
MATH 2230A - HW 6 - Solutions
Full solutions at P.170-171 Q1, 3; P.177 Q1

Commonly missed steps in purple

For your reference, we recall the main theorems central to this HW. Note that the important Cauchy
Integral Formula is derived from the Cauchy-Goursat Theorem on multiply-connected domain.

Theorem 0.1 (Cauchy Integral Formula). Let f : Ω → C be holomorphic on a closed simply
connected domain Ω. Let z ∈ Ωo, the interior of Ω, then we have

2πif(z) =

∫
∂Ω

f(w)

w − z
dw

Theorem 0.2 (Generalized Cauchy Integral Formula). Let f : Ω → C be holomorphic on a closed
simply connected domain Ω. Then f is infinitely differentiable on Ω. Furthermore we have for all
n ∈ N and z ∈ Ωo, the interior of Ω that

1

n!
f (n)(z) =

1

2πi

∫
∂Ω

f(w)

(w − z)n+1
dw

Corollary 0.3 (Liouville’ Theorem). Every bounded entire function is a constant function.

Corollary 0.4 (Maximum Modulus Principle). Let f : Ω→ C be holomorphic on a closed connected
set Ω. Suppose f attains maximum on an interior point of Ω, then f is a constant function.

Remark. Every time, we would be giving full solutions to selected problems only. Other problems
are provided with partial solutions. Please feel free to contact us if you need help on the solutions.

P.170 - 171

Solution. We mainly use the Cauchy Integral Formula. To use it, we have to check that the func-
tion in target is holomorphic everywhere on the (simply connected) closed region enclosed by the
boundary.
Denote Ω the closed region enclosed by C.

1. Let f(z) = e−z. Define z0 := πi/2. Then f is holomorphic on Ω and z0 ∈ Ωo. By the Cauchy
Integral Formula, we have∫

C

e−z

z − πi/2
dz =

∫
C

f(z)

z − z0
dz = 2πif(z0) = 2πie−πi/2 = 2π

2. Let f(z) = cos z
z2+8 and z0 := 0. Then f is holomorphic on Ω (since its denominator is zerp if

and only if z = ±2
√

2i /∈ Ω). Furthermore 0 = z0 ∈ Ωo. By the Cauchy Integral Formula, we
have ∫

C

cos z

z(z2 + 8)
dz =

∫
C

f(z)

z − z0
dz = 2πif(z0) =

2πi

8
=
πi

4
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3. Let f(z) = z/2 and z0 := −1/2. Then f(z) is clearly holomorphic on Ω and z0 ∈ Ω0. By
Cauchy Integral Formula, we have∫

C

z

2z + 1
dz =

∫
C

z/2

z + 1/2
dz =

∫
C

f(z)

z − z0
dz = 2πif(z0) = −2πi

4
=
−πi

2

Solution. For 2a, use the Cauchy Integral formula on f(z) = 1
z+2i at the point z0 := 2i. Please do

not forget to justify the choice of f and why the Cauchy Integral Formula can be used.
For 2b, use the Generalized Integral Formula on f(z) = 1

(z+2i)2 at the point z0 := 2i.

Solution. Denote Ω the closed region bounded by C, that is, the closed unit ball of radius 3. Let
f(s) = 2s2 − s− 2 and z0 := 2. Then f is holomorphic on Ω and z0 ∈ Ωo. By the Cauchy Integral
Formula, we have

g(2) =

∫
C

2s2 − s− 2

s− 2
ds =

∫
C

f(s)

s− 2
ds = 2πif(2) = 2πi · 4 = 8πi

Next, let z ∈ C be such that |z| > 3. Note that z /∈ Ωo. We cannot use the Cauchy Integral Formula.

Nonetheless, we can still use the Cauchy-Goursat Theorem: define hz(s) := 2s2−s−2
s−z . Then hz is

holomorphic on Ω, which is simply connected, as |z| > 3. By the Cauchy-Goursat Theorem, we have

g(z) =

∫
C

2s2 − s− 2

s− z
ds =

∫
C

hz(s)ds = 0

Solution. For the first part, apply the cauchy integral formula on f(z) = eaz at the point z0 = 0.
You should verify why the Cauchy Integral Formula could be used.
For the second part, simply the contour integral in the first part. You may have to consider odd
functions/even functions.
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P.177

Solution. The Liouville’s Theorem states that a bounded entire function is a constant function. Let
g(z) := ef(z). We proceed to show that g is a constant function. First since f is entire and the
exponential function is entire, g is also entire by the chain rule. Then we proceed to show that g is
bounded: let z ∈ C; then we have

|g(z)| =
∣∣∣ef(z)

∣∣∣ =
∣∣∣eu(z)+iv(z)

∣∣∣ =
∣∣∣eu(z)

∣∣∣ = eu(z) ≤ eu0

where u, v are real and imaginary parts of f respectively and the last two comparisons follow from
the fact the the exponential function is non-negative and increasing on R.
Hence, g is bounded by the constant eu0 and is therefore bounded. By the Liouville’s theorem,
there exists C ∈ C such that g(z) = C for all z ∈ C. By considering modulus, we then have
eu(z) = |eu(z)| = |ef(z)| = |g(z)| = |C| for all z ∈ C. Note that C 6= 0 as the exponential function
from complex domain always takes nonzero value (why?). Hence, |C| 6= 0. From the above, we then
have u(z) = ln |C| for all z ∈ C, that is u is a constant on the plane.

Solution. This question is simply a verification of the Maximum Modulus Principle. You probably
do not have to apply any major theorems in this course. (Just following the suggestion will do).

Solution. This question is simply a verification of the Maximum Modulus Principle. You probably
do not have to apply any major theorems in this course.
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