |z + 1| < §, we have

|9:+5 < 35
_ e
2x + 3

4

It follows that lim,_,_1 2”;153 = 4.




(73): Suppose on the contrary that lim, ,ox + sgn(x) = L exists. Let e > 0. Then there exists
d > 0 such that for any =z with 0 < |z| < ¢, |z + sgn(z) — L| < e.

Note for all large n, | & 1| < § (this statement means: there exists N such that | £+ 1| < § for
all n > N) We have that

1
) — L| <e¢, for all large n

1
— +sgn(—
n n

Taking n — oo, |1 — L| < e. Because € is arbitrarily chosen, 1 = L. On the other hand we

can replace % by —% in the above inequality, which will give us | — 1 — L| < € for all e. Hence
L = —1. Contradiction.

Next, suppose on the contrary that lim,_, sin(x—g) = L exists. Let % > ¢ > 0, then there exists

d > 0 such that for any x with 0 < |z| < §, we have

1
in(—)—L| <
Sm(xQ) €

Put z,, = \/ﬁ where n € N. For all large n, we have 0 < |z,| < 6, sin(=) = 0. On the other

-1
\2nm4m /2

zn
hand, if we put y, = , then for all large n, 0 < |y,| < J, sin(y%) = 1. Now

1 1 1
1=10—1 = |sin(—) — sin(—)‘ < ‘Sin(—) - L( +
3 Ya y

1
sin(— ) — L| < 2¢
Yn

But € < % by assumption. Contradiction.
(Q1, 3, 8-11, 15 of Section 4.2, 4th edition)

Q1. Apply Theorem 4.2.4 to determine the following limits:

(a) limy—i(z+1)(22 + 3)

. 2
(b) lim,_1 %

Solution. (a): Note lim,_,; z +1 = 2 and lim,_,; 22 + 3 = 5, so the required limit is 10.
(b): Note lim, 1 2% +2 = 3, lim,_,1 22 — 2 = —1, so the required limit is —3.

(c): Note limg_,o ﬁ_l = % and lim,_,9 i = %, so the required limit is %

(d): Note lim, oz + 1 = 1 and lim,_,0 22 + 2 = 2, so the required limit is %

Q3. Find lim, o Y25

where x > 0.
Solution. Notice that

V1422 — 1+ 32 -1

T + 22 (14 22)(vV1+2z+ 1+ 3z)




Because lim, g1 + 2z = 1, lim,_,0 V1 + 22 + /1 + 3z = 2, it follows from Theorem 4.2.4 that

VI14+2z—/143z 1
Y = .

Q8. Let n € N be such that n > 3. Derive the inequality —2? < 2™ < 22 for —1 < & < 1. Then
use the fact that lim, 022 = 0 to show that lim,_,o 2" = 0.

Solution. Let —1 < x < 1. Note |z| < 1, therefore |z"| < 2%. Hence lim,_,o 2™ = 0 by squeeze
theorem.

Q9. Let f,g be defined on A to R and let ¢ be a cluster point of A.

(a) Show that if both lim,_,. f and lim,_,. f + ¢ exist, then lim,_,. g exists.
(b) If lim,. f and lim, . fg, does it follow that lim,_,. g exists?
Solution. (a) follows from the addition rule and g = f+ ¢ — f. (b): Let g : A — R be any

function such that g does not have a limit at ¢ (try to explicitly define one). Take f: A — R
be f(z) = 0. Then the assumptions are satisfied but lim,_,. g does not exist.

Q10. Give examples of functions f and g such that f and g do not have limits at a point c,
but such that both f 4+ g and fg have limits at c.

Solution. Let f :[—1,1] — R be defined by f(z) = —1if z < 0 and f(z) =1 if x > 0. Let
gl—1,1] — R be g(z) = —f(x). Then f(z) + g(z) = 0 for all x and f(z)g(x) = 1 for all x.

Hence f, g are the desired functions.

Q11. Determine whether the following limits exist on R.

(a) lim, ,qsin(1/2?) (z #0)
(b) limg_,0 zsin(1/z2) (z # 0)
(c) limy—osgnsin(l/z) (z # 0)
(d) limg—o vz sin(1/2?) (z > 0)

Solution. (a): Please refer to Q3. (b): limit exists and equals 0 because
[wsin( )| < Jo
xsin(— x
x?’l =

(c): Limit does not exist. This can be seen by using sequential criteria: Let =, = m’

Yn = m Then z,,y, — 0 but sgnsin(1/z,) = 1 and sgnsin(1/y,) = —1 for all n.

(d): limit exists and equals 0 because

[Vasin(y)| < val

Q15. Let ACR, f: A— R and let ¢ € R be a cluster point of A. In addition, suppose that
f(x) >0 for all x € A, and let v/f be the function defined for z € A by (Vf)(z) = \/f(z). If

lim, . f(x) exists, prove that lim, .. /f = VIim,_,. f.

Solution. Let L = lim,_,. f(z).



Case 1. L = 0. Let € > 0, then €2 > 0, and there exists § > 0 such that |f(x)| < €2 for all
x € Awith 0 < |z —c| <d. Hence |\/f(z)] < eforall z € A with 0 < |z —c| <9d.

Case 2. L # 0. Then L > 0. Let € > 0. Since lim,_,. f(x) = L, there exists § > 0 such that
|f(z) — L] < eV/L for all z € A with 0 < |z —¢| < §:

) — _ ) - L |f(z) — L
VIO V= T < I

<€



